• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Specific Receptor Tyrosine Kinases Promote the Metastatic Phenotype of Osteosarcoma

Rettew, Ashley Nicole 23 August 2013 (has links)
No description available.
12

Study of Molecular Mechanisms of Sensitivity and Resistance to EGFR-Targeted Therapy in Lung Cancer

Zhang, Zhenfeng January 2010 (has links)
No description available.
13

Nuclear Receptors License Phagocytosis in Mouse Models of Alzheimer's Disease

Savage, Julie C. 04 September 2015 (has links)
No description available.
14

pyAXL2 - Eine Schnittstelle zur Verwaltung des "Cisco Call Manager"

Kratzert, Sebastian 06 July 2006 (has links) (PDF)
pyAXL ist eine Programmierschnittstelle (API) zur Steuerung des "Cisco Call Manager", eine enterprise-VoIP-Verwaltung. Der Vortrag zeigt, wie pyAXL aufgebaut ist. An ein paar Beispielen wird die Verwendung von pyAXL demonstriert.
15

Rôle de GAS6 et de son récepteur AXL dans la dérégulation de l’homéostasie glucidique et le développement de l’insulino-résistance

Schott, Céline 04 1900 (has links)
Les maladies métaboliques ont pris une ampleur considérable dans le monde ces dernières décennies, telle que certains parlent à ce jour de pandémie. Le diabète de type 2 est l’une de celles qui progressent avec la plus importante prévalence. L'un des facteurs à l’origine du développement de cette physiopathologie est l’insulino-résistance. Il s'agit d'une altération de la réponse à l’insuline des tissus cibles tels que le muscle squelettique, le tissu adipeux et le foie, induisant une dérégulation de l'homéostasie du glucose. Les tissus sensibles deviennent incapables, entre autres, d'absorber adéquatement le glucose sanguin conduisant ainsi à l’établissement d’une hyperglycémie chronique. Les travaux présentés dans cette thèse ont pour objectif de caractériser le rôle de la protéine Growth-arrest specific 6 (GAS6) dans la dérégulation de l’équilibre glycémique et le développement de la résistance à l’insuline. GAS6 est une protéine γ-carboxylée sécrétée qui agit comme ligand pour la famille des récepteurs tyrosines kinases TAM comprenant : TYRO3, AXL et MERTK. GAS6 et ses récepteurs jouent un rôle essentiel dans le système immunitaire, la progression tumorale et les métastases cancéreuses. Cependant, des études récentes menées chez l’humain ont montré que les niveaux circulants de GAS6 ou des variations dans le gène GAS6 sont associés à l’hyperglycémie, la résistance à l'insuline et le risque de développer le diabète de type 2. Cependant, le mécanisme par lequel GAS6 influence ces désordres métaboliques reste méconnu. Dans une première étude, nous avons évalué, pour la première fois dans une cohorte de femmes canadiennes, la corrélation éventuelle entre les niveaux circulants de GAS6 et des facteurs de risque liés au diabète. Cette cohorte nommée MONET (Montréal and Ottawa New Emerging Team) est constituée de 126 femmes post-ménopausées, en surpoids ou obèses. Ces femmes ne sont pas diabétiques, mais présentent un risque plus élevé de développer la maladie à cause de leur poids et de leur statut sédentaire. Nous avons constaté que les femmes ayant des taux élevés de GAS6 dans le sang ont une tolérance au glucose significativement plus faible que celles avec des niveaux plus faibles de GAS6. Par ailleurs, certains paramètres de dysfonctionnements hépatiques (AST, ALT) et des marqueurs d’inflammation (IL-6) concordent positivement avec des taux élevés de GAS6. Nos résultats suggèrent que GAS6 pourrait être un biomarqueur de l’intolérance au glucose chez des patientes obèses et qu’il pourrait être associé à l’inflammation et à certains problèmes hépatiques, qui sont des facteurs impliqués dans le développement du diabète. Dans une seconde étude, à l’aide de modèles murins modifiés génétiquement, nous avons pu démontrer que la délétion du gène Gas6 est suffisante pour améliorer la sensibilité à l’insuline et la tolérance au glucose, sans affecter la sécrétion d’insuline. Par ailleurs, les souris déficientes pour GAS6 sont protégées contre la résistance à l'insuline induite par un régime alimentaire riche en graisses et en sucres. À l’inverse, l'augmentation in vivo des taux circulants de GAS6 est suffisante pour réduire la sensibilité à l'insuline. L'analyse de l'expression génique des récepteurs TAM dans les tissus sensibles à l’insuline a révélé qu’Axl est fortement exprimé dans le muscle squelettique. Dans une lignée de cellules musculaires, nous avons démontré que la voie de signalisation de GAS6-AXL affecte la réponse à l'insuline en inhibant la phosphorylation du récepteur de l'insuline (RI) et de son effecteur en aval AKT. Mécaniquement, AXL s'hétérodimérise avec le RI et GAS6 reprogramme les voies de signalisation en aval du RI dans les cellules musculaires. Il en résulte une activation accrue de la voie des Rab, notamment Rab7 induisant une internalisation de RI. Ensemble, ces résultats décrivent le mécanisme cellulaire