• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 10
  • 7
  • 1
  • Tagged with
  • 53
  • 53
  • 44
  • 31
  • 14
  • 11
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Accumulateur lithium-ion à cathode de fluorures de métaux de transition / Transition metal fluoride for lithium-ion batteries applications

Delbegue, Diane 25 September 2017 (has links)
Les batteries lithium ions sont la technologie de référence pour le stockage électrochimique de l’énergie. Cependant, les matériaux cathodiques de ces batteries comme LiCoO2, LiMn2O4 ou LiFePO4 présentent une capacité spécifique limitée (<160 mAh/g). De nombreux composés sont à l’étude pour améliorer cette performance dont le fluorure de fer (III) en raison de sa capacité théorique de 711 mAh.g-1. Ce travail présentera la synthèse de FeF3 par différentes méthodes de fluoration. Les matériaux obtenus seront comparés en termes de structures et de liaison (DRX, Mössbauer, spectroscopies IR et Raman) mais aussi de texture (isothermes d’adsorption à l’azote à 77K). Les propriétés électrochimiques des matériaux obtenus seront également comparées et testées. Enfin, l’étude du mécanisme électrochimique de cette famille de composés sera menée via une méthode de caractérisation « in operando » : la spectroscopie d’absorption des rayons X (XAS). / The lithium-ion batteries are the current solution for electrochemical energy storage. However, their performances are limited by the cathode materials, such as LiCoO2, LiMn2O4 or LiFePO4 of specific capacity lower than 160 mAh/g. Many materials are good candidates to improve this capacity such as iron trifluoride of theoretical capacity of 711 mAh.g-1. This work will present the synthesis of FeF3 through different fluorination ways. The resulting materials will be characterized owing to their structure by XRD, Mössbauer, Raman and IR spectroscopies and their texture by nitrogen adsorption isotherms at 77K and SEM. After that, the electrochemical properties will be evaluated and compared. Finally, the study of the electrochemical mechanism of this family of compounds will be led with a method of characterization “in operando” : the X-rays absorption spectroscopy (XAS).
32

Développement de solutions innovantes d'électrolytes pour sécuriser les accumulateurs lithium-ion / Development of innovative electrolytes for safer lithium-ion batteries

Chancelier, Léa 24 October 2014 (has links)
Les batteries lithium-ion dominent le marché des appareils nomades et celui des véhicules électriques. Néanmoins elles posent des problèmes de sécurité liés à leur électrolyte, contenant des carbonates inflammables et volatils. Pour sécuriser ces systèmes, les liquides ioniques (LI) sont étudiés comme électrolytes alternatifs. Ce sont des sels liquides à température ambiante, réputés stables thermiquement et non inflammables. Ce caractère sécuritaire des LI, souvent avancé, est pourtant peu étayé par des expériences probantes. Les travaux de cette thèse visent à comprendre le comportement de ces LI en situations abusives, telles qu'un échauffement de la batterie, un feu ou une surcharge. Les températures de décomposition de LI contenant les cations imidazolium ou pyrrolidinium différemment substitués et l'anion bis(trifluoromethanesulfonyl)imide ont été déterminées par analyse thermogravimétrique (ATG). Une analyse critique des données (de la littérature et de nos mesures) a permis de définir une procédure optimisée, pour obtenir des résultats reproductibles et comparables. Des électrolytes constitués de mélanges de carbonates ou de LI et de sels de lithium ont été analysés par ATG dynamique et isotherme, et leurs produits de décomposition ont été identifiés. Leur comportement au feu a été testé par la mesure des chaleurs de combustion, des délais d'inflammation et l'identification des gaz générés. Des tests de cyclage électrochimique ont été menés avec ces mêmes électrolytes dans des systèmes lithium-ion constitués des électrodes Li4Ti5O12 et LiNi1/3Mn1/3Co1/3O2. L'évolution des électrolytes et des surfaces des électrodes en situation de surcharge a été examinée / Lithium-ion batteries are dominating both the nomad device and electric vehicle markets. However they raise safety concerns related to their electrolyte, which consists of flammable and volatile carbonate mixtures and toxic salts. The replacement of the latter by ionic liquids (IL), liquid salts claimed to be thermally stable and non-flammable, could provide a safer alternative. Yet this often claimed feature has been poorly examined by experiments. The work of this thesis investigates IL behaviour under abuse conditions such as overheating, fire or overcharge. Decomposition temperatures of IL based on differently substituted imidazolium or pyrrolidinium cations and the bis(trifluoromethanesulfonyl)imide anion were determined by thermogravimetric analysis (TGA). A critical study of gathered data (from literature and our work) led to the determination of an optimised procedure to obtain reproducible and comparable results. Electrolytes based on carbonates mixtures or IL and containing lithium salt were studied by dynamic and isothermal TGA, and their decomposition products were identified. Their combustion behaviour was also tested by measuring heats of combustion and ignition delays. Emitted gases were analysed and quantified. Electrochemical cycling tests were carried out with these electrolytes in lithium-ion systems based on Li4Ti5O12 and LiNi1/3Mn1/3Co1/3O2 electrodes. The evolution of the electrolytes and electrodes surface was also examined under overcharge
33

