Spelling suggestions: "subject:"autostimulation cérébrale"" "subject:"autostimulation cérébral""
1 |
Rôle de l'habenula dans le circuit neuronal de l'autostimulation intracérébraleMorissette, Marie-Claude January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
2 |
Rôle de l'habenula dans le circuit neuronal de l'autostimulation intracérébraleMorissette, Marie-Claude January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
3 |
Une lésion neurotoxique de l’habenula latérale amplifie la locomotion induite par un psychostimulant sans altérer la récompenseGifuni, Anthony 12 1900 (has links)
L’habenula, un noyau épithalamique, est située au centre de la voie dorsale diencéphalique. Cette voie relie les structures limbiques et les ganglions de la base aux cellules monoaminergiques du mésencéphale. En particulier, l’habenula latérale (HbL) projette directement aux cellules dopaminergiques et GABAergiques de l’aire tegmentale ventrale (ATV). L’ATV est le site d’origine de la voie mésolimbique dopaminergique, une voie impliquée de façon cruciale dans la manifestation des comportements dirigés. L’importance de cette projection habenulaire pour le comportement demeure encore méconnue. Ainsi, l’objectif de cette étude est d’approfondir notre compréhension du rôle de régulation de l’HbL sur les comportements dépendants de la neurotransmission dopaminergique.
MATÉRIEL ET MÉTHODES: Des rats adultes mâles Sprague-Dawley ont été anesthésiés avec de l’isofluorane et installés sur un appareil stéréotaxique. L’acide iboténique, une neurotoxine agoniste des récepteurs glutamatergiques, était infusée bilatéralement dans l’HbL (0,25 μg/0,25 μl/côté). Les rats du groupe contrôle recevaient des infusions NaCl 0,9%. Les rats de l’expérience d’autostimulation intracérébrale (ASIC) étaient aussi implantés d’une électrode monopolaire dans le mésencéphale postérieur. Un groupe de rats était testé pour leur réponse de locomotion à l’amphétamine (0; 0,5 ou 1 mg/kg, intrapéritonéal), dix jours suivant la lésion de l’HbL. La locomotion était mesurée dans des chambres d’activité, chacune équipée de deux faisceaux parallèles infrarouges. Le jour du test, les rats étaient pesés et placés dans la chambre d’activité puis leur activité locomotrice de base était mesurée pendant une heure. Les rats recevaient ensuite une dose d’amphétamine ou le véhicule (NaCl 0,9%) par voie intrapéritonéale et l’activité locomotrice était mesurée pendant deux heures supplémentaires. Un groupe de rats distinct a été utilisé dans l’expérience d’ASIC. Commençant sept jours suivant la lésion, les rats étaient entraînés à appuyer sur un levier afin de s’autoadministrer des stimulations électriques, au cours de sessions quotidiennes. Nous avons ensuite mesuré chacun des taux de réponses d’une série de stimulations aux fréquences décroissantes. À partir d’une courbe réponses-fréquences, le seuil de récompense était inféré par la fréquence de la stimulation nécessaire pour produire une réponse semi-maximale. Les seuils de récompense étaient stabilisés à un niveau similaire pour l’ensemble des rats. Enfin, l’effet sur la récompense de l’amphétamine était testé aux mêmes doses employées pour l’expérience de locomotion.
RÉSULTATS: Une lésion neurotoxique de l’HbL n’a pas altéré les niveaux de base de l’activité locomotrice dans chaque groupe. Cependant, une telle lésion a potentialisé l’effet de locomotion de l’amphétamine (1 mg/kg) pendant la première heure suivant son administration, et une tendance similaire était observable pendant la seconde heure. À l’inverse, nous n’avons observé aucune interaction entre une lésion à l’HbL et l’effet amplificateur sur la récompense de l’amphétamine.
