Spelling suggestions: "subject:"autonomous amobile robots"" "subject:"autonomous 0mobile robots""
21 |
Design and development of a graphical user interface for the monitoring process of an automated guided vehicle fleetPaul, Johanna January 2020 (has links)
Many different autonomously driving mobile robots are used for industrial transports of materials or oods in the context of internal logistic processes because of different use cases. The problem for the users that need to monitor the robots is that each manufacturer provides its own graphical user interface (GUI) wi th different operating modes and visual designs, which requires different trainings and constant swi tching between software. Therefore, this paper shows the design and development process of a graphical user interface in the form of a web application for the monitoring process of a fleet of automated guided vehicles from different manufacturers and answers the following question: "What are the main criteria when designing a graphical user interface with high usability for the monitoring process of manufacturer-independent automa ted guided vehicle f leets?” To answer the question, existing graphical user interfaces from different manufacturers were analyzed and interviews with developers and end-users of the GUIs were conducted. Requirements were then derived, on whose basis sketching, wireframing and high-fidelity prototyping have been performed. Usability testing and a heuristic evaluation were chosen to improve the application and its usability continually. As a result, the following six main criteria could be derived that summarize the most essential points to consider when designing such a GUI: administrabi lity, adaptiveness, observability, analyzability, robot and job awareness, and intervention. / Många olika autonomt körande mobila robotar används för industriell transport av material eller varor i samband med interna logistiska processer till följd av olika användningsfall. Problemet för de användare som behöver övervaka robotarna är att varje tillverkare tillhandahåller sitt eget grafiska användargränssnitt (GUI) med olika driftsätt och visuella utformningar, vilket kräver olika utbildningar och ständig växling mellan mjukvara. Denna uppsats visar därför design- och utvecklingsprocessen för ett grafiskt användargränssnitt i form av en webbapplikation för övervakningsprocessen för en samling av automatiserade guidade fordon från olika tillverkare, och svarar på följande fråga: "Vilka är de viktigaste kriterierna vid utformningen av ett grafiskt användargränssnitt med hög användbarhet för övervakningsprocessen av automatiserade guidade fordonsamlingar, oboeroande av tillverkare?” För att svara på frågan analyserades befintliga grafiska användargränssnitt från olika tillverkare, samt intervjuer med utvecklare och slutanvändare av GUI:erna utfördes. Krav härleddes sedan, baserat på vilka skisser, wireframing och hifi -prototyper som har utförts. Användbarhetstest och en heuristisk utvärdering valdes för att kontinuerligt förbättra applikationen och dess användbarhet. Som ett resultat kan följande sex huvudkriterier härledas, de sammanfattar de viktigaste punkterna att tänka på när man utformar ett sådant GUI: förmåga att administrera, anpassningsförmåga, observerbarhet, analyserbarhet, robot- och jobbmedvetenhet och intervention.
|
22 |
ON THE MUTUAL VISIBILITY OF FAT MOBILE ROBOTSAlsaedi, Rusul Jabbar 27 April 2016 (has links)
No description available.
