• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 13
  • 5
  • Tagged with
  • 54
  • 54
  • 20
  • 18
  • 18
  • 17
  • 16
  • 16
  • 15
  • 14
  • 14
  • 13
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Método da função Lagrangiana aumentada-barreira logarítmica para a solução do problema de fluxo de potência ótimo / Method of logarithmic barrier-augmented Lagrangian function for solution of the optimal power flow problem

Baptista, Edméa Cássia 07 June 2001 (has links)
Neste trabalho propomos uma abordagem para a resolução do problema de fluxo de potência ótimo. Para isso, foram obtidos dados teóricos, a partir de um levantamento bibliográfico, que explicitaram os métodos de penalidade, de barreira, de Newton-Lagrangiano, da função Lagrangiana aumentada e dual-Lagrangiano. Nesta abordagem, as restrições de igualdade são tratadas pelo método de Newton, as restrições canalizadas, de tensão e tap, pelo método da função barreira logarítmica, e as restrições de desigualdade e demais restrições canalizadas, pelo método da função Lagrangiana aumentada. A motivação para este estudo foi a necessidade de manter as variáveis - tensão e tap - dentro de seus limites. Os resultados numéricos apresentados evidenciam o potencial desta metodologia para a resolução de problemas de programação não-linear e, em particular, do problema de fluxo de potência ótimo. / A new approach to solving the optimal power flow problem is proposed in this study. The first step in developing this method was to obtain theoretical material from bibliographic survey, which described in detail the penalty method, the barrier method, Newton\'s method, the augmented Lagrangian method end the dual-Lagrangian method. In the new approach, equality constraints are handled by Newton\'s method, the voltage end tap box inequality constraints by the logarithmic barrier method and the inequality constraints and the other box inequality constraints by the augmented Lagrangian method. The motivation for this research was the necessity to keep the voltage and tap variables within their limits. The numerical results demonstrate the potential of this methodology for the solution of nonlinear problems and, in particular, of the optimal power flow problem.
12

Numerical modeling of the surface and the bulk deformation in a small scale contact. Application to the nanoindentation interpretation and to the micro-manipulation.

Berke, Péter P. Z. 19 December 2008 (has links)
L’adaptation des surfaces pour des fonctions prédéterminées par le choix des matériaux métalliques ou des couches minces ayant des propriétés mécaniques avancées peut potentiellement permettre de réaliser des nouvelles applications à petites échelles. Concevoir de telles applications utilisant des nouveaux matériaux nécessite en premier lieu la connaissance des propriétés mécaniques des matériaux ciblés à l’échelle microscopique et nanoscopique. Une méthode souvent appliquée pour caractériser les matériaux à petites échelles est la nanoindentation, qui peut être vue comme une mesure de dureté à l’échelle nanoscopique. Ce travail présente une contribution relative à l'interprétation des résultats de la nanoindentation, qui fait intervenir un grand nombre de phénomènes physiques couplés à l'aide de simulations numériques. A cette fin une approche interdisciplinaire, adaptée aux phénomènes apparaissant à petites échelles, et située à l’intersection entre la physique, la mécanique et la science des matériaux a été utilisée. Des modèles numériques de la nanoindentation ont été conçus à l'échelle atomique (modèle discret) et à l'échelle des milieux continus (méthode des éléments finis), pour étudier le comportement du nickel pur. Ce matériau a été choisi pour ses propriétés mécaniques avancées, sa résistance à l'usure et sa bio-compatibilité, qui peuvent permettre des applications futures intéressantes à l'échelle nanoscopique, particulièrement dans le domaine biomédical. Des méthodes avancées de mécanique du solide ont été utilisées pour prendre en compte les grandes déformations locales du matériau (par la formulation corotationelle), et pour décrire les conditions de contact qui évoluent au cours de l'analyse dans le modèle à l'échelle des milieux continus (traitement des conditions de contact unilatérales et tangentielles par une forme de Lagrangien augmenté). L’application des modèles numériques a permis de contribuer à l’identification des phénomènes qui gouvernent la nanoindentation du nickel pur. Le comportement viscoplastique du nickel pur pendant nanoindentation a été identifié dans une étude expérimentale-numérique couplée, et l'effet cumulatif de la rugosité et du frottement sur la dispersion des résultats de la nanoindentation a été montré par une étude numérique (dont les résultats sont en accord avec des tendances expérimentales). Par ailleurs, l’utilisation de l’outil numérique pour une autre application à petites échelles, la manipulation des objets par contact, a contribué à la compréhension de la variation de l’adhésion électrostatique pendant micromanipulation. La déformation plastique des aspérités de surface sur le bras de manipulateur (en nickel pur) a été identifiée comme une source potentielle d’augmentation importante de l'adhésion pendant la micromanipulation, qui peut potentiellement causer des problèmes de relâche et de précision de positionnement, observés expérimentalement. Les résultats présentés dans cette thèse montrent que des simulations numériques basées sur la physique du problème traité peuvent expliquer des tendances expérimentales et contribuer à la compréhension et l'interprétation d'essais couramment utilisé pour la caractérisation aux petites échelles. Le travail réalisé dans cette thèse s’inscrit dans un projet de recherche appelé "mini-micro-nano" (mµn), financé par la Communauté Française de Belgique dans le cadre de "l'Action de Recherche Concertée", convention 04/09-310.
13