par lequel GAS6 et AXL influencent la sensibilité à l'insuline. Finalement, nos derniers résultats soulignent un autre mécanisme d’action de GAS6 sur le métabolisme des cellules musculaires. Nous avons démontré, par protéomique, que GAS6 augmente significativement les niveaux protéiques de plusieurs enzymes impliquées dans la glycolyse et la production de lactate. Le profil métabolique des cellules musculaires traitées avec GAS6 démontre une augmentation du niveau de la glycolyse anaérobique et de la production de lactate. Par ailleurs, nos résultats suggèrent que le lactate lui-même induit une inhibition de la phosphorylation du RI en réponse à l’insuline. Ainsi, GAS6, en reprogrammant les voies métaboliques et l’utilisation du glucose des cellules musculaires, favoriserait la production de lactate induisant une diminution de la sensibilité à l'insuline. / Metabolic diseases have taken on a considerable scale in the world in recent decades, such that some speak of a pandemic. Type 2 diabetes is one of those diseases that progress with the highest prevalence. One of the factors behind the development of this pathophysiology is insulin resistance. It is an alteration of the insulin response of targeted tissues such as skeletal muscle, adipose tissue and liver, inducing dysregulation of glucose homeostasis. Sensitive tissues become incapable, among other things, of adequately absorbing blood glucose, thus leading to the establishment of chronic hyperglycemia. The work presented in this thesis focuses on characterizing the role of Growth-arrest specific protein 6 (GAS6) in the dysregulation of glycemic balance and the development of insulin resistance. GAS6 is a secreted γ-carboxylated protein that acts as a ligand for the TAM family of receptor tyrosine kinases including: TYRO3, AXL and MERTK. GAS6 and its receptors play an essential role in the immune system, tumor progression and cancer metastasis. However, recent studies in humans have shown that circulating GAS6 levels or variations in GAS6 gene are associated with hyperglycemia, insulin resistance and the risk of developing type 2 diabetes. However, the mechanism by which GAS6 influences these metabolic disorders remains unknown. In a first study, carried out for the first time in a cohort of Canadian women, we evaluated the potential correlation between circulating GAS6 levels and risk factors linked to diabetes. This cohort, named MONET (Montreal and Ottawa New Emerging Team), is composed of 126 post-menopausal, overweight or obese women. These women are not diabetic but have high risks of developing the disease because of their weight and sedentary status. We found that women with high levels of GAS6 in the blood have significantly lower glucose tolerance than those with lower levels of GAS6. In addition, certain liver dysfunction parameters (AST, ALT) and inflammation markers (IL-6) positively correlated with high levels of GAS6. Our results suggest that GAS6 could be a biomarker of glucose intolerance in obese patients and be associated with inflammation and certain liver problems, which are factors involved in the development of diabetes.  In a second study, using genetically modified mouse models, we were able to demonstrate that deletion of the Gas6 gene was sufficient to improve insulin sensitivity and glucose tolerance, without affecting insulin secretion. Furthermore, GAS6-deficient mice were protected against insulin resistance induced by a diet high in fats and sugars. Conversely, in vivo, increase of GAS6 circulating levels is sufficient to reduce insulin sensitivity. Analysis of TAM receptors gene expression in insulin-responsive tissues revealed that Axl is highly expressed in skeletal muscle. In a muscle cell line, we demonstrated that the GAS6-AXL signaling pathway affects the insulin response by inhibiting the phosphorylation of the insulin receptor (IR) and its downstream effector AKT. Mechanistically, AXL heterodimerizes with IR and GAS6 reprograms signaling pathways downstream of IR in muscle cells. This results in an increased activation of the Rab pathway, in particular Rab7, inducing an internalization of IR. Together, these results describe the cellular mechanism by which GAS6 and AXL influence insulin sensitivity. Finally, our latest results highlight another mechanism of action of GAS6 on muscle cell metabolism. We demonstrated by proteomics that GAS6 significantly increases the protein levels of several enzymes involved in glycolysis and lactate production. The metabolic profile of muscle cells treated with GAS6 demonstrates an increase in the level of anaerobic glycolysis and lactate production. Furthermore, our results suggest that lactate itself induces an inhibition of IR phosphorylation in response to insulin. Thus, GAS6, by reprogramming the metabolic pathways and the use of glucose in muscle cells, would promote lactate production inducing a decrease in insulin sensitivity.
16