|
23 |
Fusão de informações obtidas a partir de múltiplas imagens visando à navegação autônoma de veículos inteligentes em abiente agrícola / Data fusion obtained from multiple images aiming the navigation of autonomous intelligent vehicles in agricultural environmentUtino, Vítor Manha 08 April 2015 (has links)
Este trabalho apresenta um sistema de auxilio à navegação autônoma para veículos terrestres com foco em ambientes estruturados em um cenário agrícola. É gerada a estimativa das posições dos obstáculos baseado na fusão das detecções provenientes do processamento dos dados de duas câmeras, uma estéreo e outra térmica. Foram desenvolvidos três módulos de detecção de obstáculos. O primeiro módulo utiliza imagens monoculares da câmera estéreo para detectar novidades no ambiente através da comparação do estado atual com o estado anterior. O segundo módulo utiliza a técnica Stixel para delimitar os obstáculos acima do plano do chão. Por fim, o terceiro módulo utiliza as imagens térmicas para encontrar assinaturas que evidenciem a presença de obstáculo. Os módulos de detecção são fundidos utilizando a Teoria de Dempster-Shafer que fornece a estimativa da presença de obstáculos no ambiente. Os experimentos foram executados em ambiente agrícola real. Foi executada a validação do sistema em cenários bem iluminados, com terreno irregular e com obstáculos diversos. O sistema apresentou um desempenho satisfatório tendo em vista a utilização de uma abordagem baseada em apenas três módulos de detecção com metodologias que não tem por objetivo priorizar a confirmação de obstáculos, mas sim a busca de novos obstáculos. Nesta dissertação são apresentados os principais componentes de um sistema de detecção de obstáculos e as etapas necessárias para a sua concepção, assim como resultados de experimentos com o uso de um veículo real. / This work presents a support system to the autonomous navigation for ground vehicles with focus on structured environments in an agricultural scenario. The estimated obstacle positions are generated based on the fusion of the detections from the processing of data from two cameras, one stereo and other thermal. Three modules obstacle detection have been developed. The first module uses monocular images of the stereo camera to detect novelties in the environment by comparing the current state with the previous state. The second module uses Stixel technique to delimit the obstacles above the ground plane. Finally, the third module uses thermal images to find signatures that reveal the presence of obstacle. The detection modules are fused using the Dempster-Shafer theory that provides an estimate of the presence of obstacles in the environment. The experiments were executed in real agricultural environment. System validation was performed in well-lit scenarios, with uneven terrain and different obstacles. The system showed satisfactory performance considering the use of an approach based on only three detection modules with methods that do not prioritize obstacle confirmation, but the search for new ones. This dissertation presents the main components of an obstacle detection system and the necessary steps for its design as well as results of experiments with the use of a real vehicle.
|
24 |
Sistema de controle híbrido para robôs móveis autônomosHeinen, Farlei José 28 June 2002 (has links)
Made available in DSpace on 2015-03-05T13:53:43Z (GMT). No. of bitstreams: 0
Previous issue date: 28 / Nenhuma / Neste trabalho foi desenvolvido um sistema de controle robusto para robôs
móveis autônomos que é capaz de operar e de se adaptar a diferentes ambientes e
condições. Para isso foi proposta uma arquitetura de controle híbrida (COHBRA),
integrando as duas principais técnicas de controle robótico (controle deliberativo e
controle reativo). Esta arquitetura de controle utiliza uma abordagem de três camadas
para integrar uma camada vital (controle reativo), uma camada funcional (seqüenciador)
e uma camada deliberativa (controle deliberativo). A comunicação entre as diversas
camadas é realizada através de uma área de memória compartilhada, inspirada na
abordagem Blackboard. A arquitetura de controle possui um esquema de múltiplas
representações internas do ambiente: representação poligonal, representação matricial e
representação topológica / semântica.
O sistema de controle desenvolvido tem a capacidade de navegar em um
ambiente dinâmico, desviando tanto de obstáculos estáticos como de obstáculos móveis / In this work we developed a robust control system for autonomous mobile robots
capable of operating and adapting in various environments and conditions. In order to
accomplish this objective an hybrid control architecture (COHBRA) was proposed,
integrating the two main techniques of robotic control: deliberative control and reactive
control. This control architecture uses a three layers approach to integrate a vital layer
(reactive control), a functional layer (sequencer) and a deliberative layer (deliberative
control). The communication between the three layers uses a shared memory approach,
inspired in the Blackboard approach. The control architecture has a structure of multiple
internal representations of the environment: polygonal representation, matricial
representation and topological/semantic representation.
