31 |
Otimização global determinística no espaço-imagem : problemas multiplicativos e fracionários / Deterministic global optimization in image-space : multiplicative and fractional problemsAshtiani, Alireza Mohebi 21 August 2018 (has links)
Orientador: Paulo Augusto Valente Ferreira / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-21T14:52:27Z (GMT). No. of bitstreams: 1
Ashtiani_AlirezaMohebi_D.pdf: 1381601 bytes, checksum: 9ae82bd53a7cf70422fed2348416f8f0 (MD5)
Previous issue date: 2012 / Resumo: Muitos problemas práticos em Engenharia, Economia e Planejamento são modelados de maneira conveniente como problemas de Otimização Global. Esta tese tem como objetivo principal apresentar novas técnicas de Otimização Global com foco na resolução de duas importantes classes de problemas: problemas de Programação Multiplicativa Generalizada, os quais envolvem a minimização e a maximização de uma soma finita de produtos de funções convexas e côncavas, respectivamente, e problemas de Programação Fracionária Generalizada, os quais, por sua vez, envolvem a minimização e a maximização de uma soma finita de razões de funções convexa-côncava ou côncava-convexa, respectivamente. Na tese demonstra-se que todos estes problemas podem ser eficientemente resolvidos por um mesmo algoritmo de aproximação externa, a partir da reformulação dos problemas como problemas com infinitas restrições lineares de desigualdade. Um algoritmo baseado em enumeração de restrições e um algoritmo de aproximação externa combinado a uma técnica branch-and-bound são usados para resolver globalmente problemas de Programação Multiplicativa. Em seguida, as mesmas técnicas são empregadas na resolução de problemas de Programação Fracionária. Experiências computacionais atestam a viabilidade e a eficiência dos métodos de Otimização Global propostos, os quais também são facilmente programáveis a partir de pacotes de otimização disponíveis comercialmente / Abstract: Many practical problems in Engineering, Economics and Planning are modeled in a convenient way by Global Optimization problems. The principal objective of this thesis is to introduce new global optimization techniques with focus on the resolution of two important classes of problems: Generalized Multiplicative Programming Problems, in which involve the minimization and maximization of a finite sum of products of convex and concave functions, respectively, and Generalized Fractional Programming Problems, in which, in turn, involve the minimization and maximization of a finite sum of convex-concave and concave-convex ratio functions, respectively. The thesis demonstrates that all these problems can be efficiently solved by the same outer approximation algorithm, from the reformulation of the problems as problems with infinite linear inequality constraints. An algorithm based on a constraint enumeration and an outer approximation algorithm together with a branch-and-bound technique are used to globally solve Multiplicative Programming problems. Then, the same techniques are employed in the resolution of Fractional Programming problems. Computational experiments certify the viability and efficiency of the proposed Global Optimization methods, which are also easily programmable through commercially available optimization packages / Doutorado / Automação / Doutor em Engenharia Elétrica
|
32 |
Minimização de funções decomponíveis em curvas em U definidas sobre cadeias de posets -- algoritmos e aplicações / Minimization of decomposable in U-shaped curves functions defined on poset chains -- algorithms and applicationsMarcelo da Silva Reis 28 November 2012 (has links)
O problema de seleção de características, no contexto de Reconhecimento de Padrões, consiste na escolha de um subconjunto X de um conjunto S de características, de tal forma que X seja \"ótimo\" dentro de algum critério. Supondo a escolha de uma função custo c apropriada, o problema de seleção de características é reduzido a um problema de busca que utiliza c para avaliar os subconjuntos de S e assim detectar um subconjunto de características ótimo. Todavia, o problema de seleção de características é NP-difícil. Na literatura existem diversos algoritmos e heurísticas propostos para abordar este problema; porém, quase nenhuma dessas técnicas explora o fato que existem funções custo cujos valores são estimados a partir de uma amostra e que descrevem uma \"curva em U\" nas cadeias do reticulado Booleano (P(S),<=), um fenômeno bem conhecido em Reconhecimento de Padrões: conforme aumenta-se o número de características consideradas, há uma queda no custo do subconjunto avaliado, até o ponto em que a limitação no número de amostras faz com que seguir adicionando características passe a aumentar o custo, devido ao aumento no erro de estimação. Em 2010, Ris e colegas propuseram um novo algoritmo para resolver esse caso particular do problema de seleção de características, que aproveita o fato de que o espaço de busca pode ser organizado como um reticulado Booleano, assim como a estrutura de curvas em U das cadeias do reticulado, para