CONCLUSION: Nos résultats révèlent une importante contribution fonctionnelle de l’HbL à la locomotion induite par l’activation de la voie mésolimbique dopaminergique avec une dose de 1 mg/kg d’amphétamine. À l’opposé, aucun effet sur la récompense n’a été observé. Ces résultats suggèrent que l’activation psychomotrice et l’amplifiation de la récompense produite par l’amphétamine dépendent de substrats dissociables, chacun étant différentiellement sensible à la modulation provenant de l’HbL. / The habenula, an epithalamic nucleus, is centrally located within the dorsal diencephalic conduction system. This dorsal pathway connects the limbic forebrain and basal ganglia to midbrain monoaminergic cell groups intricately involved in the control of behavior. In particular, the lateral habenula (LHb) projects to, among other sites, the ventral tegmental area (VTA). Indeed, recent work has revealed direct LHb innervation of VTA dopamine as well as GABA cells. Little is known, however, about the behavioral relevance of this innervation but this knowledge is of potential importance, since the VTA gives rise to the mesolimbic dopamine pathway, a system critically involved in goal-directed behavior. Our aim here was to begin to understand the contribution of the LHb to dopamine-dependent behaviors. To do this, we produced neurotoxic lesions of the LHb and measured amphetamine-enhanced locomotion and intracranial self-stimulation (ICSS), two behaviors highly sensitive to mesolimbic dopamine neurotransmission.
METRIALS AND METHODS: Adult male Sprague-Dawley rats were anesthetised with isoflurane and mounted onto a stereotaxic apparatus. Ibotenic acid, an excitatory neurotoxin at glutamatergic receptors, was infused bilaterally into the LHb (0.25 μg/0.25 μl/side). Sham-lesioned rats received infusions of 0.9% sterile saline. Rats in the ICSS experiment were additionally implanted with a monopolar stimulation electrode in the posterior mesencephalon. One group of rats was tested for their locomotor response to amphetamine (0, 0.5 or 1 mg/kg, i.p.), ten days after LHb lesion. Locomotion was measured in rectangular activity chambers, each equipped with two parallel infrared photobeams. On test day, rats were weighed, placed in the activity chamber and baseline locomotor activity was measured for 1 hour. Rats then received amphetamine or vehicle (0.9% saline) and locomotor activity was measured for 2 more hours. A separate group of rats was used in the ICSS experiment. Beginning seven days post-lesion, rats were trained to press a lever in order to self-administer trains of stimulation pulses. We then measured response rates at each of a series of pulse frequencies during daily sessions. From these response-frequency curves, we obtained estimates of reward thresholds, defined as the pulse frequency necessary for half-maximal responding. Baseline reward thresholds were matched across all rats and once stable, we tested the reward-enhancing effect of amphetamine, at the same doses tested in the locomotion experiment.
RESULTS: Neurotoxic lesions of the LHb did not alter baseline locomotor activity in either group. Amphetamine enhanced locomotor activity throughout the entire 2 hour test. Importantly, the locomotor stimulant effect of amphetamine (1 mg/kg) was significantly greater in lesioned rats during the first hour, and a similar tendency was observed during the second hour. On the other hand, we did not observe any difference in amphetamine-induced enhancement of reward between lesioned and sham rats, at any dose or any time post-injection.
CONCLUSION: Our findings reveal an important functional contribution of the LHb to dopamine-mediated locomotion. On the other hand, the clear dissociation between the locomotor-stimulant and rewarding effects of amphetamine suggests that the neural substrates mediating these two are dissociable and differentially sensitive to LHb modulation.
|
4 |
L’amphétamine intra-habenulaire n’altère pas l’effet de récompense induit par la stimulation électrique du raphé dorsalDuchesne, Vincent 08 1900 (has links)
La contribution de la neurotransmission dopaminergique dans le noyau accumbens à l’effet de récompense induit par la stimulation électrique du cerveau a été
l’objet de plusieurs années de recherche. Cependant, d’autres sites recevant des terminaisons dopaminergiques pourraient contribuer à moduler la récompense dans d’autres régions cérébrales. Parmi elles, on retrouve l’habenula qui reçoit des projections dopaminergiques de l’aire tegmentale ventrale. La contribution de cette voie au phénomène de récompense en général et à l’effet de recompense induit par l’autostimulation intracrânienne est peu connue. Le but de cette recherche était d’étudier la contribution de la dopamine mésohabenulaire à l’effet de recompense induit par la stimulation électrique du raphé dorsal. Des rats ont été implantés d’une bicanule dans l’Hb et d’une électrode dans le raphé dorsal. Le paradigme du déplacement de la courbe a été utilisé pour évaluer les changements dans l’effet de récompense à la suite de l’injection intra-habenulaire d’amphétamine (10-40 μg). À titre de contrôles positifs, des rats ont reçu l’amphétamine dans le core et dans le shell (1-20 μg) du noyau accumbens. Les injections d’amphétamine dans l’habenula n’ont pas changé l’effet de récompense induit par la stimulation électrique. Dans le noyau accumbens, les injections dans le shell et le core provoquent des augmentations dans l’effet de récompense comme il a déjà été démontré. Nos résultats suggèrent que la neurotransmission dopaminergique dans l’habenula latérale ne contribue pas significativement au circuit soutenant l’effet renforçant de la stimulation électrique du cerveau. / The contribution of nucleus accumbens dopamine neurotransmission to reward and reinforcement has been the focus of many years of study. Other terminal sites have received comparatively less research attention, but may be potentially important. One of these sites is the lateral habenula, which receives dopaminergic innervation from cells arising from the ventral tegmental area. Very little is known about the contribution of this pathway to reward in general and to the rewarding effect of electrical brain stimulation in particular. The goal of this study was to study the contribution of mesohabenular dopamine to reward induced by electrical stimulation of the dorsal raphe. Male Sprague-Dawley rats were implanted with bilateral cannulae in the lateral habenula and a stimulation electrode aimed at the dorsal raphe nucleus. Using the curveshift paradigm, we measured the rewarding effect of intra-habenular infusions of amphetamine (10-40 μg). Control rats received amphetamine infusions into nucleus
accumbens core or shell subregions (1-20 μg). Our findings show that regardless of
concentration, intra-habenular amphetamine did not alter brain stimulation reward.