The control system has the ability to navigate in a dynamic environment,
avoiding static obstacles and unexpected mobile obstacles. The deliberative layer uses
the A* algorithm to calcu
|
25 |
Evolução de estratégias e controle inteligente em sistemas multi-robóticos robustosPessin, Gustavo 22 February 2008 (has links)
Made available in DSpace on 2015-03-05T13:59:42Z (GMT). No. of bitstreams: 0
Previous issue date: 22 / Nenhuma / Este trabalho está relacionado com a aplicação de técnicas de Inteligência Artificial no desenvolvimento de um Sistema Multi-Agente robótico aplicado ao problema da monitoração
e combate a incêndios em áreas florestais. O objetivo macro é
evoluir estratrégias de formação de equipes de combate a incêndio (unidade de controle) e criar métodos robustos de navegação em agentes robóticos (unidades de combate), considerando um ambiente virtual de simulação realística.No sistema proposto, uma equipe de agentes autônomos trabalha cooperativamente a fim de realizar com sucesso a identificação e o combate a incêndios em áreas florestais, sem
intervenção humana. O ambiente virtual 3D suporta uma série de características fundamentais para a simulação realística da operação, como terrenos irregulares, processos naturais e
restrições físicas na criação e uso de robôs móveis. Este ambiente foi implementado através do uso das bibliotecas OSG, ODE e Demeter. A operacão multi-agente depende essencialmente de duas etapas: p / This work is related to the application of Artificial Intelligence techniques to develop a Multi-Agent Robotic System applied to the problem of monitoring wild forest fires and to the
execution of fire fighting actions. Our main goal was to evolve strategies (control unit) in order to define the positioning of the fire-fighting autonomous robotic team and to create robust navigation methods used to control robotic agents (combat units). This work was developed based on simulations accomplished using a realistic 3D virtual environment, specially implemented for this purpose, using the software libraries OSG, Demeter and ODE. In the proposed system, a team of autonomous agents work cooperatively in order to successfully perform the identification and fighting of forest fires, without any human intervention. The 3D virtual environment includes several features for realistic simulation of this task, as for example, adoption of irregular terrains, natural processes simulation (e.g. fire propagation), and simulati
|
26 |
A connectionist approach for incremental function approximation and on-line tasks / Uma abordagem conexionista para a aproximação incremental de funções e tarefas de tempo realHeinen, Milton Roberto January 2011 (has links)
Este trabalho propõe uma nova abordagem conexionista, chamada de IGMN (do inglês Incremental Gaussian Mixture Network), para aproximação incremental de funções e tarefas de tempo real. Ela é inspirada em recentes teorias do cérebro, especialmente o MPF (do inglês Memory-Prediction Framework) e a Inteligência Artificial Construtivista, que fazem com que o modelo proposto possua características especiais que não estão presentes na maioria dos modelos de redes neurais existentes. Além disso, IGMN é baseado em sólidos princípios estatísticos (modelos de mistura gaussianos) e assintoticamente converge para a superfície de regressão ótima a medida que os dados de treinamento chegam. As principais vantagens do IGMN em relação a outros modelos de redes neurais são: (i) IGMN aprende instantaneamente analisando cada padrão de treinamento apenas uma vez (cada dado pode ser imediatamente utilizado e descartado); (ii) o modelo proposto produz estimativas razoáveis baseado em poucos dados de treinamento; (iii) IGMN aprende de forma contínua e perpétua a medida que novos dados de treinamento chegam (não existem fases separadas de treinamento e utilização); (iv) o modelo proposto resolve o dilema da estabilidade-plasticidade e não sofre de interferência catastrófica; (v) a topologia da rede neural é definida automaticamente e de forma incremental (novas unidades são adicionadas sempre que necessário); (vi) IGMN não é sensível às condições de inicialização (de fato IGMN não utiliza nenhuma decisão e/ou inicialização aleatória); (vii) a mesma rede neural IGMN pode ser utilizada em problemas diretos e inversos (o fluxo de informações é bidirecional) mesmo em regiões onde a função alvo tem múltiplas soluções; e (viii) IGMN fornece o nível de confiança de suas estimativas. Outra