Application of L1 Minimization Technique to Image Super-Resolution and Surface Reconstruction

Talavatifard, Habiballah 03 October 2013 (has links)
A surface reconstruction and image enhancement non-linear finite element technique based on minimization of L1 norm of the total variation of the gradient is introduced. Since minimization in the L1 norm is computationally expensive, we seek to improve the performance of this algorithm in two fronts: first, local L1- minimization, which allows parallel implementation; second, application of the Augmented Lagrangian method to solve the minimization problem. We show that local solution of the minimization problem is feasible. Furthermore, the Augmented Lagrangian method can successfully be used to solve the L1 minimization problem. This result is expected to be useful for improving algorithms computing digital elevation maps for natural and urban terrain, fitting surfaces to point-cloud data, and image super-resolution.
14

Método da função Lagrangiana aumentada-barreira logarítmica para a solução do problema de fluxo de potência ótimo / Method of logarithmic barrier-augmented Lagrangian function for solution of the optimal power flow problem

Edméa Cássia Baptista 07 June 2001 (has links)
Neste trabalho propomos uma abordagem para a resolução do problema de fluxo de potência ótimo. Para isso, foram obtidos dados teóricos, a partir de um levantamento bibliográfico, que explicitaram os métodos de penalidade, de barreira, de Newton-Lagrangiano, da função Lagrangiana aumentada e dual-Lagrangiano. Nesta abordagem, as restrições de igualdade são tratadas pelo método de Newton, as restrições canalizadas, de tensão e tap, pelo método da função barreira logarítmica, e as restrições de desigualdade e demais restrições canalizadas, pelo método da função Lagrangiana aumentada. A motivação para este estudo foi a necessidade de manter as variáveis - tensão e tap - dentro de seus limites. Os resultados numéricos apresentados evidenciam o potencial desta metodologia para a resolução de problemas de programação não-linear e, em particular, do problema de fluxo de potência ótimo. / A new approach to solving the optimal power flow problem is proposed in this study. The first step in developing this method was to obtain theoretical material from bibliographic survey, which described in detail the penalty method, the barrier method, Newton\'s method, the augmented Lagrangian method end the dual-Lagrangian method. In the new approach, equality constraints are handled by Newton\'s method, the voltage end tap box inequality constraints by the logarithmic barrier method and the inequality constraints and the other box inequality constraints by the augmented Lagrangian method. The motivation for this research was the necessity to keep the voltage and tap variables within their limits. The numerical results demonstrate the potential of this methodology for the solution of nonlinear problems and, in particular, of the optimal power flow problem.
15

Algoritmos genéticos para otimização de estruturas reticuladas baseadas em modelos adaptativos e lagrangeano aumentado