Étude du polymère élastomère à base d’acrylonitrile, HNBR, pour son application dans les batteries Li-ion

Verdier, Nina 11 1900 (has links)
Les travaux présentés portent sur l’étude du HNBR (Hydrogenated Nitrile Butadiene Rubber), un polymère à base d’acrylonitrile, pour son application en tant que liant d’électrodes dans les batteries lithium ions. Cette thèse repose sur un partenariat avec l’entreprise Hutchinson (spécialisée dans le domaine des polymères) qui a cherché à développer un nouveau procédé pour la fabrication des électrodes. Ce procédé par voie fondue a soulevé la problématique du polymère liant utilisé dans les électrodes puisque ce dernier doit être compatible avec le procédé tout en étant utilisable dans des batteries. C’est dans l’optique de trouver et valider un tel polymère que s’inscrit cette thèse sur le polymère HNBR. En premier lieu, nous nous sommes concentrés sur les répercussions du traitement thermique, étape importante du procédé par voie fondue, sur le HNBR. Il a été conclu que le traitement thermique conduit à une réticulation du polymère aidant ainsi à la stabilité chimique du HNBR dans les électrolytes organiques des batteries. Ensuite, le HNBR a été introduit comme liant d’électrodes et a été analysé, avec le procédé de fabrication classique puis avec le nouveau procédé. Nous avons remarqué que le HNBR est un bon candidat pour être utilisé dans un système électrochimique car il y est stable sur une large gamme de potentiels et permet d’obtenir des performances en cyclage et en puissance intéressantes. Face à ce constat, la dernière partie des travaux s’est concentrée sur une analyse approfondie du système en étudiant les interactions entre les fonctions polaires du HNBR, les nitriles, et les ions lithium présents dans l’électrolyte. La combinaison polymère-sel-solvant a été étudiée pour comprendre comment chacun de ces paramètres impacte les propriétés électrochimiques du système et en particulier la conductivité. Nous avons remarqué qu’un taux d’acrylonitrile élevé est favorable à une plus haute conductivité et que le solvant, de par son affinité avec le HNBR, est également à considérer. / In this thesis, we have investigated an acrylonitrile-based polymer, HNBR (Hydrogenated Nitrile Butadiene Rubber), for its application in lithium ion batteries. This work relies on a partnership with the company Hutchinson (specialized in polymers) who was interested in developing a new process for the fabrication of electrodes. This melt-based process revealed problems regarding the polymer that is used as a binder for the electrodes as it needs to be compatible with the process as well as with the application in batteries. The aim of the thesis was therefore to find and validate a polymer meeting these requirements. Hence, HNBR was investigated. At first, we focused on the thermal treatment of HNBR, a key step of the melt-process. It was concluded that the thermal treatment leads to the cross-linking of HNBR, which is an asset because it increases the chemical stability of HNBR in the presence of the organic electrolyte. The following step was to introduce HNBR into the electrode formulation and investigate the performances of electrodes, made with the classical process and then with the melt process. It was found that HNBR is a good candidate to be introduced in an electrochemical system because it is stable over wide potential ranges and it allows interesting cycling and power performance. Faced with these findings, the last part of the study was to focus on analyzing the system more deeply by investigating the interactions between the HNBR polar functions, nitriles, and the lithium ions from the electrolyte. The ternary system polymer-salt-solvent was analyzed to understand the impact of each of these parameters on electrochemical properties, especially the conductivity. We noticed a high acrylonitrile content was beneficial to have a higher conductivity and that the solvent, regarding its affinity with HNBR, needs also to be considered.
34