contribuição relevante desta tese é o uso do IGMN em importantes tarefas nas áreas de robótica e aprendizado de máquina, como por exemplo a identificação de modelos, a formação incremental de conceitos, o aprendizado por reforço, o mapeamento robótico e previsão de séries temporais. De fato, o poder de representação e a eficiência e do modelo proposto permitem expandir o conjunto de tarefas nas quais as redes neurais podem ser utilizadas, abrindo assim novas direções nos quais importantes contribuições do estado da arte podem ser feitas. Através de diversos experimentos, realizados utilizando o modelo proposto, é demonstrado que o IGMN é bastante robusto ao problema de overfitting, não requer um ajuste fino dos parâmetros de configuração e possui uma boa performance computacional que permite o seu uso em aplicações de controle em tempo real. Portanto pode-se afirmar que o IGMN é uma ferramenta de aprendizado de máquina bastante útil em tarefas de aprendizado incremental de funções e predição em tempo real. / This work proposes IGMN (standing for Incremental Gaussian Mixture Network), a new connectionist approach for incremental function approximation and real time tasks. It is inspired on recent theories about the brain, specially the Memory-Prediction Framework and the Constructivist Artificial Intelligence, which endows it with some unique features that are not present in most ANN models such as MLP, RBF and GRNN. Moreover, IGMN is based on strong statistical principles (Gaussian mixture models) and asymptotically converges to the optimal regression surface as more training data arrive. The main advantages of IGMN over other ANN models are: (i) IGMN learns incrementally using a single scan over the training data (each training pattern can be immediately used and discarded); (ii) it can produce reasonable estimates based on few training data; (iii) the learning process can proceed perpetually as new training data arrive (there is no separate phases for leaning and recalling); (iv) IGMN can handle the stability-plasticity dilemma and does not suffer from catastrophic interference; (v) the neural network topology is defined automatically and incrementally (new units added whenever is necessary); (vi) IGMN is not sensible to initialization conditions (in fact there is no random initialization/ decision in IGMN); (vii) the same neural network can be used to solve both forward and inverse problems (the information flow is bidirectional) even in regions where the target data are multi-valued; and (viii) IGMN can provide the confidence levels of its estimates. Another relevant contribution of this thesis is the use of IGMN in some important state-of-the-art machine learning and robotic tasks such as model identification, incremental concept formation, reinforcement learning, robotic mapping and time series prediction. In fact, the efficiency of IGMN and its representational power expand the set of potential tasks in which the neural networks can be applied, thus opening new research directions in which important contributions can be made. Through several experiments using the proposed model it is demonstrated that IGMN is also robust to overfitting, does not require fine-tunning of its configuration parameters and has a very good computational performance, thus allowing its use in real time control applications. Therefore, IGMN is a very useful machine learning tool for incremental function approximation and on-line prediction.
|
27 |
A connectionist approach for incremental function approximation and on-line tasks / Uma abordagem conexionista para a aproximação incremental de funções e tarefas de tempo realHeinen, Milton Roberto January 2011 (has links)
Este trabalho propõe uma nova abordagem conexionista, chamada de IGMN (do inglês Incremental Gaussian Mixture Network), para aproximação incremental de funções e tarefas de tempo real. Ela é inspirada em recentes teorias do cérebro, especialmente o MPF (do inglês Memory-Prediction Framework) e a Inteligência Artificial Construtivista, que fazem com que o modelo proposto possua características especiais que não estão presentes na maioria dos modelos de redes neurais existentes. Além disso, IGMN é baseado em sólidos princípios estatísticos (modelos de mistura gaussianos) e assintoticamente converge para a superfície de regressão ótima a medida que os dados de treinamento chegam. As principais vantagens do IGMN em relação a outros modelos de redes neurais são: (i) IGMN