Silva, Francilene Barbosa dos Santos 31 August 2011 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-06-22T20:11:29Z No. of bitstreams: 1 francilenebarbosadossantossilva.pdf: 1221545 bytes, checksum: 856c7ab72d52744ef09d0bed1ecbd238 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-08-07T20:11:10Z (GMT) No. of bitstreams: 1 francilenebarbosadossantossilva.pdf: 1221545 bytes, checksum: 856c7ab72d52744ef09d0bed1ecbd238 (MD5) / Made available in DSpace on 2017-08-07T20:11:10Z (GMT). No. of bitstreams: 1 francilenebarbosadossantossilva.pdf: 1221545 bytes, checksum: 856c7ab72d52744ef09d0bed1ecbd238 (MD5) Previous issue date: 2011-08-31 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Estratégias de penalização são muito utilizadas no trato de problemas com restrições. Problemas inerentes a escolha de valores adequados para os termos de penalização di-ficultam a obtenção de resultados confiáveis e robustos na sua aplicação em problemas da otimização estrutural. Técnicas baseadas em modelos de penalização adaptativa tem apresentado relativo sucesso quando aplicadas em conjunto com algoritmos evolucionis-tas. Apresenta-se aqui uma nova alternativa utilizando uma estratégia de lagrangeano aumentado para o trato das restrições do problema de otimização estrutural. Encontra-se na literatura modelos para penalização adaptativa bem como o uso do lagrangeano aumentado em conjunto com algoritmos genéticos geracionais. O objetivo desse trabalho é adaptar um modelo de penalização para um algoritmo genético não gera-cional, bem como criar um algoritmo baseado em lagrangeano aumentado também para o algoritmo não-geracional. Esses algoritmos foram aplicados em estruturas reticuladas, muito utilizadas na construção civil como coberturas de ginásios, hangares, galpões, etc. O desempenho desses tipos de estruturas e funções matemáticas foi analisado com as técnicas de tratamento de restrição apresentadas nesse trabalho. Isso foi feito durante a busca de soluções ótimas na tentativa de minimizar os custos e satisfazer as restrições adequadas para diversas estruturas e funções matemáticas. / Penalty strategies are widely used in dealing with problems with constraints. Problems inherent in the choice of appropriate values for the terms of penalties dificult to obtain reliable and strong results in its application in problems of structural optimization. Techniques based on models of adaptive penalty has shown some success when applied in conjunction with evolutionary algorithms. Here is presented a new alternative using augmented Lagrangian strategy for dealing with the problem of constrained structural optimizations. It is found in the literature models for adaptive penalties as well as the use of the augmented Lagrangian together with generational genetic algorithms. The aim of this work is to adapt a model of penalization for non-generational genetic algorithm, as well as create an algorithm based on augmented Lagrangian as also for a non-generational algorithm. These algorithms were applied to structures, widely used in construction as coverage of gymnasiums, hangars, etc.. The performance of these types of structures and functions was analyzed using mathematical techniques for handling constraints presented in this work. This was done during the search for optimal solutions in an attempt to minimize costs and satisfy the constraints appropriate for various structures and mathematical functions.
16

Metodo de direções interiores ao epígrafo - IED para otimização não diferenciável e não convexa via Dualidade Lagrangeana: estratégias para minimização da Lagrangeana aumentada

Franco, Hernando José Rocha 08 June 2018 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-07-12T12:23:47Z No. of bitstreams: 1 hernandojoserochafranco.pdf: 1674623 bytes, checksum: f6df7317dd6a8e94e51045dbf75e8241 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-07-17T11:56:13Z (GMT) No. of bitstreams: 1 hernandojoserochafranco.pdf: 1674623 bytes, checksum: f6df7317dd6a8e94e51045dbf75e8241 (MD5) / Made available in DSpace on 2018-07-17T11:56:13Z (GMT). No. of bitstreams: 1 hernandojoserochafranco.pdf: 1674623 bytes, checksum: f6df7317dd6a8e94e51045dbf75e8241 (MD5) Previous issue date: 2018-06-08 / A teoria clássica de otimização presume a existência de certas condições, por exemplo, que as funções envolvidas em um problema desta natureza sejam pelo menos uma vez continuamente diferenciáveis. Entretanto, em muitas aplicações práticas que requerem o emprego de métodos de otimização, essa característica não se encontra presente. Problemas de otimização não diferenciáveis são considerados mais difíceis de lidar. Nesta classe, aqueles que envolvem funções não convexas são ainda mais complexos. O Interior Epigraph Directions (IED) é um método de otimização que se baseia na teoria da Dualidade Lagrangeana e se aplica à resolução de problemas não diferenciáveis, não convexos e com restrições. Neste estudo, apresentamos duas novas versões para o referido método a partir de implementações computacionais de outros algoritmos. A primeira versão, denominada IED+NFDNA, recebeu a incorporação de uma implementação do algoritmo Nonsmooth Feasible Direction Nonconvex Algorithm (NFDNA). Esta versão, ao ser aplicada em experimentos numéricos com problemas teste da literatura, apresentou desempenho satisfatório quando comparada ao IED original e a outros solvers de otimização. Com o objetivo de aperfeiçoar mais o método, reduzindo sua dependência de parâmetros iniciais e também do cálculo de subgradientes, uma segunda versão, IED+GA, foi desenvolvida com a utilização de algoritmos genéticos. Além da resolução de problemas teste, o IED-FGA obteve bons resultados quando aplicado a problemas de engenharia. / The classical theory of optimization assumes the existence of certain conditions, for example, that the functions involved in a problem of this nature are at least once continuously differentiable. However, in many practical applications that require the use of optimization methods, this characteristic is not present. Non-differentiable optimization problems are considered more difficult to deal with. In this class, those involving nonconvex functions are even more complex. Interior Epigraph Directions (IED) is an optimization method that is based on Lagrangean duality theory and applies to the resolution of non-differentiable, non-convex and constrained problems. In this study, we present two new versions for this method from computational implementations of other algorithms. The first version, called IED + NFDNA, received the incorporation of an implementation of the Nonsmooth Feasible Direction Nonconvex Algorithm (NFDNA) algorithm. This version, when applied in numerical experiments with problems in the literature, presented satisfactory performance when compared to the original IED and other optimization solvers. A second version, IED + GA, was developed with the use of genetic algorithms in order to further refine the method, reducing its dependence on initial parameters and also on the calculation of subgradients. In addition to solving test problems, IED + GA achieved good results when applied to engineering problems.
17