encontrar um subconjunto ótimo. Neste trabalho estudamos a estrutura do problema de minimização de funções custo cujas cadeias são decomponíveis em curvas em U (problema U-curve), provando que o mesmo é NP-difícil. Mostramos que o algoritmo de Ris e colegas possui um erro que o torna de fato sub-ótimo, e propusemos uma versão corrigida e melhorada do mesmo, o algoritmo U-Curve-Search (UCS). Apresentamos também duas variações do algoritmo UCS que controlam o espaço de busca de forma mais sistemática. Introduzimos dois novos algoritmos branch-and-bound para abordar o problema, chamados U-Curve-Branch-and-Bound (UBB) e Poset-Forest-Search (PFS). Para todos os algoritmos apresentados nesta tese, fornecemos análise de complexidade de tempo e, para alguns deles, também prova de corretude. Implementamos todos os algoritmos apresentados utilizando o arcabouço featsel, também desenvolvido neste trabalho; realizamos experimentos ótimos e sub-ótimos com instâncias de dados reais e simulados e analisamos os resultados obtidos. Por fim, propusemos um relaxamento do problema U-curve que modela alguns tipos de projeto de classificadores; também provamos que os algoritmos UCS, UBB e PFS resolvem esta versão generalizada do problema. / The feature selection problem, in the context of Pattern Recognition, consists in the choice of a subset X of a set S of features, such that X is \"optimal\" under some criterion. If we assume the choice of a proper cost function c, then the feature selection problem is reduced to a search problem, which uses c to evaluate the subsets of S, therefore finding an optimal feature subset. However, the feature selection problem is NP-hard. Although there are a myriad of algorithms and heuristics to tackle this problem in the literature, almost none of those techniques explores the fact that there are cost functions whose values are estimated from a sample and describe a \"U-shaped curve\" in the chains of the Boolean lattice o (P(S),<=), a well-known phenomenon in Pattern Recognition: for a fixed number of samples, the increase in the number of considered features may have two consequences: if the available sample is enough to a good estimation, then it should occur a reduction of the estimation error, otherwise, the lack of data induces an increase of the estimation error. In 2010, Ris et al. proposed a new algorithm to solve this particular case of the feature selection problem: their algorithm takes into account the fact that the search space may be organized as a Boolean lattice, as well as that the chains of this lattice describe a U-shaped curve, to find an optimal feature subset. In this work, we studied the structure of the minimization problem of cost functions whose chains are decomposable in U-shaped curves (the U-curve problem), and proved that this problem is actually NP-hard. We showed that the algorithm introduced by Ris et al. has an error that leads to suboptimal solutions, and proposed a corrected and improved version, the U-Curve-Search (UCS) algorithm. Moreover, to manage the search space in a more systematic way, we also presented two modifications of the UCS algorithm. We introduced two new branch-and-bound algorithms to tackle the U-curve problem, namely U-Curve-Branch-and-Bound (UBB) and Poset-Forest-Search (PFS). For each algorithm presented in this thesis, we provided time complexity analysis and, for some of them, also proof of correctness. We implemented each algorithm through the featsel framework, which was also developed in this work; we performed optimal and suboptimal experiments with instances from real and simulated data, and analyzed the results. Finally, we proposed a generalization of the U-curve problem that models some kinds of classifier design; we proved the correctness of the UCS, UBB, and PFS algorithms for this generalized version of the U-curve problem.
|
33 |
Symbolische Interpretation Technischer ZeichnungenBringmann, Oliver 19 January 2003 (has links) (PDF)
Gescannte und vektorisierte technische Zeichnungen werden automatisch unter Nutzung eines Netzes von Modellen in eine hochwertige Datenstruktur migriert. Die Modelle beschreiben die Inhalte der Zeichnungen hierarchisch und deklarativ. Modelle für einzelne Bestandteile der Zeichnungen können paarweise unabhängig entwickelt werden. Dadurch werden auch sehr komplexe Zeichnungsklassen wie Elektroleitungsnetze oder Gebäudepläne zugänglich. Die Modelle verwendet der neue, sogenannte Y-Algorithmus: Hypothesen über die Deutung lokaler Zeichnungsinhalte werden hierarchisch generiert. Treten bei der Nutzung konkurrierender Modelle Konflikte auf, werden diese protokolliert. Mittels des Konfliktbegriffes können konsistente Interpretationen einer kompletten Zeichnung abstrakt definiert und während der Analyse einer konkreten Zeichnung bestimmt werden. Ein wahrscheinlichkeitsbasiertes Gütemaß bewertet jede dieser alternativen, globalen Interpretationen. Das Suchen einer bzgl. dieses Maßes optimalen Interpretation ist ein NP-hartes Problem. Ein Branch and Bound-Algorithmus stellt die adäquate Lösung dar.