aprende instantaneamente analisando cada padrão de treinamento apenas uma vez (cada dado pode ser imediatamente utilizado e descartado); (ii) o modelo proposto produz estimativas razoáveis baseado em poucos dados de treinamento; (iii) IGMN aprende de forma contínua e perpétua a medida que novos dados de treinamento chegam (não existem fases separadas de treinamento e utilização); (iv) o modelo proposto resolve o dilema da estabilidade-plasticidade e não sofre de interferência catastrófica; (v) a topologia da rede neural é definida automaticamente e de forma incremental (novas unidades são adicionadas sempre que necessário); (vi) IGMN não é sensível às condições de inicialização (de fato IGMN não utiliza nenhuma decisão e/ou inicialização aleatória); (vii) a mesma rede neural IGMN pode ser utilizada em problemas diretos e inversos (o fluxo de informações é bidirecional) mesmo em regiões onde a função alvo tem múltiplas soluções; e (viii) IGMN fornece o nível de confiança de suas estimativas. Outra contribuição relevante desta tese é o uso do IGMN em importantes tarefas nas áreas de robótica e aprendizado de máquina, como por exemplo a identificação de modelos, a formação incremental de conceitos, o aprendizado por reforço, o mapeamento robótico e previsão de séries temporais. De fato, o poder de representação e a eficiência e do modelo proposto permitem expandir o conjunto de tarefas nas quais as redes neurais podem ser utilizadas, abrindo assim novas direções nos quais importantes contribuições do estado da arte podem ser feitas. Através de diversos experimentos, realizados utilizando o modelo proposto, é demonstrado que o IGMN é bastante robusto ao problema de overfitting, não requer um ajuste fino dos parâmetros de configuração e possui uma boa performance computacional que permite o seu uso em aplicações de controle em tempo real. Portanto pode-se afirmar que o IGMN é uma ferramenta de aprendizado de máquina bastante útil em tarefas de aprendizado incremental de funções e predição em tempo real. / This work proposes IGMN (standing for Incremental Gaussian Mixture Network), a new connectionist approach for incremental function approximation and real time tasks. It is inspired on recent theories about the brain, specially the Memory-Prediction Framework and the Constructivist Artificial Intelligence, which endows it with some unique features that are not present in most ANN models such as MLP, RBF and GRNN. Moreover, IGMN is based on strong statistical principles (Gaussian mixture models) and asymptotically converges to the optimal regression surface as more training data arrive. The main advantages of IGMN over other ANN models are: (i) IGMN learns incrementally using a single scan over the training data (each training pattern can be immediately used and discarded); (ii) it can produce reasonable estimates based on few training data; (iii) the learning process can proceed perpetually as new training data arrive (there is no separate phases for leaning and recalling); (iv) IGMN can handle the stability-plasticity dilemma and does not suffer from catastrophic interference; (v) the neural network topology is defined automatically and incrementally (new units added whenever is necessary); (vi) IGMN is not sensible to initialization conditions (in fact there is no random initialization/ decision in IGMN); (vii) the same neural network can be used to solve both forward and inverse problems (the information flow is bidirectional) even in regions where the target data are multi-valued; and (viii) IGMN can provide the confidence levels of its estimates. Another relevant contribution of this thesis is the use of IGMN in some important state-of-the-art machine learning and robotic tasks such as model identification, incremental concept formation, reinforcement learning, robotic mapping and time series prediction. In fact, the efficiency of IGMN and its representational power expand the set of potential tasks in which the neural networks can be applied, thus opening new research directions in which important contributions can be made. Through several experiments using the proposed model it is demonstrated that IGMN is also robust to overfitting, does not require fine-tunning of its configuration parameters and has a very good computational performance, thus allowing its use in real time control applications. Therefore, IGMN is a very useful machine learning tool for incremental function approximation and on-line prediction.