pyAXL2 - Eine Schnittstelle zur Verwaltung des "Cisco Call Manager"

Kratzert, Sebastian 06 July 2006 (has links)
pyAXL ist eine Programmierschnittstelle (API) zur Steuerung des "Cisco Call Manager", eine enterprise-VoIP-Verwaltung. Der Vortrag zeigt, wie pyAXL aufgebaut ist. An ein paar Beispielen wird die Verwendung von pyAXL demonstriert.
17

Caractérisation de la fonction et des mécanismes d'action de la protéine d'échafaudage CNK2 dans les cellules cancéreuses

Gagnon, Jessica 01 1900 (has links)
Les organismes vivants, qu'ils soient simples ou complexes, ont acquis des stratégies pour s'adapter aux changements environnementaux. Ces changements correspondent à un large éventail de signaux chimiques, physiques ou mécaniques qui doivent être transmis en messages intracellulaires. Dans la cellule, des réseaux de signalisation sont modulés avec une grande précision pour transmettre ces messages et générer une réponse cellulaire appropriée. Les protéines d'échafaudage jouent un rôle crucial dans la sélectivité et la modulation spatio-temporelle de la transduction du signal. Par divers mécanismes moléculaires, elles médient l’organisation de complexes multimoléculaires impliqués dans plusieurs processus biologiques. CNK est une protéine d'échafaudage découverte par le biais d’études génétiques chez la drosophile où elle agit comme modulateur positif de la signalisation RAS/MAPK. Cependant, les fonctions physiologiques des homologues de CNK de mammifères (CNK1, CNK2 et CNK3) et leurs contributions aux pathologies humaines sont mal caractérisées. De plus, il existe peu d’évidences rapportant leur implication dans la signalisation RAS/MAPK. Elles ont plutôt été associées à des voies de signalisation contrôlées par les guanosine triphosphatases (GTPases) des familles ARF et RHO. Dans un premier manuscrit, nous avons montré que CNK2 est requise pour la migration et l'invasion des cellules cancéreuses en couplant le récepteur tyrosine kinase (RTK) prométastatique AXL à l'activation de la GTPase ARF6. D'un point de vue mécanistique, la signalisation induite par AXL favorise le recrutement de CNK2 à la membrane plasmique de manière dépendante de PI3K. Ensuite, CNK2 promeut l’activation d’ARF6 via son interaction aux ARF Guanosine exchange factors (GEFs) cytohésines et à la protéine adaptatrice SAMD12. Nous démontrons également qu’ARF6 coordonne l'activité des GTPases RAC1 et RHOA. Enfin, l'ablation génétique de CNK2 ou SAMD12 réduit considérablement les lésions métastatiques hépatiques et pulmonaires dans un modèle de xénogreffe de souris. Dans une série d’expériences de BioID supplémentaires utilisant le mutant gain-de-fonction ARF6 Q67L, nous avons identifié PLD1 et ITGB1 comme candidats potentiels pouvant médier la signalisation RAC1 et RHOA en aval d’ARF6. Dans une autre série d’expériences, nous avons caractérisé l'interaction entre les CNKs et la sous-famille des kinases Misshapen (MSN). Les trois membres de cette sous-famille, MAP4K4, TNIK et MINK1, ont été identifiés comme principaux interacteurs proximaux de CNK2A et CNK3 dans les expériences de BioID. Toutefois, leur interaction ne semble pas être impliquée dans la fonction promigratoire de CNK2A. Par des expériences de cartographie, nous démontrons que les domaines CRIC et DUF1170 de CNK2/3 et la région coiled-coil de MAP4K4 sont importants pour leur interaction. Nos travaux suggèrent également que SAMD10 compétitionne avec MAP4K4 pour se lier à CNK2 et que SAMD10/12 modulent la stabilité de CNK2. Enfin, nos résultats préliminaires suggèrent que MAP4K4 induit la