Infusions into the nucleus accumbens enhanced the rewarding effectiveness of the stimulation, as previously shown. Our findings suggest that dopaminergic neurotransmission within the lateral habenula does not contribute significantly to the circuitry that mediates the rewarding effect of electrical brain stimulation.
|
5 |
L’influence d’un traitement à la N-Acétylcystéine sur la motivation à s’auto-administrer de la cocaïne chez le ratHodebourg, Ritchy 08 1900 (has links)
No description available.
|
6 |
Une lésion neurotoxique de l’habenula latérale amplifie la locomotion induite par un psychostimulant sans altérer la récompenseGifuni, Anthony 12 1900 (has links)
L’habenula, un noyau épithalamique, est située au centre de la voie dorsale diencéphalique. Cette voie relie les structures limbiques et les ganglions de la base aux cellules monoaminergiques du mésencéphale. En particulier, l’habenula latérale (HbL) projette directement aux cellules dopaminergiques et GABAergiques de l’aire tegmentale ventrale (ATV). L’ATV est le site d’origine de la voie mésolimbique dopaminergique, une voie impliquée de façon cruciale dans la manifestation des comportements dirigés. L’importance de cette projection habenulaire pour le comportement demeure encore méconnue. Ainsi, l’objectif de cette étude est d’approfondir notre compréhension du rôle de régulation de l’HbL sur les comportements dépendants de la neurotransmission dopaminergique.
MATÉRIEL ET MÉTHODES: Des rats adultes mâles Sprague-Dawley ont été anesthésiés avec de l’isofluorane et installés sur un appareil stéréotaxique. L’acide iboténique, une neurotoxine agoniste des récepteurs glutamatergiques, était infusée bilatéralement dans l’HbL (0,25 μg/0,25 μl/côté). Les rats du groupe contrôle recevaient des infusions NaCl 0,9%. Les rats de l’expérience d’autostimulation intracérébrale (ASIC) étaient aussi implantés d’une électrode monopolaire dans le mésencéphale postérieur. Un groupe de rats était testé pour leur réponse de locomotion à l’amphétamine (0; 0,5 ou 1 mg/kg, intrapéritonéal), dix jours suivant la lésion de l’HbL. La locomotion était mesurée dans des chambres d’activité, chacune équipée de deux faisceaux parallèles infrarouges. Le jour du test, les rats étaient pesés et placés dans la chambre d’activité puis leur activité locomotrice de base était mesurée pendant une heure. Les rats recevaient ensuite une dose d’amphétamine ou le véhicule (NaCl 0,9%) par voie intrapéritonéale et l’activité locomotrice était mesurée pendant deux heures supplémentaires. Un groupe de rats distinct a été utilisé dans l’expérience d’ASIC. Commençant sept jours suivant la lésion, les rats étaient entraînés à appuyer sur un levier afin de s’autoadministrer des stimulations électriques, au cours de sessions quotidiennes. Nous avons ensuite mesuré chacun des taux de réponses d’une série de stimulations aux fréquences décroissantes. À partir d’une courbe réponses-fréquences, le seuil de récompense était inféré par la fréquence de la stimulation nécessaire pour produire une réponse semi-maximale. Les seuils de récompense étaient stabilisés à un niveau similaire pour l’ensemble des rats. Enfin, l’effet sur la récompense de l’amphétamine était testé aux mêmes doses employées pour l’expérience de locomotion.