|
28 |
A connectionist approach for incremental function approximation and on-line tasks / Uma abordagem conexionista para a aproximação incremental de funções e tarefas de tempo realHeinen, Milton Roberto January 2011 (has links)
Este trabalho propõe uma nova abordagem conexionista, chamada de IGMN (do inglês Incremental Gaussian Mixture Network), para aproximação incremental de funções e tarefas de tempo real. Ela é inspirada em recentes teorias do cérebro, especialmente o MPF (do inglês Memory-Prediction Framework) e a Inteligência Artificial Construtivista, que fazem com que o modelo proposto possua características especiais que não estão presentes na maioria dos modelos de redes neurais existentes. Além disso, IGMN é baseado em sólidos princípios estatísticos (modelos de mistura gaussianos) e assintoticamente converge para a superfície de regressão ótima a medida que os dados de treinamento chegam. As principais vantagens do IGMN em relação a outros modelos de redes neurais são: (i) IGMN aprende instantaneamente analisando cada padrão de treinamento apenas uma vez (cada dado pode ser imediatamente utilizado e descartado); (ii) o modelo proposto produz estimativas razoáveis baseado em poucos dados de treinamento; (iii) IGMN aprende de forma contínua e perpétua a medida que novos dados de treinamento chegam (não existem fases separadas de treinamento e utilização); (iv) o modelo proposto resolve o dilema da estabilidade-plasticidade e não sofre de interferência catastrófica; (v) a topologia da rede neural é definida automaticamente e de forma incremental (novas unidades são adicionadas sempre que necessário); (vi) IGMN não é sensível às condições de inicialização (de fato IGMN não utiliza nenhuma decisão e/ou inicialização aleatória); (vii) a mesma rede neural IGMN pode ser utilizada em problemas diretos e inversos (o fluxo de informações é bidirecional) mesmo em regiões onde a função alvo tem múltiplas soluções; e (viii) IGMN fornece o nível de confiança de suas estimativas. Outra contribuição relevante desta tese é o uso do IGMN em importantes tarefas nas áreas de robótica e aprendizado de máquina, como por exemplo a identificação de modelos, a formação incremental de conceitos, o aprendizado por reforço, o mapeamento robótico e previsão de séries temporais. De fato, o poder de representação e a eficiência e do modelo proposto permitem expandir o conjunto de tarefas nas quais as redes neurais podem ser utilizadas, abrindo assim novas direções nos quais importantes contribuições do estado da arte podem ser feitas. Através de diversos experimentos, realizados utilizando o modelo proposto, é demonstrado que o IGMN é bastante robusto ao problema de overfitting, não requer um ajuste fino dos parâmetros de configuração e possui uma boa performance computacional que permite o seu uso em aplicações de controle em tempo real. Portanto pode-se afirmar que o IGMN é uma ferramenta de aprendizado de máquina bastante útil em tarefas de aprendizado incremental de funções e predição em tempo real. / This work proposes IGMN (standing for Incremental Gaussian Mixture Network), a new connectionist approach for incremental function approximation and real time tasks. It is inspired on recent theories about the brain, specially the Memory-Prediction Framework and the Constructivist Artificial Intelligence, which endows it with some unique features that are not present in most ANN models such as MLP, RBF and GRNN. Moreover, IGMN is based on strong statistical principles (Gaussian mixture models) and asymptotically converges to the optimal regression surface as more training data arrive. The main advantages of IGMN over other ANN models are: (i) IGMN learns incrementally using a single scan over the training data (each training pattern can be immediately used and discarded); (ii) it can produce reasonable estimates based on few training data; (iii) the learning process can proceed perpetually as new training data arrive (there is no separate phases for leaning and recalling); (iv) IGMN can handle the stability-plasticity dilemma and does not suffer from catastrophic interference; (v) the neural network topology is defined automatically and incrementally (new units added whenever is necessary); (vi) IGMN is not sensible to initialization conditions (in fact there is no random initialization/ decision in IGMN); (vii) the same neural network can be used to solve both forward and inverse problems (the information flow is bidirectional) even in regions where the target data are multi-valued; and (viii) IGMN can provide the confidence levels of its estimates. Another relevant contribution of this thesis is the use of IGMN in some important state-of-the-art machine learning and robotic tasks such as model identification, incremental concept formation, reinforcement learning, robotic mapping and time series prediction. In fact, the efficiency of IGMN and its representational power expand the set of potential tasks in which the neural networks can be applied, thus opening new research directions in which important contributions can be made. Through several experiments using the proposed model it is demonstrated that IGMN is also robust to overfitting, does not require fine-tunning of its configuration parameters and has a very good computational performance, thus allowing its use in real time control applications. Therefore, IGMN is a very useful machine learning tool for incremental function approximation and on-line prediction.