phosphorylation de CNK2/3. Cependant, la pertinence biologique de ces évènements reste à déterminer. Dans l'ensemble, nos travaux révèlent une fonction inattendue de CNK2 dans la régulation de la motilité des cellules cancéreuses et identifient une nouvelle voie de signalisation qui pourrait être ciblée pour limiter les métastases. En outre, nos travaux identifient plusieurs pistes pour approfondir le rôle de CNK dans les cellules de mammifères. / All living organisms, whether simple or complex, have acquired sophisticated strategies to adapt to their changing environment. These environmental changes correspond to a breadth of chemical and mechanical signals that need to be transmitted into intracellular information. In cells, dense signalling networks are put into place and modulated with great precision to transmit messages and generate appropriate cellular responses. Scaffolding proteins play a crucial role in the selectivity and spatiotemporal modulation of signal transduction. Through various molecular mechanisms, they mediate the organization of multimolecular complexes implicated in various biological processes. CNK is a scaffolding protein discovered through genetic studies in drosophila where it acts as an important positive regulator of the highly oncogenic RAS/MAPK pathway. In contrast, the physiological functions of human CNKs and their roles in human diseases are poorly characterized. Moreover, evidence supporting their requirement for RAS/MAPK signalling remains sparse. Rather, they have been linked to signalling pathways controlled by the ARF and RAS homologous (RHO) subfamilies of GTPases. In a first manuscript, we found that mammalian CNK2 promotes cancer cell migration and invasion by coupling the pro-metastatic RTK AXL to downstream activation of ARF6 GTPase. Mechanistically, we showed that AXL signalling induces PI3K-dependent recruitment of CNK2 to the plasma membrane where it stimulates ARF6 via its interaction with the cytohesin ARF GEFs and the adaptor protein SAMD12. We also showed that ARF6 coordinates RAC1 and RHOA GTPase activity. Finally, the genetic ablation of CNK2 or SAMD12 potently reduces liver and lung metastatic lesions in a mouse xenograft model. In a series of supplemental BioID experiments using the gain-of-function ARF6 Q67L mutant, we identified PLD1 and ITGB1 as potential candidates that could mediate RAC1 and RHOA signalling downstream of ARF6. In another study, we characterized the interaction between CNKs and the MSN subfamily of kinases. The three members of this subfamily, namely MAP4K4, TNIK and MINK1, were identified as top proximal interactors of CNK2A and CNK3 in the BioID experiments. However, their interaction does not appear to be involved in the pro-migratory function of CNK2A. Through mapping experiments, we found that the CRIC and DUF1170 domains of CNK2 and CNK3 and the coiled-coil region of MAPK4K4 are important for their interaction. In addition, we found that SAMD10 competes with MAP4K4 for binding to CNK2 and that SAMD10/12 proteins also modulate CNK2 stability. Finally, our preliminary results suggest that MAP4K4 induces CNK2/3 phosphorylation. However, the biological relevance of these interactions and phosphorylation events remains to be addressed. Overall, our work uncovers an unanticipated function of CNK2 in regulating cancer cell motility and identifies a novel signalling pathway that could be targeted to restrain metastasis. Moreover, it identifies several avenues for further study into CNK function in mammalian cells.

Page generated in 0.0375 seconds