• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 162
  • 35
  • 33
  • 20
  • 14
  • 12
  • 10
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 351
  • 351
  • 105
  • 56
  • 53
  • 48
  • 46
  • 42
  • 33
  • 30
  • 29
  • 26
  • 25
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Functional Analysis of Adapter Protein c-Abl Src Homology 3 Domain-binding Protein 2

Chen, Grace Yi-Ying 23 September 2009 (has links)
3BP2 is a pleckstrin homology (PH) domain- and Src homology 2 (SH2) domain-containing adapter protein that has been linked through genetic evidence to a rare human disease called cherubism 146. 3BP2 was originally cloned in a screen to identify c-Abl SH3 binding proteins 23,24. In overexpression studies, 3BP2 has been implicated as a positive regulatory adapter molecule coupled to immunoreceptor on T cells 67,69,70, B cells 68, NK cells 71-73 and mast cells 74,75. It was also evident that 3BP2 forms complexes with a number of signaling molecules, such as Zap-70, LAT, phospholipase C-γ1 (PLC-γ1), Grb2, Cbl, and Fyn in Jurkat cells 67 and Vav1, Vav2, PLC-γ, and Syk in Daudi B cells 68. Despite the growing body of biochemical data to support the importance of 3BP2 in cells of the hematopoietic lineage, a clear picture of the biological function of 3BP2 has yet to emerge. To elucidate the in vivo function of 3BP2, our laboratory has generated 3BP2 gene-deficient mice through homologous recombination 452. The 3BP2-deficient (3BP2-/-) mice were born at the expected Mendelian frequency and were fertile and viable. 3BP2-/- mice accumulate splenic marginal-zone (MZ) B cells, possess a reduced frequency of peritoneal B-1 B cells, and have a diminished thymus-independent type 2 (TI-2) antigen response. 3BP2-/- B cells demonstrate diminished proliferation and cell survival following cross-linking of the B-cell receptor (BCR). Following BCR ligation, 3BP2 might be recruited to BCR complex through its inducible interaction with BCR costimulatory molecule CD19. In the absence of 3BP2, the activation of BCR downstream effectors such as MAPK Erk1/2, JNK, and c-Abl is normal; however, 3BP2 deficiency leads to defects in Syk phosphorylation and calcium flux. In addition to defects in peripheral B cell activities, 3BP2 deficiency contributes to defects in neutrophil activities. In response to the chemotactic peptide, fMLF, 3BP2-/- neutrophils fail to establish directional migration in vitro. There is a defect in the accumulation of filamentous actin at the leading edge of migrating 3BP2-/- neutrophils which might be responsible for the random movement of these cells under shallow gradient of fMLF. In vivo, there is a delay in the recruitment of circulating neutrophils to the site of chemically induced inflammation in 3BP2-/- mice. Compared to wildtype neutrophils, 3BP2-/- neutrophils fail to properly produce superoxide anion (O2-) following fMLF stimulation. Defects in both directional migration and superoxide production of 3BP2-/- neutrophils might contribute to the reduction in bacteria clearance and the increased mortality in 3BP2-/- mice post Listeria Monocytogenes infection. In Chapter 1 of this thesis, I have reviewed basic structures and functions of the domain modules found in adapter proteins. In addition, I have reviewed the findings from numerous reports on the function of 3BP2 in different cell types. A discussion of the physical appearance and some of the initial characterization of 3BP2-deficient mice (3BP2-/-) we have generated in our laboratory are included in Chapter 1. The second part of Chapter 1 consists of an introduction on B cell receptor signaling pathway and B-cell development and activation. A discussion of G protein-coupled receptor-mediated neutrophil functions can also be found in Chapter 1. Chapter 2 contains all the methods and materials used in my study. Chapter 3 includes the characterization of peripheral B cell compartment of 3BP2-/- mice as well as the role of 3BP2 downstream of B-cell antigen receptor and in T-independent immune response. In chapter 4, I present data from experiments designed to examine the role of 3BP2 downstream of a G protein-coupled receptor, fMLF receptor, of neutrophils. I also show the requirement of 3BP2 in the clearance of Listeria Monocytogenes. In chapter 5, I propose two models for 3BP2 action based on the findings in B cells and neutrophils and discuss future areas for investigation.
242