RÉSULTATS: Une lésion neurotoxique de l’HbL n’a pas altéré les niveaux de base de l’activité locomotrice dans chaque groupe. Cependant, une telle lésion a potentialisé l’effet de locomotion de l’amphétamine (1 mg/kg) pendant la première heure suivant son administration, et une tendance similaire était observable pendant la seconde heure. À l’inverse, nous n’avons observé aucune interaction entre une lésion à l’HbL et l’effet amplificateur sur la récompense de l’amphétamine.
CONCLUSION: Nos résultats révèlent une importante contribution fonctionnelle de l’HbL à la locomotion induite par l’activation de la voie mésolimbique dopaminergique avec une dose de 1 mg/kg d’amphétamine. À l’opposé, aucun effet sur la récompense n’a été observé. Ces résultats suggèrent que l’activation psychomotrice et l’amplifiation de la récompense produite par l’amphétamine dépendent de substrats dissociables, chacun étant différentiellement sensible à la modulation provenant de l’HbL. / The habenula, an epithalamic nucleus, is centrally located within the dorsal diencephalic conduction system. This dorsal pathway connects the limbic forebrain and basal ganglia to midbrain monoaminergic cell groups intricately involved in the control of behavior. In particular, the lateral habenula (LHb) projects to, among other sites, the ventral tegmental area (VTA). Indeed, recent work has revealed direct LHb innervation of VTA dopamine as well as GABA cells. Little is known, however, about the behavioral relevance of this innervation but this knowledge is of potential importance, since the VTA gives rise to the mesolimbic dopamine pathway, a system critically involved in goal-directed behavior. Our aim here was to begin to understand the contribution of the LHb to dopamine-dependent behaviors. To do this, we produced neurotoxic lesions of the LHb and measured amphetamine-enhanced locomotion and intracranial self-stimulation (ICSS), two behaviors highly sensitive to mesolimbic dopamine neurotransmission.
METRIALS AND METHODS: Adult male Sprague-Dawley rats were anesthetised with isoflurane and mounted onto a stereotaxic apparatus. Ibotenic acid, an excitatory neurotoxin at glutamatergic receptors, was infused bilaterally into the LHb (0.25 μg/0.25 μl/side). Sham-lesioned rats received infusions of 0.9% sterile saline. Rats in the ICSS experiment were additionally implanted with a monopolar stimulation electrode in the posterior mesencephalon. One group of rats was tested for their locomotor response to amphetamine (0, 0.5 or 1 mg/kg, i.p.), ten days after LHb lesion. Locomotion was measured in rectangular activity chambers, each equipped with two parallel infrared photobeams. On test day, rats were weighed, placed in the activity chamber and baseline locomotor activity was measured for 1 hour. Rats then received amphetamine or vehicle (0.9% saline) and locomotor activity was measured for 2 more hours. A separate group of rats was used in the ICSS experiment. Beginning seven days post-lesion, rats were trained to press a lever in order to self-administer trains of stimulation pulses. We then measured response rates at each of a series of pulse frequencies during daily sessions. From these response-frequency curves, we obtained estimates of reward thresholds, defined as the pulse frequency necessary for half-maximal responding. Baseline reward thresholds were matched across all rats and once stable, we tested the reward-enhancing effect of amphetamine, at the same doses tested in the locomotion experiment.
RESULTS: Neurotoxic lesions of the LHb did not alter baseline locomotor activity in either group. Amphetamine enhanced locomotor activity throughout the entire 2 hour test. Importantly, the locomotor stimulant effect of amphetamine (1 mg/kg) was significantly greater in lesioned rats during the first hour, and a similar tendency was observed during the second hour. On the other hand, we did not observe any difference in amphetamine-induced enhancement of reward between lesioned and sham rats, at any dose or any time post-injection.