Design of a large-scale constrained optimization algorithm and its application to digital human simulation

Nicholson, John Corbett 01 May 2017 (has links)
A new optimization algorithm, which can efficiently solve large-scale constrained non-linear optimization problems and leverage parallel computing, is designed and studied. The new algorithm, referred to herein as LASO or LArge Scale Optimizer, combines the best features of various algorithms to create a computationally efficient algorithm with strong convergence properties. Numerous algorithms were implemented and tested in its creation. Bound-constrained, step-size, and constrained algorithms have been designed that push the state-of-the-art. Along the way, five novel discoveries have been made: (1) a more efficient and robust method for obtaining second order Lagrange multiplier updates in Augmented Lagrangian algorithms, (2) a method for directly identifying the active constraint set at each iteration, (3) a simplified formulation of the penalty parameter sub-problem, (4) an efficient backtracking line-search procedure, (5) a novel hybrid line-search trust-region step-size calculation method. The broader impact of these contributions is that, for the first time, an Augmented Lagrangian algorithm is made to be competitive with state-of-the-art Sequential Quadratic Programming and Interior Point algorithms. The present work concludes by showing the applicability of the LASO algorithm to simulate one step of digital human walking and to accelerate the optimization process using parallel computing.
18

Estudo de reativos em sistemas de distribuição de energia elétrica / Reactive power study in energy distribution systems

Vasconcelos, Fillipe Matos de 22 March 2012 (has links)
Este trabalho tem o objetivo de utilizar métodos de otimização não linear a fim de desenvolver uma metodologia eficiente para alocação de bancos de capacitores visando a eliminar violações de tensão em redes de distribuição. A aplicação de capacitores em paralelo a sistemas elétricos de potência é comumente empregada com o intuito de se obter melhor controle do fluxo de potência, gerenciamento do perfil de tensão, correção do fator de potência e minimização de perdas. Tendo em vista estes benefícios, a metodologia deste trabalho se dará por meio da resolução de um problema de programação não linear associada com a aproximação linear da relação potência reativa versus tensão para determinar o número, a localização e o dimensionamento dos bancos capacitores ao longo das linhas de distribuição. Desta forma, pretende-se minimizar a injeção de reativos e reduzir as perdas ativas totais de modo que todas as restrições de operação e de carga sejam atendidas. Os resultados são avaliados pelo programa GAMS (General Algebraic Modeling System), pelo MATLAB TM (Matrix Laboratory) e por um programa elaborado em Fortran, sendo possível analisar e descrever as contribuições alcançadas pelo presente trabalho, considerando que este é um tema de grande relevância para a operação e planejamento da expansão dos sistemas elétricos de potência. / This work aims to use nonlinear optimization methods to develop an efficient methodology for capacitor banks allocation to eliminate voltage violations in distribution networks. The application of capacitors in parallel to the electric power systems are commonly employed in order to have better control of power flow, voltage profile management, power factor correction and loss minimization. To achieve these benefits, the methodology of this work will be done through the resolution of a nonlinear programming problem associated with the linear approach of Voltage Variations versus Reactive Power Variation, calculating the number, location and optimal design of capacitor banks along distribution lines. Thus, it looks forward to minimize reactive power injection and reduce losses subject to meeting the operating and the loading constraints. The results are evaluated by the program GAMS TM (General Algebraic Modeling System), by Matlab TM (Matrix Laboratory) and by a program written in FORTRAN TM, being able to analyze and describe the contributions achieved by this work, considering it is a topic of great relevance to the operation and expansion planning of electric power systems.
19