La filière de valorisation des batteries de véhicules électriques en fin de vie : contribution à la modélisation d’un système organisationnel complexe en émergence / The recovery network of end-of-life batteries from electric vehicles : contribution to the modeling of an emerging complex organizational system

Idjis, Hakim 26 November 2015 (has links)
Avec le développement des véhicules électriques, la question de la valorisation des batteries lithium-ion (BLI) se pose pour diverses raisons. Pourtant, une filière de valorisation structurée n’existe pas aujourd’hui. Notre travail académique a pour objet l’étude de cette dernière. La filière de valorisation des BLIs est définie comme un système sociotechnique, complexe en émergence. Notre problématique consiste alors à l’étudier d’un point de vue technico-économique, organisationnel et prospectif et ce en tenant compte des différentes complexités. Cette problématique soulève trois questions de recherche : Comment modéliser la filière de valorisation des BLIs comme un système organisationnel complexe en émergence ? Comment faire de la prospective sur la filière de valorisation des BLIs ? Comment analyser la gouvernance de la filière de valorisation des BLIs ?Pour modéliser la filière de valorisation des BLIs, nous mettons en œuvre d’une manière combinée trois méthodes de modélisation systémiques : SCOS’M (Systemics for Complex Organisational Systems’ Modelling), la cartographie cognitive et la dynamique des systèmes. La modélisation a pour objectif la caractérisation de la filière (parties prenantes, sous-systèmes …), la compréhension de ses dynamiques d’évolution et l’identification des variables clés dans ces dynamiques. Cette modélisation est une base pour la suite.Pour faire de la prospective sur la filière de valorisation des BLIs, nous préconisons l’utilisation des scénarios. Ces derniers sont définis à l’aide de la matrice SRI (Stranford Research Institute), en exploitant les variables clés qui interviennent dans les dynamiques d’évolution de la filière. La prospective est permise en simulant le modèle dynamique des systèmes avec différents scénarios, afin d’analyser les aspects technico-économiques. Pour l’étude de la gouvernance de la filière de valorisation des BLIs, le périmètre a été restreint à l’activité de reconditionnement. Dans ce cas, l’étude de la gouvernance revient à analyser des combinaisons de répartition (application 2nde vie, partie prenante). Une méthodologie d’aide à la décision a été développée pour cette fin. D’une manière générale, cette thèse a identifié les enjeux et questions qui se posent lors de l’étude de la valorisation des batteries lithium-ion des véhicules électriques. A travers notre modélisation, nous avons établi une base d’analyse utile à l’aide à la décision. Nous avons répondu à certaines questions (aspects technico-économiques et organisationnels) et ouvert la voie pour d’autres (aspects logistiques et environnementaux). / With the development of electric vehicles, the recovery of lithium-ion batteries (LIB) arises for various reasons. However, a structured recovery network does not exist today. Our academic work aims to study this latter. The LIBs recovery network is defined as a socio-technical complex emerging system. Our problematic is then to study it from a technical-economic, organizational and prospective perspective, taking into account the different complexities. This problematic raises three research questions: How to model the LIBs recovery network as a complex organizational emerging system? How to foresight on the LIBs recovery network? How to analyze the LIBs recovery network governance?To model the LIBs recovery network, we apply with combination three systemic modeling methods: SCOS'M (Systemics for Complex Organisational Systems' Modelling), cognitive mapping and system dynamics. The modeling aims to characterize the recovery network (stakeholders, subsystems ...), understand its dynamics and identify the key variables in these dynamics. This model is the basis for the following research questions.To Foresight on the LIBs recovery network, we recommend the use of scenarios. These are defined using the SRI matrix (Stranford Research Institute), exploiting the key variables. Foresight is permitted by simulating the system dynamics model with different scenarios to analyze the technical-economic aspects. For the study of the LIBs recovery network governance, the scope was restricted to the repurposing activity. In this case, the study of the governance comes down to analyzing the combinations (2nd life application, stakeholder). A decision aid methodology has been developed for this purpose. In general, this thesis identified the questions that arise when considering the recovery of LIBs. Through our modeling, we have established a useful basis for decision aid. We answered some questions (technical-economic and organizational aspects) and paved the way for others (logistical and environmental aspects).
35