CONCLUSION: Our findings reveal an important functional contribution of the LHb to dopamine-mediated locomotion. On the other hand, the clear dissociation between the locomotor-stimulant and rewarding effects of amphetamine suggests that the neural substrates mediating these two are dissociable and differentially sensitive to LHb modulation.
|
7 |
L’amphétamine intra-habenulaire n’altère pas l’effet de récompense induit par la stimulation électrique du raphé dorsalDuchesne, Vincent 08 1900 (has links)
La contribution de la neurotransmission dopaminergique dans le noyau accumbens à l’effet de récompense induit par la stimulation électrique du cerveau a été
l’objet de plusieurs années de recherche. Cependant, d’autres sites recevant des terminaisons dopaminergiques pourraient contribuer à moduler la récompense dans d’autres régions cérébrales. Parmi elles, on retrouve l’habenula qui reçoit des projections dopaminergiques de l’aire tegmentale ventrale. La contribution de cette voie au phénomène de récompense en général et à l’effet de recompense induit par l’autostimulation intracrânienne est peu connue. Le but de cette recherche était d’étudier la contribution de la dopamine mésohabenulaire à l’effet de recompense induit par la stimulation électrique du raphé dorsal. Des rats ont été implantés d’une bicanule dans l’Hb et d’une électrode dans le raphé dorsal. Le paradigme du déplacement de la courbe a été utilisé pour évaluer les changements dans l’effet de récompense à la suite de l’injection intra-habenulaire d’amphétamine (10-40 μg). À titre de contrôles positifs, des rats ont reçu l’amphétamine dans le core et dans le shell (1-20 μg) du noyau accumbens. Les injections d’amphétamine dans l’habenula n’ont pas changé l’effet de récompense induit par la stimulation électrique. Dans le noyau accumbens, les injections dans le shell et le core provoquent des augmentations dans l’effet de récompense comme il a déjà été démontré. Nos résultats suggèrent que la neurotransmission dopaminergique dans l’habenula latérale ne contribue pas significativement au circuit soutenant l’effet renforçant de la stimulation électrique du cerveau. / The contribution of nucleus accumbens dopamine neurotransmission to reward and reinforcement has been the focus of many years of study. Other terminal sites have received comparatively less research attention, but may be potentially important. One of these sites is the lateral habenula, which receives dopaminergic innervation from cells arising from the ventral tegmental area. Very little is known about the contribution of this pathway to reward in general and to the rewarding effect of electrical brain stimulation in particular. The goal of this study was to study the contribution of mesohabenular dopamine to reward induced by electrical stimulation of the dorsal raphe. Male Sprague-Dawley rats were implanted with bilateral cannulae in the lateral habenula and a stimulation electrode aimed at the dorsal raphe nucleus. Using the curveshift paradigm, we measured the rewarding effect of intra-habenular infusions of amphetamine (10-40 μg). Control rats received amphetamine infusions into nucleus
accumbens core or shell subregions (1-20 μg). Our findings show that regardless of
concentration, intra-habenular amphetamine did not alter brain stimulation reward.
Infusions into the nucleus accumbens enhanced the rewarding effectiveness of the stimulation, as previously shown. Our findings suggest that dopaminergic neurotransmission within the lateral habenula does not contribute significantly to the circuitry that mediates the rewarding effect of electrical brain stimulation.
|
8 |
Étude du rôle de la dopamine et de la sérotonine dans l’effet atténuateur des antipsychotiques et de l’OSU-6162 sur la récompense induite par la stimulation du faisceau médian prosencéphalique chez le rongeurBenaliouad, Faïza 10 1900 (has links)
La voie mésocorticolimbique est constitutée d’un ensemble d’éléments nerveux issus de l’aire tegmentaire ventrale mésencéphalique et projettant vers des régions corticales et sous-corticales. Les neurones à dopamine (DA) qui en font partie modulent plusieurs fonctions cognitives dont l’attention, l’apprentissage et la récompense. L’activité nerveuse des cellules à DA augmente lorsque l’organisme anticipe et reçoit une récompense, ainsi qu’au cours de la phase d’apprentissage des comportements d’appétence. Or, si l’activité dopaminergique de la voie mésocorticolimbique est désordonnée, voire aberrante, des stimuli neutres deviennent saillants et prennent une signification erronée. Cette anomalie fonctionnelle du système dopaminergique pourrait être à l’origine des symptômes psychotiques observés dans la schizophrénie. Cette hypothèse est renforcée par le fait que les médicaments antipsychotiques efficaces ont tous une activité antagoniste aux récepteurs à DA de type 2 (D2); les antipsychotiques dits classiques (i.e. halopéridole) possèdent une forte affinité pour les récepteurs D2 tandis que les antipsychotiques dits atypiques (i.e. clozapine) présentent une plus forte affinité pour les récepteurs à sérotonine de type 2a (5-HT2a) que pour les récepteurs D2. Les antipsychotiques atypiques semblent plus efficaces contre les symptômes négatifs (i.e. anhédonie) de la schizophrénie et induisent moins d’effets moteurs extrapyramidaux et de dysphorie que les antipsychotiques classiques. Il a été proposé que l’efficacité des antipsychotiques atypiques soit expliqué par leur double action antagoniste aux récepteurs 5-HT2a et D2.