Functional Analysis of Adapter Protein c-Abl Src Homology 3 Domain-binding Protein 2

Chen, Grace Yi-Ying 23 September 2009 (has links)
3BP2 is a pleckstrin homology (PH) domain- and Src homology 2 (SH2) domain-containing adapter protein that has been linked through genetic evidence to a rare human disease called cherubism 146. 3BP2 was originally cloned in a screen to identify c-Abl SH3 binding proteins 23,24. In overexpression studies, 3BP2 has been implicated as a positive regulatory adapter molecule coupled to immunoreceptor on T cells 67,69,70, B cells 68, NK cells 71-73 and mast cells 74,75. It was also evident that 3BP2 forms complexes with a number of signaling molecules, such as Zap-70, LAT, phospholipase C-γ1 (PLC-γ1), Grb2, Cbl, and Fyn in Jurkat cells 67 and Vav1, Vav2, PLC-γ, and Syk in Daudi B cells 68. Despite the growing body of biochemical data to support the importance of 3BP2 in cells of the hematopoietic lineage, a clear picture of the biological function of 3BP2 has yet to emerge. To elucidate the in vivo function of 3BP2, our laboratory has generated 3BP2 gene-deficient mice through homologous recombination 452. The 3BP2-deficient (3BP2-/-) mice were born at the expected Mendelian frequency and were fertile and viable. 3BP2-/- mice accumulate splenic marginal-zone (MZ) B cells, possess a reduced frequency of peritoneal B-1 B cells, and have a diminished thymus-independent type 2 (TI-2) antigen response. 3BP2-/- B cells demonstrate diminished proliferation and cell survival following cross-linking of the B-cell receptor (BCR). Following BCR ligation, 3BP2 might be recruited to BCR complex through its inducible interaction with BCR costimulatory molecule CD19. In the absence of 3BP2, the activation of BCR downstream effectors such as MAPK Erk1/2, JNK, and c-Abl is normal; however, 3BP2 deficiency leads to defects in Syk phosphorylation and calcium flux. In addition to defects in peripheral B cell activities, 3BP2 deficiency contributes to defects in neutrophil activities. In response to the chemotactic peptide, fMLF, 3BP2-/- neutrophils fail to establish directional migration in vitro. There is a defect in the accumulation of filamentous actin at the leading edge of migrating 3BP2-/- neutrophils which might be responsible for the random movement of these cells under shallow gradient of fMLF. In vivo, there is a delay in the recruitment of circulating neutrophils to the site of chemically induced inflammation in 3BP2-/- mice. Compared to wildtype neutrophils, 3BP2-/- neutrophils fail to properly produce superoxide anion (O2-) following fMLF stimulation. Defects in both directional migration and superoxide production of 3BP2-/- neutrophils might contribute to the reduction in bacteria clearance and the increased mortality in 3BP2-/- mice post Listeria Monocytogenes infection. In Chapter 1 of this thesis, I have reviewed basic structures and functions of the domain modules found in adapter proteins. In addition, I have reviewed the findings from numerous reports on the function of 3BP2 in different cell types. A discussion of the physical appearance and some of the initial characterization of 3BP2-deficient mice (3BP2-/-) we have generated in our laboratory are included in Chapter 1. The second part of Chapter 1 consists of an introduction on B cell receptor signaling pathway and B-cell development and activation. A discussion of G protein-coupled receptor-mediated neutrophil functions can also be found in Chapter 1. Chapter 2 contains all the methods and materials used in my study. Chapter 3 includes the characterization of peripheral B cell compartment of 3BP2-/- mice as well as the role of 3BP2 downstream of B-cell antigen receptor and in T-independent immune response. In chapter 4, I present data from experiments designed to examine the role of 3BP2 downstream of a G protein-coupled receptor, fMLF receptor, of neutrophils. I also show the requirement of 3BP2 in the clearance of Listeria Monocytogenes. In chapter 5, I propose two models for 3BP2 action based on the findings in B cells and neutrophils and discuss future areas for investigation.
243