|
34 |
FIXED ORDER BRANCH AND BOUND METHODS FOR MIXED-INTEGER PROGRAMMING.SINGHAL, JAYA ASTHANA. January 1982 (has links)
The aim of this dissertation is to present an algorithm for mixed integer programs which when started with a good heuristic solution can find improved solutions and reduce the error estimate as quickly as possible. This is achieved by using two ideas: a fixed order branch-and-bound method with selective expansion of subproblems and the sieve strategy which uses stronger than optimal bounds. The fixed order branch-and-bound method with selective expansion of subproblems is effective in reducing the error estimate quickly whereas the sieve strategy is effective in reducing the error estimate as well as finding improved solutions quickly. Computational experience is reported.
|
35 |
Mathematical Programming Algorithms for Reliable Routing and Robust Evacuation ProblemsAndreas, April Kramer January 2006 (has links)
Most traditional routing problems assume perfect operability of all arcs and nodes. However, when independent arc failure probabilities exist, a secondary objective must be present to retain some measure of expected functionality. We first briefly consider the reliability-constrained single-path problem, where we look for the lowest cost path that meets a reliability side constraint. This analysis enables us to then examine the reliability-constrained two-path problem, which seeks to establish two minimum-cost paths between a source and destination node wherein at least one path must remain fully operable with some threshold probability. We consider the case in which both paths must be arc-disjoint and the case in which arcs can be shared between the paths. We prove both problems to be NP-hard. We examine strategies for solving the resulting nonlinear integer program, including pruning, coefficient tightening, lifting, and branch-and-bound partitioning schemes. Next, we consider the reliable h-path routing problem, which seeks a minimum-cost set of h ≥ 2 arc-independent paths between a source and destination node, such that the probability that at least one path remains operational is sufficiently large. Our prior arc-based models and algorithms tailored for the case in which h = 2 do not extend well to the general h-path problem. Thus, we propose two alternative integer programming formulations for the h-path problem in which the variables correspond to origin-destination paths. We propose two branch-and-price-and-cut algorithms for solving these new formulations, and provide computational results to demonstrate the efficiency of these algorithms. Finally, we examine the robust design of an evacuation tree, in which evacuation is subject to capacity restrictions on arcs. Given a discrete set of disaster scenarios with varying network populations, arc capacities, transit times, and time-dependent penalty functions, we seek to establish an optimal a priori evacuation tree that minimizes the expected evacuation penalty. The solution strategy is based on Benders decomposition, and we provide effcient methods for obtaining primal and dual sub-problem solutions. We analyze techniques for strengthening the master problem formulation, thus reducing the number of master problem solutions required for the algorithm's convergence.
|
36 |
Optimisation des séquences de pistes et des mouvements au sol sur les grands aéroports / Runways sequences and ground traffic optimisation on busy airportsDeau, Raphaël 02 November 2010 (has links)
Ces dernières années, la phase de roulage au sol des avions a été mise en avant dans l'étude des retards aériens sur les grands aéroports. Cependant, le lien entre cette phase et l'optimisation des séquences d'avions sur les pistes reste encore peu étudié. L'objectif de réaliser des séquences optimales sur les pistes doit pourtant permettre de mieux gérer le trafic au sol, pour respecter les créneaux de décollage imposés tout en réduisant les retards des avions : dans cette thèse, un algorithme de calcul de séquences optimales est mis en place et intégré à la gestion du trafic au sol, modélisée comme un problème de résolution de conflits entre avions. Deux méthodes d'optimisation sont alors comparées : une méthode déterministe (utilisant un algorithme de type branch and bound) et une méthode stochastique (utilisant un algorithme génétique). Chacune des deux méthodes pouvant fonctionner avec et sans considération des séquences optimales sur les pistes. Les simulations effectuées montrent qu'une réduction significative des retards peut être espérée lorsque les séquences sont optimisées et anticipées. La méthode stochastique trouve de meilleures solutions, notamment en ce qui concerne la gestion des arrivées, mais la méthode déterministe reste intéressante, grâce à son temps de calcul bien plus rapide. / In the last few years, many studies concerning air traffic delays have focused on ground traffic management at busy airports. However, the link between the aircraft taxiing stage and runway scheduling optimisation is still rarely considered. Performing optimal aircraft sequences on runways should allow us to enhance the taxiing stage, while applying calculated take-off slots and reducing globally the aircraft mean delay. In this thesis, an algorithm is first defined to compute optimal aircraft schedules on runways. It is then integrated into the ground traffic management process, modeled as a conflict resolution problem between aircraft. A deterministic method (using a branch and bound algorithm) and a stochastic method (using a genetic algorithm) are both used to try and solve this problem. Each of these methods can work with and without the consideration of optimal runway scheduling. The simulations carried out show that the anticipation of the optimal runway schedules can yield a significant delay reduction for airport ground traffic. The stochastic method provides the best solutions, especially for arriving aircraft, while the deterministic method remains a considerable option because of its very fast running time.