Condições de otimalidade, qualificação e métodos tipo Lagrangiano aumentado para problemas de equilíbrio de Nash generalizados / Optimality conditions, constraint qualifications and Augmented Lagrangian type methods for Generalized Nash Equilibrium Problems

Rojas, Frank Navarro 14 March 2018 (has links)
Esta tese é um estudo acerca do Problema de Equilíbrio de Nash Generalizado (GNEP). Na primeira parte, faremos um resumo dos principais conceitos sobre GNEPs, a relação com outros problemas já conhecidos e comentaremos brevemente os principais métodos já feitos até esta data para resolver numericamente este tipo de problema. Na segunda parte, estudamos condições de otimalidade e condições de qualificação (CQ) para GNEPs, fazendo uma analogia como em otimização. Estendemos os conceitos de cone tangente, normal, gerado pelas restrições ativas, linearizado e polar para a estrutura dos GNEPs. Cada CQ de otimização gera dois tipos de CQ para GNEPs, sendo que a denotada por CQ-GNEP é mais forte e útil para a análise de algoritmos para GNEPs. Mostramos que as condições de qualificação para GNEPs deste tipo em alguns casos não guardam a mesma relação que em otimização. Estendemos também o conceito de Aproximadamente Karush-KuhnTucker (AKKT) de otimização para GNEPs, o AKKT-GNEP. É bem conhecido que AKKT é uma genuína condição de otimalidade em otimização, mas para o caso dos GNEPs mostramos que isto não ocorre em geral. Por outro lado, AKKT-GNEP é satisfeito, por exemplo, em qualquer solução de um GNEP conjuntamente convexo, desde que seja um equilíbrio bvariacional. Com isso em mente, definimos um método do tipo Lagrangiano Aumentado para o GNEP usando penalidades quadráticas e exponenciais e estudamos as propriedades de otimalidade e viabilidade dos pontos limites de sequências geradas pelo algoritmo. Finalmente alguns critérios para resolver os subproblemas e resultados numéricos são apresentados. / This thesis is a study about the generalized Nash equilibrium problem (GNEP). In the first part we will summarize the main concepts about GNEPs, the relationship with other known problems and we will briefly comment on the main methods already done in order to solve these problems numerically. In the second part we study optimality conditions and constraint qualification (CQ) for GNEPs making an analogy with the optimization case. We extend the concepts of the tangent, normal and generated by the active cones, linear and polar cone to the structure of the GNEPs. Each optimization CQ generates two types of CQs for GNEPs, with the one called CQ-GNEP being the strongest and most useful for analyzing the algorithms for GNEPs. We show that the qualification conditions for GNEPs of this type in some cases do not have the same relation as in optimization. We also extend the Approximate Karush- Kuhn-Tucker (AKKT) concept used in optimization for GNEPs to AKKT-GNEP. It is well known that AKKT is a genuine optimality condition in optimization but for GNEPs we show that this does not occur in general. On the other hand, AKKT-GNEP is satisfied, for example, in any solution of a jointly convex GNEP, provided that it is a b-variational equilibrium. With this in mind, we define Augmented Lagrangian methods for the GNEP, using the quadratic and the exponential penalties, and we study the optimality and feasibility properties of the sequence of points generated by the algorithms. Finally some criteria to solve the subproblems and numerical results are presented.
20

Abordagem do problema de fluxo de potência ótimo por métodos de programação não-linear via penalidade quadrática e Função Lagrangeana Aumentada / not available

Nascimento, Clebea Araújo 25 July 1997 (has links)
Neste trabalho são estudadas três metodologias de otimização não-linear: o Método da Função Lagrangeana, o Método da Função Penalidade e o Método da Função Lagrangeana Aumentada. Com o estudo da Função Lagrangeana e do Método da Função Penalidade, foi possível alcançar a formulação da Função Lagrangeana Aumentada com o objetivo de resolver problemas de programação não-linear não-convexos. Testes numéricos são apresentados para o problema não-convexo de programação não-linear conhecido como Fluxo de Potência Ótimo. / In this dissertation, three nonlinear optimization methodologies are studied: the Lagrangian Function Method, the Penalty Function Method and Augmented Lagrangian Function Method. Through the studies ofthe Lagrangian Function and the Penalty function Method, it was possible to reach the formulation of the Augmented Lagrangian Function aiming to solve nonlinear nonconvex programming problems. Numerical tests are presented for the nonconvex nonlinear programming problem known as optimal power flow.

Page generated in 0.0833 seconds