Afin de mieux comprendre les mécanismes de ces médicaments, nous avons étudié leurs effets sur la récompense en utilisant le modèle d’autostimulation intracérébrale (ASI) chez le rongeur. Le but de la première étude était d’évaluer l’effet d’un antagoniste sélectif des récepteurs 5-HT2a, le M100907, sur la récompense et sur l’atténuation de la récompense induite par l’halopéridole. L’hypothèse était que l’atténuation de la récompense induite par l’ajout du M100907 à l’halopéridole serait similaire à celle induite par la clozapine. Dans une seconde étude, l’effet sur la récompense d’un agoniste partiel aux récepteurs D2, l’OSU-6162, a été caractérisé sous deux conditions : i) en condition de base et ii) lorsque la neurotransmission dopaminergique est altérée par l’administration systémique de quinpirole, un agoniste des récepteurs D2/D3. Les hypothèses étaient que l’OSU-6162 i) atténuerait la récompense induite par la stimulation et ii) empêcherait l’atténuation et la facilitation de la récompense induites par le quinpirole.
Les données obtenues montrent que le M100907 n’altère pas la récompense par lui-même mais réduit l’atténuation de la récompense induite par l’halopéridole. La co-administration du M100907 et de l’halopéridole induit une atténuation de la récompense d’amplitude similaire à celle induite par la clozapine, ce qui suggère que l’activité antagoniste aux récepteurs 5-HT2a de la clozapine contribue à son efficacité. Les données de la seconde étude montrent que l’OSU-6162 atténue la récompense, de manière dose-dépendante, ainsi que la facilitation, mais pas l’atténuation de la récompense induite par le quinpirole. Cette dernière observation suggère que l’OSU-6162 agit comme un antagoniste fonctionnel aux récepteurs D2 post-synaptiques.
Un ensemble de données suggèrent que le comportement d’ASI constitue un modèle valide permettant d’évaluer l’efficacité antipsychotique potentielle de nouvelles molécules. Le comportement d’ASI est atténué par les antipsychotiques cliniquement efficaces mais est peu ou pas modifié par des molécules dépourvues d’activité antipsychotique. Les données obtenues dans cette thèse permettent de supposer que l’OSU-6162 possède une activité antipsychotique de nature atypique, et cela sans altérer la neurotransmission sérotoninergique. / The mesocorticolimbic pathway is composed of neural elements that originate in the mesencephalic ventral tegmental area and project to cortical and sub-cortical areas. Dopamine (DA) neurons that constitute a major portion of this pathway play a role in several cognitive functions such as the attention, learning and reward. DA cell activity increases when the organism anticipates and receives a reward, as well as during the learning phase of appetitive behaviors. When dopaminergic impulse flow becomes aberrant, stimuli that should be considered as neurtral become salient and acquire an improper signification. This functional abnormality of the dopaminergic system underlies psychotic symptoms that are observed in schizophrenia. This hypothesis is reinforced by the fact that clinically effective antipsychotic drugs all display antagonism at the D2 sub-type of DA receptors. Classical antipsychotic drugs (i.e. haloperidol) possess a high affinity for D2 receptors while atypical antipsychotic drugs (i.e. clozapine) possess a higher affinity for type 2a (5-HT2a) serotonin receptors than for D2 receptors. Atypical antipsychotics seem more effective against negative symptoms (i.e. anhedonia) of schizophrenia and induce less extrapyramidal side effects and dysphoria than classical antipsychotics. It has been proposed that this efficacy of atypical antipsychotics is explained by their antagonistic action at both, the 5-HT2a and the D2 receptors.
To better understand the mechanisms of actions of these drugs, we studied their effects on reward using the intracranial self-stimulation (ICSS) model in rodents. The aim of a first study was to evaluate the effect of a selective 5-HT2a receptor antagonist, M100907, on the reward, and on the reward attenuation induced by haloperidol. The hypothesis was that the reward attenuation induced by the addition of M100907 to haloperidol is similar to the reward attenuation induced by clozapine alone. In a second study, the effect on reward of a D2 receptor partial agonist, OSU-6162, was characterized under two conditions: i) a basal condition and ii) under a state of abnormal dopaminergic neurotransmission elicited by systemic administration of quinpirole, a D2/D3 agonist. The hypotheses were that OSU-6162 i) should attenuate stimulation-induced reward and ii) prevent quinpirole-induced reward attenuation and reward facilitation.
