Spelling suggestions: "subject:"2021(DE3)."" "subject:"221(DE3).""
1 |
From protein production to genome evolution in Escherichia coliSchlegel, Susan January 2013 (has links)
The aim of my Ph.D. studies was to improve production yields of membrane- and secretory proteins in the widely used E. coli protein production strain BL21(DE3). In this strain expression of the gene encoding the protein of interest is driven by the powerful T7 RNA polymerase (T7 RNAP) whose gene is located on the chromosome and under control of the strong, IPTG-inducible lacUV5 promoter. Unfortunately, the production of many membrane and secretory proteins is 'toxic' to BL21(DE3), resulting in poor growth and low production yields. To understand this ‘toxicity’, the BL21(DE3) derived mutant strains C41(DE3) and C43(DE3) were characterized. Somehow, these strains can efficiently produce many ‘toxic’ membrane and secretory proteins. We showed that mutations weakening the lacUV5 promoter are responsible for this. These mutations result in a slower onset of protein production upon the addition of IPTG, which avoids saturating the Sec-translocon capacity. The Sec-translocon is a protein-conducting channel in the cytoplasmic membrane mediating the biogenesis of membrane proteins and translocation of secretory proteins. Next, we constructed a BL21(DE3)-derivative, Lemo21(DE3), in which the activity of T7 RNAP can be precisely controlled by titrating in its natural inhibitor T7 lysozyme using the rhamnose promoter system. In Lemo21(DE3), the expression level of genes encoding membrane and secretory proteins can be set such that the Sec-translocon capacity is not saturated. This is key to optimizing membrane and secretory protein production yields. Finally, reconstructing the evolution of C41(DE3) from BL21(DE3) in real time showed that during its isolation C41(DE3) had acquired mutations critical for surviving the starvation conditions used, and provided insight in how the mutations in the lacUV5 promoter had occurred. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.</p>
|
2 |
Biochemical Study of Engineered Fluorescent Proteins as Calcium Sensors and the Effect of Calcium and PH in Cell Reproduction and Protein ExpressionDelgado, Malcom Arturo 01 December 2009 (has links)
Calcium plays important roles in both eukaryotic and prokaryotic cells. Its actions help to stabilize cell synthesis, growth and development. In this thesis, studies have been completed to determine effects of calcium and pH on bacterial cell growth and protein expression using the bacterial cell strain E.coli BL21(DE3). Our studies demonstrated the addition of calcium addition in the media does not affect growth but increases protein expression, while reducing the pH from 7 to 4 through the addition of 10mM EGTA in LB media inhibits both. Additionally, we report studies on the design, expression, and purification of fluorescent mCherry variants and their differences in their optical properties, including: extinction coefficients , quantum yields and pKa values. Also, we report progress in the crystallization of two GFP calcium sensors: G1 and D1, using 13 and15% PEG 4000 and 3350 respectively in 50mM HEPES buffer (pH 6.8-7.0) in an effort to optimize crystallization.
|
3 |
Process development for the production of a therapeutic Affibody® Molecule / Processutveckling för att tillverka en Affibody®-molekyl avsedd för cancerterapiFridman, Belinda January 2014 (has links)
Recently HER3, member of the epidermal growth factor receptor family (EGFR), has been found to play a crucial role in the development of resistance towards inhibitors that are given to patients with HER1- and HER2-driven cancers. As HER3 is up-regulated or over-activated in several types of human cancers, it is of outmost importance that new innovative drugs target its oncologic activity. The Affibody® Molecule Z08698 inhibits the heregulin induced signalling of HER3 with high affinity (KD~50 pM). As the Affibody® Molecule is small, has high solubility and outstanding folding kinetics, an effective penetration of tumour tissue is suggested together with a rationalized manufacturing process. Further coupling to an albumin binding domain (ABD) expands the plasma half-life of the molecule, hence increasing the molecule's potential of serving as a therapeutic. A process development for production of Z08698-VDGS-ABD094 has been established, where the molecule is efficiently produced in the E. coli host strain BL21(DE3), through a T7 based expression system. Cultivations were performed with a fed-batch fermentation process and the conditions were further optimized in order to obtain highest expression, while avoiding undesirable modifications like gluconoylations. By employing Design of experiments in combination with multivariate data analysis, a production process resulting in ~3.5 g product/ l culture could be verified. Moreover, thermolysis was evaluated as a suitable method for cell disruption, enabling an easy and cost-effective manufacturing process of the ABD fused Affibody® Molecule.
|
4 |
Stabil och antibiotikafri läkemedelsproduktion i rekombinant Escherichia coliBenevides, Kristina, Broström, Oscar, Elison Kalman, Grim, Swenson, Hugo, Vlassov, Andrei, Ågren, Josefin January 2017 (has links)
Den här rapporten presenterar ett antibiotikafritt, stabilt och kromosombaserat expressionssystem för läkemedelsproduktion i Escherichia coli på beställning av företaget Affibody AB. E. coli-stammen BL21(DE3) valdes som värdorganism för expressionssystemet. Systemet består av en genkassett som innehåller en T7-promotor, en 5′-UTR från genen ompA och en terminatorsekvens från RNA-operonet rrnB. Fyra kopior av genkassetten ska integreras i pseudogenerna caiB, yjjM, hsdS och yjiV. En datormodell som modellerar det egentliga kopietalet i cellerna har skapats i mjukvaran MATLAB, vilket visar att det uppskattas vara maximalt 32 kopior av genkassetten per cell på grund av replikation av kromosomen. Ett högt pH i fermentorn; att använda fed-batch och blandade kolhydratkällor; och att använda stammen BL21(DE3) minskar acetatproduktionen i cellen. En lägre acetatproduktion kan leda till en högre produkthalt. En proteinutbytesmodell för mjukvaran MATLAB har konstruerats för att uppskatta koncentrationen av Affibody®-molekylen i en E. coli cell.
|
Page generated in 0.0423 seconds