|
37 |
Approches locales et globales basées sur la programmation DC et DCA pour des problèmes combinatoires en variables mixtes 0-1 : applications à la planification opérationnelle / Local and global approaches based on DC programming and DCA for mixed 0-1 combinatorial problems : applications to operational planningNguyen Quang, Thuan 10 November 2010 (has links)
Cette thèse développe les deux approches locales et globales basées sur la programmation DC et DCA pour l'optimisation combinatoire en variables mixtes 0-1 et leurs applications à la résolution de nombreux problèmes en planification opérationnelle. Plus particulièrement, cette thèse adresse à: l'amélioration de l'algorithme d'approximation extérieure basée sur DCA (appelé DCACUT) introduit par Nguyen V.V. et Le Thi pour la programmation linéaire en variables mixtes 0-1, les combinaisons des algorithmes globaux et DCA et l'étude numérique comparative de ces approches pour la programmation linéaire en variables mixtes 0-1, l'utilisation de DCA à la résolution de la programmation DC en variables mixtes 0-1 en utilisant la pénalité exacte, la mise en œuvre des algorithmes développés à la résolution des problèmes de grande taille en planification opérationnelle comme les problèmes dans le réseau de télécommunication sans fils, les problèmes d’ordonnancement ainsi que le problème d'affectation de tâches des véhicules aériens non pilotés ou bien le problème des tournées de véhicules dans une chaîne d'approvisionnement / This thesis develops two local and global approaches based on DC programming and DCA for mixed 0-1 combinatorial optimization and their applications to many problems in operational planning. More particularly, this thesis consists of: the improvement of the outer approximation algorithm based on DCA (called DCACUT) introduced by Nguyen V.V and Le Thi for mixed 0-1 linear programming, the combinations of global algorithms and DCA and the comparative numerical study of these approaches for mixed 0-1 linear programming, the use of DCA for solving mixed 0-1 programming via an exact penalty technique, the implementation of the algorithms developed for solving large scale problems in operational planning: two problems in wireless telecommunication network, two scheduling problems, an UAV task assignment problem and an inventory routing problem in supply chains
|
38 |
Heterogeneous cluster computing for many-task exact optimization : application to permutation problems / Optimisation massivement multi-tâche sur grappes de calcul hétérogènes : application aux problèmes de permutationGmys, Jan 19 December 2017 (has links)
L'algorithme Branch-and-Bound (B&B) est une méthode de recherche arborescente fréquemment utilisé pour la résolution exacte de problèmes d'optimisation combinatoire (POC). Néanmoins, seules des petites instances peuvent être effectivement résolues sur une machine séquentielle, le nombre de sous-problèmes à évaluer étant souvent très grand. Visant la resolution de POC de grande taille, nous réexaminons la conception et l'implémentation d'algorithmes B&B massivement parallèles sur de larges plateformes hétérogènes de calcul, intégrant des processeurs multi-coeurs, many-cores et et processeurs graphiques (GPUs). Pour une représentation compacte en mémoire des sous-problèmes une structure de données originale (IVM), dédiée aux problèmes de permutation est utilisée. En raison de la forte irrégularité de l'arbre de recherche, l'équilibrage de charge dynamique entre processus d'exploration parallèles occupe une place centrale dans cette thèse. Basés sur un encodage compact de l'espace de recherche sous forme d'intervalles, des stratégies de vol de tâches sont proposées pour processeurs multi-core et GPU, ainsi une approche hiérarchique pour l'équilibrage de charge dans les systèmes multi-GPU et multi-CPU à mémoire distribuée. Trois problèmes d'optimisation définis sur l'ensemble des permutations, le problème d'ordonnancement Flow-Shop (FSP), d'affectation quadratique (QAP) et le problème des n-dames sont utilisés comme cas d'étude. La resolution en 9 heures d'une instance du FSP dont le temps de résolution séquentiel est estimé à 22 ans demontre la capacité de passage à l'échelle des algorithmes proposés sur une grappe de calcul composé de 36 GPUs. / Branch-and-Bound (B&B) is a frequently used tree-search exploratory method for the exact resolution of combinatorial