Preuve de concept d’une photobatterie employant une photoélectrode durable : étude des transferts électroniques impliqués

Briqueleur, Elsa 04 1900 (has links)
Qu’il s’agisse de s’éclairer, de se chauffer, de s’alimenter sainement, de se soigner, de se véhiculer, de s’informer ou encore de se distraire, l’énergie a toujours été au centre des préoccupations et sa conversion en électricité est désormais omniprésente. Le lourd constat environnemental à la suite de l’exploitation intensive de sources fossiles a mené à une indispensable transition vers les énergies renouvelables. Souvent intermittentes, il est nécessaire de les stocker, généralement grâce à des batteries. Parmi les différentes technologies, cette thèse traite des batteries lithium-ion pour le stockage de l’énergie solaire. En effet, cette thèse a pour but l’étude d’un dispositif « tout-en-un » capable de convertir l’énergie solaire et de la stocker. Pour se faire, un semi-conducteur organique photoactif de la famille des pérylènes diimides (PDI) a été emprunté au domaine des cellules solaires organiques et couplé à un matériau phare et durable des batteries lithium-ion : le LiFePO4 (LFP). Cette thèse se décompose en trois parties selon une méthodologie qui vise à la compréhension fondamentale de transferts électroniques photoinduits, en amont du développement d’un dispositif. Pour aboutir à une preuve de concept, une étude de l’extinction de fluorescence du PDI en présence de LFP a d’abord été menée, afin de vérifier l’injection d’électrons en provenance du matériau de batterie dans le semi-conducteur excité. Ce travail a été fait en solution puis à l’état solide, pour la mise au point d’une photoélectrode. Ces deux études ont permis de comprendre les pré-requis du matériau d’électrode positive de batterie pour qu’il soit photoxydé, puis des résultats de spectroscopie Raman ont démontré l’importance des interfaces dans la mise en contact du PDI et du LFP. Finalement, forts d’une première preuve expérimentale de photocharge au sein d’un dispositif « photobatterie », le PDI a été polymérisé et son implémentation dans une photoélectrode de batterie lithium-ion a pu être optimisée. Ses rôles multiples (photoactif, photooxydant, conducteur électronique et liant) ont permis de générer un photocourant sans que cela ne soit au détriment du fonctionnement de la batterie. / Converting energy to electricity is ubiquitous because it plays a vital role in daily life whether for lighting, heating, health, transport, information or entertainment. Societal energy demands are often met with fuel fossils that have had deleterious environmental effects. Transitioning to renewables can mitigate these adverse outcomes. Renewable energy is often intermittent, requiring it to be stored for use during periods when the energy is unavailable. Batteries have become viable means to this end. Among the different technologies, this manuscript examines lithium-ion batteries for solar energy storage. Indeed, this work puts forward an all-in-one device: a device capable of converting and storing solar energy. To this end, a well-known photoactive organic semi-conductor in solar cells (perylene diimide; PDI) was coupled to a conventional and durable electrode material (LiFePO4; LFP) for lithium-ion batteries. This manuscript is divided into three discrete parts following the methodology to demonstrate the fundamental underlying processes of the future all-in-one device before its development: light harvesting and electron transfer. Towards a proof of concept, the thesis systematically studied the light mediated processes in solution, in the solid state, and in an operating device. Initial studies examined the fluorescence quenching of PDI with LFP. This was to validate the injection of electrons from the battery material to the photoexcited semi-conductor indeed occurred. The same emission studies were applied in the solid state for developing a photoelectrode. The two studies generated knowledge about the compositional and architectural requirements of the positive electrode material for it be photoxidized by PDI. Raman spectroscopy further demonstrated the importance of interfaces between the battery material and the organic semiconductor. These enabled a photocharge when the photobattery was illuminated. The PDI was next polymerized and enabled a photocurrent in the battery, courtesy of its collective properties (light harvester, photo-oxidant, electronic conductor, and binder).
36

Synthèse de copolymères à architectures complexes à base de POE utilisés en tant qu'électrolytes polymères solides pour une application dans les batteries lithium métal-polymère