|
29 |
Fusão de informações obtidas a partir de múltiplas imagens visando à navegação autônoma de veículos inteligentes em abiente agrícola / Data fusion obtained from multiple images aiming the navigation of autonomous intelligent vehicles in agricultural environmentVítor Manha Utino 08 April 2015 (has links)
Este trabalho apresenta um sistema de auxilio à navegação autônoma para veículos terrestres com foco em ambientes estruturados em um cenário agrícola. É gerada a estimativa das posições dos obstáculos baseado na fusão das detecções provenientes do processamento dos dados de duas câmeras, uma estéreo e outra térmica. Foram desenvolvidos três módulos de detecção de obstáculos. O primeiro módulo utiliza imagens monoculares da câmera estéreo para detectar novidades no ambiente através da comparação do estado atual com o estado anterior. O segundo módulo utiliza a técnica Stixel para delimitar os obstáculos acima do plano do chão. Por fim, o terceiro módulo utiliza as imagens térmicas para encontrar assinaturas que evidenciem a presença de obstáculo. Os módulos de detecção são fundidos utilizando a Teoria de Dempster-Shafer que fornece a estimativa da presença de obstáculos no ambiente. Os experimentos foram executados em ambiente agrícola real. Foi executada a validação do sistema em cenários bem iluminados, com terreno irregular e com obstáculos diversos. O sistema apresentou um desempenho satisfatório tendo em vista a utilização de uma abordagem baseada em apenas três módulos de detecção com metodologias que não tem por objetivo priorizar a confirmação de obstáculos, mas sim a busca de novos obstáculos. Nesta dissertação são apresentados os principais componentes de um sistema de detecção de obstáculos e as etapas necessárias para a sua concepção, assim como resultados de experimentos com o uso de um veículo real. / This work presents a support system to the autonomous navigation for ground vehicles with focus on structured environments in an agricultural scenario. The estimated obstacle positions are generated based on the fusion of the detections from the processing of data from two cameras, one stereo and other thermal. Three modules obstacle detection have been developed. The first module uses monocular images of the stereo camera to detect novelties in the environment by comparing the current state with the previous state. The second module uses Stixel technique to delimit the obstacles above the ground plane. Finally, the third module uses thermal images to find signatures that reveal the presence of obstacle. The detection modules are fused using the Dempster-Shafer theory that provides an estimate of the presence of obstacles in the environment. The experiments were executed in real agricultural environment. System validation was performed in well-lit scenarios, with uneven terrain and different obstacles. The system showed satisfactory performance considering the use of an approach based on only three detection modules with methods that do not prioritize obstacle confirmation, but the search for new ones. This dissertation presents the main components of an obstacle detection system and the necessary steps for its design as well as results of experiments with the use of a real vehicle.
|
30 |
Global Localization of an Indoor Mobile Robot with a single Base StationHennig, Matthias, Kirmse, Henri, Janschek, Klaus 13 February 2012 (has links)
The navigation tasks in advanced home robotic applications incorporating reliable revisiting strategies are dependent on very low cost but nevertheless rather accurate localization systems. In this paper a localization system based on the principle of trilateration is described. The proposed system uses only a single small base station, but achieves accuracies comparable to systems using spread beacons and it performs sufficiently for map building. Thus it is a standalone system and needs no odometry or other auxiliary sensors. Furthermore a new approach for the problem of the reliably detection of areas without direct line of sight is presented. The described system is very low cost and it is designed for use in indoor service robotics. The paper gives an overview on the system concept and special design solutions and proves the possible performances with experimental results.
|
Page generated in 0.0868 seconds