Analysis of Immunoglobulin Genes and Telomeres in B cell Lymphomas and Leukemias

Walsh, Sarah January 2005 (has links)
B cell lymphomas and leukemias are heterogeneous tumors with different cellular origins. Analysis of immunoglobulin (Ig) genes enables insight into the B cell progenitor, as Ig somatic hypermutation correlates with antigen-related B cell transit through the germinal center (GC). Also, restricted Ig variable heavy chain (VH) gene repertoires in B cell malignancies could imply antigen selection during tumorigenesis. The length of telomeres has been shown to differ between GC B cells and pre/post-GC B cells, possibly representing an alternative angle to investigate B cell tumor origin. Mantle cell lymphoma (MCL), previously postulated to derive from a naïve, pre-GC B cell, was shown to have an Ig-mutated subset (18/110 MCLs, 16%), suggestive of divergent cellular origin and GC exposure. Another subset of MCL (16/110, 15%), characterized by VH3-21/Vλ3-19 gene usage, alludes to a role for antigen(s) in pathogenesis, also possible for hairy cell leukemia (HCL) in which the VH3-30 gene (6/32, 19%) was overused. HCL consisted mainly of Ig-mutated cases (27/32, 84%) with low level intraclonal heterogeneity, contrasting with the proposed post-GC origin, for both Ig-mutated and Ig-unmutated HCLs. For MCL and HCL, derivation from naïve or memory marginal zone B cells which may acquire mutations without GC transit are tempting speculations, but currently little is known about this alternative immunological pathway. Heavily mutated Ig genes without intraclonal heterogeneity were demonstrated in lymphoplasmacytic lymphoma/Waldenström’s macroglobulinemia (13/14, 93%), confirming that the precursor cell was transformed after GC affinity maturation. Telomere length analysis within 304 B cell tumors revealed variable lengths; shortest in the Ig-unmutated subset of chronic lymphocytic leukemia, longest in the GC-like subtype of diffuse large B cell lymphoma, and homogeneous in MCL regardless of Ig mutation status. However, telomere length is complex with regard to GC-related origin. In summary, this thesis has provided grounds for speculation that antigens play a role in MCL and HCL pathogenesis, although the potential antigens involved are currently unknown. It has also enabled a more informed postulation about the cellular origin of B cell tumors, which will ultimately enhance understanding of the biological background of the diseases.
244

Antigen interaction with B cells in two proliferative disorders : CLL and MGUS /

Hellqvist, Eva, January 2010 (has links) (PDF)
Diss. (sammanfattning) Linköping : Linköpings universitet, 2010. / Härtill 4 uppsatser.
245