Gle, David 23 March 2012 (has links)
Dans le contexte d'un développement durable, les véhicules électriques apparaissent comme une solution incontournable dans le futur. Parmi les dernières évolutions sur les batteries, les systèmes constitués d'une électrode au lithium (technologie lithium métal) présente des performances remarquables en termes de densité d'énergie. L'inconvénient majeur de cette méthodologie est lié à la formation de dendrites lors de la recharge susceptibles d'occasionner des courts-circuits conduisant à l'explosion de la batterie. C'est dans cet axe que s'inscrit mon sujet de thèse dont l'objectif est de développer un électrolyte polymère solide présentant une conductivité ionique élevée (2.10-4 S.cm-1 à40°C) et une tenue mécanique suffisante (30 MPa) pour limiter les phénomènes de croissance dendritique. Pour cela, la polymérisation contrôlée par les nitroxydes (NMP) a été utilisée pour synthétiser des copolymères à blocs avec un bloc possédant des groupes d'oxyde d'éthylène –CH2-CH2-O- permettant la conduction des ions lithium et un bloc de polystyrène assurant la tenue mécanique de l'électrolyte final. Le bloc assurant la conduction ionique des architectures ainsi synthétisées sont constituées soit de POE sous forme linéaire soit de POE sous forme de peigne. / In the context of sustainable development, electric vehicles appear to be a major solution for the future. Among the lastest technologies, the Lithium Metal Polymer battery has presented very interesting performances in terms of energy density. The main drawback of this system is the formation of lithium dendrites during the refill of the battery that could cause short circuits leading to the explosion of the battery. The aim of my PhD is to develop a Solid Polymer Electrolyte showing a high ionic conductivity (2.10-4 S.cm-1 at 40°C) and a high mechanical strength (30 MPa) to prevent dendritic growth. For that purpose, Nitroxide Mediated Polymerization is used to synthesize block copolymers with a PEO moiety for ionic conduction –CH2-CH2-O- and polystyrene for mechanical strength. Different kind of architectures have been synthesized : block copolymer with linear PEO moiety or with grafted PEO moiety.
37

Quantification des gaz générés lors du fonctionnement d'une batterie Li-ion : effet des conditions opératoires et rôle de l'électrolyte / Quantification of gas generation during cycling of Li-ion batteries : effect of operating conditions and function of electrolyte

Xiong, Bao Kou 15 February 2018 (has links)
Le fonctionnement des batteries lithium-ion, qu’il soit normal ou dans des conditions abusives, est accompagné d’une génération de gaz en particulier lors des premiers cycles. Celle-ci est intrinsèque au dispositif et est soumise à de nombreux paramètres tels que les matériaux d’électrodes utilisés, l’électrolyte ou encore les conditions opératoires. Cette génération de gaz est délétère : elle conduit à l’augmentation de la pression interne des batteries et pose donc des problèmes de sécurité. Cette étude vise à quantifier les volumes de gaz générés et à comprendre les mécanismes liés à la surpression dans les batteries. A cet effet, le format de batterie « pouch cell » a été adopté tout au long de ce travail de thèse. L’électrolyte choisi est le mélange EC:PC:3DMC + 1 mol.L-1 LiPF6. La première partie de ce travail est dédiée à la mise au point d’un protocole expérimental basé sur (i) l’analyse des matériaux d’électrodes (NMC, LFP, Gr, et LTO), (ii) la solubilité de gaz (O2, H2) comparées à (CO2, CH4) par PVT, et (iii) la quantification des volumes de gaz générés durant le cyclage en pouch cell, corrélée aux performances électrochimiques. Une analyse préalable en demi-piles et en dispositifs complets Gr//NMC et LTO//LFP a également été réalisée afin d’anticiper les performances attendues en pouch cells. Une analyse critique des données (de la littérature et de nos mesures) a permis de définir une procédure optimisée pour obtenir des résultats reproductibles et comparables lors des mesures de volume en pouch cells. La seconde partie de cette thèse consiste en la quantification du volume de gaz produit au cours du cyclage des pouch cells Gr//NMC, Gr//LFP, LTO//LFP et LTO//NMC. Ainsi, les tensions de fin de charge, l’effet du sel et de la température ont été discutés pour dégager les paramètres déterminants dans la génération de gaz en particulier lors de la formation de la SEI. Enfin, une analyse de la composition du gaz récupéré a été effectué par GC-MS et FTIR. A partir de résultats obtenus, des mécanismes ont été proposés et discutés. / The functioning of lithium-ion batteries, may it be under normal use or under abusive conditions, is accompanied by gas generation, especially during the first cycles. This extent of gas generation is dependent on the choice of electrode materials, the electrolyte, and the operating conditions. This gas generation is detrimental: the build-up of pressure leads to the over-pressure in the battery, raising serious concerns. This study is aimed at understanding the fundamental mechanisms governing these reactions. To do so, the « pouch cell » configuration was adopted throughout this thesis. The electrolyte we worked on is the mixture EC:PC:3DMC + 1 mol.L-1 LiPF6. The first chapter of this work is dedicated to development of an experimental protocol based on (i) the analysis of the electrodes materials (NMC, LFP, Gr and LTO), (ii) the gas solubilities (O2, H2) compared to (CO2, CH4) by PVT method, and (iii) the quantification of the volume of generated gases during the cycling of pouch cells which was correlated to the electrochemical performances. A preliminary analysis of half-cells and full cells Gr//NMC and LTO//LFP were also conducted to foresee the performances of the pouch cells. A critical analysis of data taken from the literature and from our own experiments enabled the optimization of a proper procedure to get reproducible and comparable results. The second part of this thesis consists in the quantification of the volume of gases generated during the cycling of Gr//NMC, Gr//LFP, LTO//LFP and LTO//NMC pouch cells. In that respect, the voltages of the end of charge and the effect of salt and of temperature were discussed to figure out the essential parameters in the gas generation and in particular during the formation of SEI. Lastly, a compositional analysis of gases was performed using GC-MS and FTIR. Based on those results, a mechanism is proposed and discussed herein.
38