optimization problems (COPs). However, in practice, only small problem instances can be solved on a sequential computer, as B&B generates often generates a huge amount of subproblems to be evaluated. In order to solve large COPs, we revisit the design and implementation of massively parallel B&B on top of large heterogeneous clusters, integrating multi-core CPUs, many-core processors and GPUs. For the efficient storage and management of subproblems an original data structure (IVM) dedicated to permutation problems is used. Because of the highly irregular and unpredictable shape of the B&B tree, dynamic load balancing between parallel exploration processes is one of the main issues addressed in this thesis. Based on a compact encoding of the search space in the form of intervals, work stealing strategies for multi-core and GPU are proposed, as well as hierarchical approaches for load balancing in distributed memory multi-CPU/multi-GPU systems. Three permutation problems, the Flowshop Scheduling Problem (FSP), the Quadratic Assignment Problem (QAP) and the n-Queens puzzle problem are used as test-cases. The resolution, in 9 hours, of a FSP instance with an estimated sequential execution time of 22 years demonstrates the scalability of the proposed algorithms on a cluster composed of 36 GPUs.
|
39 |
Scheduling the hybrid flowshop : branch and bounnd algorithmsMoursli, Omar 12 February 1999 (has links)
This thesis studies Production Scheduling in a multistage hybrid flowshop facility. It first states the general Production Planning and Scheduling problem and highlights some drawbacks of classical solutions. A theoretical decomposition-based approach is introduced whose main issue is to overcome non-efficient capacity utilization. By using Branch and Bound methods, an in-depth analysis of the scheduling part of the system is then carried out throughout the study and development of upper and lower bounds as well as branching schemes. Already-existing and new heuristics are presented and compared on different shop floor configurations. Five different heuristic approaches are studied. By scheduling the HFS one stage at a time the first approach uses different stage sequencing orders. The second and third approaches are mainly list heuristics. The second approach uses ideas derived from the multistage classical flowshop with a single machine per stage, while the third approach uses classical dispatching priority rules. The fourth and fifth approaches, respectively, use random scheduling and local search techniques. Statistical analysis is carried out in order to compare the heuristics and to select the best of them for each shop configuration. Already-existing and new lower bounds on the single stage subproblem are also presented and compared. Three new lower bounds are developed: a dual heuristic based bound, a partially preemptive bound and a heuristic for the so-called subset bound. Some of these lower bounds use a network flow algorithm. A new version of the “Preflow Push” algorithm which runs faster than the original one is presented. The best lower bounds are selected based on numerical tests. Two branch and bound algorithms are presented, an improved version of the sequence enumeration method and a generalization of the so-called interval branching method, along with several bounding strategies. Based on the upper and lower bound studies, several branch and bound algorithms are presented and compared using numerical tests on different shop floor configurations. Eventually, an Object Model for Scheduling Algorithm Implementations (OMSAI), that has been used for the computer implementation of the developed algorithms, is presented.
|
40 |
Optimizing Safety Stock Placement in General Network Supply ChainsGraves, Stephen C., Lesnaia, Ekaterina 01 1900 (has links)
In the paper, we minimize the holding cost of the safety stock held in a supply chain modeled as a general network. By our assumption, the demand is bounded by a concave function. This fact allows us to formulate the problem as a deterministic optimization. We minimize a concave function over a discrete polyhedron. The main goal of the paper is to describe an algorithm to solve the problem without assuming any particular structure of the underlying supply chain. The algorithm is a branch and bound algorithm. / Singapore-MIT Alliance (SMA)
|
Page generated in 0.024 seconds