Results showed that M100907, when give alone, did not alter reward; however when administered with haloperidol reduced the reward attenuation. Co-administration of M100907 and haloperidol induced a reward attenuation of a similar amplitude to that of clozapine, suggesting that 5-HT2a antagonism activity of this latter drug contributes to its effects on reward. Results from the second study showed that OSU-6162 dose-orderly attenuates reward and quinpirole-induced reward facilitation; however it did not reduce quinpirole-induced reward attenuation. This last observation suggests that OSU-6162 acts like a functional antagonist at post-synaptic D2 receptors.
A large body of data suggests that the ICSS behavior constitutes a valid model to evaluate the antipsychotic potential of new compounds. ICSS behavior is attenuated by clinically effective antipsychotics is weakly, or not at all, altered by compounds without antipsychotic activity. Results obtained in this thesis allow us to predict that OSU-6162 possesses an antipsychotic activity that would be similar to that of atypical, without altering the serotonergic neurotransmission.
|
9 |
Diencephalic and Mesencephalic Substrate for Brain Stimulation RewardFakhoury, Marc 04 1900 (has links)
No description available.
|
10 |
Étude du rôle de la dopamine et de la sérotonine dans l’effet atténuateur des antipsychotiques et de l’OSU-6162 sur la récompense induite par la stimulation du faisceau médian prosencéphalique chez le rongeurBenaliouad, Faïza 10 1900 (has links)
La voie mésocorticolimbique est constitutée d’un ensemble d’éléments nerveux issus de l’aire tegmentaire ventrale mésencéphalique et projettant vers des régions corticales et sous-corticales. Les neurones à dopamine (DA) qui en font partie modulent plusieurs fonctions cognitives dont l’attention, l’apprentissage et la récompense. L’activité nerveuse des cellules à DA augmente lorsque l’organisme anticipe et reçoit une récompense, ainsi qu’au cours de la phase d’apprentissage des comportements d’appétence. Or, si l’activité dopaminergique de la voie mésocorticolimbique est désordonnée, voire aberrante, des stimuli neutres deviennent saillants et prennent une signification erronée. Cette anomalie fonctionnelle du système dopaminergique pourrait être à l’origine des symptômes psychotiques observés dans la schizophrénie. Cette hypothèse est renforcée par le fait que les médicaments antipsychotiques efficaces ont tous une activité antagoniste aux récepteurs à DA de type 2 (D2); les antipsychotiques dits classiques (i.e. halopéridole) possèdent une forte affinité pour les récepteurs D2 tandis que les antipsychotiques dits atypiques (i.e. clozapine) présentent une plus forte affinité pour les récepteurs à sérotonine de type 2a (5-HT2a) que pour les récepteurs D2. Les antipsychotiques atypiques semblent plus efficaces contre les symptômes négatifs (i.e. anhédonie) de la schizophrénie et induisent moins d’effets moteurs extrapyramidaux et de dysphorie que les antipsychotiques classiques. Il a été proposé que l’efficacité des antipsychotiques atypiques soit expliqué par leur double action antagoniste aux récepteurs 5-HT2a et D2.
Afin de mieux comprendre les mécanismes de ces médicaments, nous avons étudié leurs effets sur la récompense en utilisant le modèle d’autostimulation intracérébrale (ASI) chez le rongeur. Le but de la première étude était d’évaluer l’effet d’un antagoniste sélectif des récepteurs 5-HT2a, le M100907, sur la récompense et sur l’atténuation de la récompense induite par l’halopéridole. L’hypothèse était que l’atténuation de la récompense induite par l’ajout du M100907 à l’halopéridole serait similaire à celle induite par la clozapine. Dans une seconde étude, l’effet sur la récompense d’un agoniste partiel aux récepteurs D2, l’OSU-6162, a été caractérisé sous deux conditions : i) en condition de base et ii) lorsque la neurotransmission dopaminergique est altérée par l’administration systémique de quinpirole, un agoniste des récepteurs D2/D3. Les hypothèses étaient que l’OSU-6162 i) atténuerait la récompense induite par la stimulation et ii) empêcherait l’atténuation et la facilitation de la récompense induites par le quinpirole.