Regulation of B cell development by antigen receptors

Hauser, Jannek January 2011 (has links)
The developmental processes of lymphopoiesis generate mature B lymphocytes from hematopoietic stem cells through increasingly restricted intermediates. Networks of transcription factors regulate these cell fate choices and are composed of both ubiquitously expressed and B lineage-specific factors. E-protein transcription factors are encoded by the three genes E2A, E2-2 (SEF2-1), and HEB. The E2A gene is required for B cell development and encodes the alternatively spliced proteins E12 and E47. During B lymphocyte development, the cells have to pass several checkpoints verifying the functionality of their antigen receptors. Early in the development, the expression of a pre-B cell receptor (pre-BCR) with membrane-bound immunoglobulin (Ig) heavy chain protein associated with surrogate light chain (SLC) proteins is a critical checkpoint that monitors for functional Ig heavy chain rearrangement. Signaling from the pre-BCR induces survival and a limited clonal expansion. Here it is shown that pre-BCR signaling rapidly down-regulates the SLCs l5 and VpreB and also the co-receptor CD19. Ca2+ signaling and E2A were shown to be essential for this regulation. E2A mutated in its binding site for the Ca2+ sensor protein calmodulin (CaM), and thus with CaM-resistant DNA binding, makes l5, VpreB and CD19 expression resistant to the inhibition following pre-BCR stimulation. Thus, Ca2+ down-regulates SLC and CD19 gene expression upon pre-BCR stimulation through inhibition of E2A by Ca2+/CaM. A general negative feedback regulation of the pre-BCR proteins as well as many co-receptors and proteins in signal pathways from the receptor was also shown. After the ordered recombination of Ig heavy chain gene segments, also Ig light chain gene segments are recombined together to create antibody diversity. The recombinations are orchestrated by the recombination activating gene (RAG) enzymes, other enzymes that cleave/mutate/assemble DNA of the Ig loci, and the transcription factor Pax5. A key feature of the immune system is the concept that one lymphocyte has only one antigen specificity that can be selected for or against. This requires that only one of the alleles of genes for Ig chains is made functional. The mechanism of this allelic exclusion has however been an enigma. Here pre-BCR signaling was shown to down-regulate several components of the recombination machinery including RAG1 and RAG2 through CaM inhibition of E2A. Furthermore, E2A, Pax5 and the RAGs were shown to be in a complex bound to key sequences on the IgH gene before pre-BCR stimulation and instead bound to CaM after this stimulation. Thus, the recombination complex is directly released through CaM inhibition of E2A. Upon encountering antigens, B cells must adapt to produce a highly specific and potent antibody response. Somatic hypermutation (SH), which introduces point mutations in the variable regions of Ig genes, can increase the affinity for antigen, and antibody effector functions can be altered by class switch recombination (CSR), which changes the expressed constant region exons. Activation-induced cytidine deaminase (AID) is the mutagenic antibody diversification enzyme that is essential for both SH and CSR. The AID enzyme has to be tightly controlled as it is a powerful mutagen. BCR signaling, which signals that good antibody affinity has been reached, was shown to inhibit AID gene expression through CaM inhibition of E2A.  SH increases the antigen binding strength by many orders of magnitude. Each round of SH leads to one or a few mutations, followed by selection for increased affinity. Thus, BCR signaling has to enable selection for successive improvements in antibodies (Ab) over an extremely broad range of affinities. Here the BCR is shown to be subject to general negative feedback regulation of the receptor proteins as well as many co-receptors and proteins in signal pathways from the receptor. Thus, the BCR can down-regulate itself to enable sensitive detection of successive improvements in antigen affinity. Furthermore, the feedback inhibition of the BCR signalosome and most of its protein, and most other gene regulations by BCR stimulation, is through inhibition of E2A by Ca2+/CaM. Differentiation to Ab-secreting plasmablasts and plasma cells is antigen-driven. The interaction of antigen with the membrane-bound Ab of the BCR is critical in determining which clones enter the plasma cell response. Genome-wide analysis showed that differentiation of B cells to Ab-secreting cell is induced by BCR stimulation through very fast regulatory events, and induction of IRF-4 and down-regulation of Pax5, Bcl-6, MITF, Ets-1, Fli-1 and Spi-B gene expressions were identified as immediate early events. Ca2+ signaling through CaM inhibition of E2A was essential for these rapid down-regulations of immediate early genes after BCR stimulation in initiation of plasma cell differentiation.
246

Die Organisation von Signalnetzwerken in B-Lymphozyten / The organization of signaling networks in B cells

Oellerich, Thomas 17 July 2012 (has links)
No description available.
247

Regulation der „spleen tyrosine kinase“ Syk im B-Zell-Antigen-Rezeptor-Signalweg / Regulation of the "spleen tyrosine kinase" Syk in the B-cell antigen receptor signaling pathway

Bohnenberger, Hanibal 14 January 2014 (has links)
No description available.
248

Immune monitoring in humans after manipulation by B cell depletion and immunization /

Vallerskog, Therese, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
249

B-cell-survival factors in multiple sclerosis and myasthenia gravis /

Thangarajh, Mathula, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 5 uppsatser.
250

Analysis of the role of FCRL5 and FIGLERs in B cell development, signaling and malignancy

Haga, Christopher L. January 2008 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2008. / Title from first page of PDF file (viewed June 6, 2008). Includes bibliographical references.

Page generated in 0.0299 seconds