Les données obtenues montrent que le M100907 n’altère pas la récompense par lui-même mais réduit l’atténuation de la récompense induite par l’halopéridole. La co-administration du M100907 et de l’halopéridole induit une atténuation de la récompense d’amplitude similaire à celle induite par la clozapine, ce qui suggère que l’activité antagoniste aux récepteurs 5-HT2a de la clozapine contribue à son efficacité. Les données de la seconde étude montrent que l’OSU-6162 atténue la récompense, de manière dose-dépendante, ainsi que la facilitation, mais pas l’atténuation de la récompense induite par le quinpirole. Cette dernière observation suggère que l’OSU-6162 agit comme un antagoniste fonctionnel aux récepteurs D2 post-synaptiques.
Un ensemble de données suggèrent que le comportement d’ASI constitue un modèle valide permettant d’évaluer l’efficacité antipsychotique potentielle de nouvelles molécules. Le comportement d’ASI est atténué par les antipsychotiques cliniquement efficaces mais est peu ou pas modifié par des molécules dépourvues d’activité antipsychotique. Les données obtenues dans cette thèse permettent de supposer que l’OSU-6162 possède une activité antipsychotique de nature atypique, et cela sans altérer la neurotransmission sérotoninergique. / The mesocorticolimbic pathway is composed of neural elements that originate in the mesencephalic ventral tegmental area and project to cortical and sub-cortical areas. Dopamine (DA) neurons that constitute a major portion of this pathway play a role in several cognitive functions such as the attention, learning and reward. DA cell activity increases when the organism anticipates and receives a reward, as well as during the learning phase of appetitive behaviors. When dopaminergic impulse flow becomes aberrant, stimuli that should be considered as neurtral become salient and acquire an improper signification. This functional abnormality of the dopaminergic system underlies psychotic symptoms that are observed in schizophrenia. This hypothesis is reinforced by the fact that clinically effective antipsychotic drugs all display antagonism at the D2 sub-type of DA receptors. Classical antipsychotic drugs (i.e. haloperidol) possess a high affinity for D2 receptors while atypical antipsychotic drugs (i.e. clozapine) possess a higher affinity for type 2a (5-HT2a) serotonin receptors than for D2 receptors. Atypical antipsychotics seem more effective against negative symptoms (i.e. anhedonia) of schizophrenia and induce less extrapyramidal side effects and dysphoria than classical antipsychotics. It has been proposed that this efficacy of atypical antipsychotics is explained by their antagonistic action at both, the 5-HT2a and the D2 receptors.
To better understand the mechanisms of actions of these drugs, we studied their effects on reward using the intracranial self-stimulation (ICSS) model in rodents. The aim of a first study was to evaluate the effect of a selective 5-HT2a receptor antagonist, M100907, on the reward, and on the reward attenuation induced by haloperidol. The hypothesis was that the reward attenuation induced by the addition of M100907 to haloperidol is similar to the reward attenuation induced by clozapine alone. In a second study, the effect on reward of a D2 receptor partial agonist, OSU-6162, was characterized under two conditions: i) a basal condition and ii) under a state of abnormal dopaminergic neurotransmission elicited by systemic administration of quinpirole, a D2/D3 agonist. The hypotheses were that OSU-6162 i) should attenuate stimulation-induced reward and ii) prevent quinpirole-induced reward attenuation and reward facilitation.
Results showed that M100907, when give alone, did not alter reward; however when administered with haloperidol reduced the reward attenuation. Co-administration of M100907 and haloperidol induced a reward attenuation of a similar amplitude to that of clozapine, suggesting that 5-HT2a antagonism activity of this latter drug contributes to its effects on reward. Results from the second study showed that OSU-6162 dose-orderly attenuates reward and quinpirole-induced reward facilitation; however it did not reduce quinpirole-induced reward attenuation. This last observation suggests that OSU-6162 acts like a functional antagonist at post-synaptic D2 receptors.
A large body of data suggests that the ICSS behavior constitutes a valid model to evaluate the antipsychotic potential of new compounds. ICSS behavior is attenuated by clinically effective antipsychotics is weakly, or not at all, altered by compounds without antipsychotic activity. Results obtained in this thesis allow us to predict that OSU-6162 possesses an antipsychotic activity that would be similar to that of atypical, without altering the serotonergic neurotransmission.
|
Page generated in 0.1078 seconds