Détermination in-situ de l'état de santé de batteries lithium-ion pour un véhicule électrique / In-situ lithium-ion battery state of health estimation for electric vehicle

Riviere, Elie 29 November 2016 (has links)
Les estimations précises des états de charge (« State of Charge » - SoC) et de santé (« State of Health » - SoH) des batteries au lithium sont un point crucial lors d’une utilisation industrielle de celles-ci. Ces estimations permettent d’améliorer la fiabilité et la robustesse des équipements embarquant ces batteries. Cette thèse CIFRE est consacrée à la recherche d’algorithmes de détermination de l’état de santé de batteries lithium-ion, en particulier de chimie Lithium Fer Phosphate (LFP) et Lithium Manganèse Oxyde (LMO).Les recherches ont été orientées vers des solutions de détermination du SoH directement embarquables dans les calculateurs des véhicules électriques. Des contraintes fortes de coût et de robustesse constituent ainsi le fil directeur des travaux.Or, si la littérature actuelle propose différentes solutions de détermination du SoH, celles embarquées ou embarquables sont encore peu étudiées. Cette thèse présente donc une importante revue bibliographique des différentes méthodes d’estimation du SoH existantes, qu’elles soient embarquables ou non. Le fonctionnement détaillé ainsi que les mécanismes de vieillissement d’une batterie lithium-ion sont également explicités.Une partie majoritaire des travaux est consacrée à l’utilisation de l’analyse incrémentale de la capacité (« Incremental Capacity Analysis » - ICA) en conditions réelles, c’est-à-dire avec les niveaux de courant présents lors d’un profil de mission classique d’un véhicule électrique, avec les mesures disponibles sur un BMS (« Battery Management System ») industriel et avec les contraintes de robustesses associées, notamment une gamme étendue de température de fonctionnement. L’utilisation de l’ICA pour déterminer la capacité résiduelle de la batterie est mise en œuvre de façon totalement innovante et permet d’obtenir une grande robustesse aux variations des conditions d’utilisation de la batterie.Une seconde méthode est, elle, dédiée à la chimie LMO et exploite le fait que le potentiel aux bornes de la batterie soit représentatif de son état de charge. Un compteur coulométrique partiel est ainsi proposé, intégrant une gestion dynamique des bornes d’intégration en fonction de l’état de la batterie.A l’issue des travaux, une méthode complète et précise de détermination du SoH est disponible pour chacune des chimies LFP et LMO. La détermination de la capacité résiduelle de ces deux familles de batteries est ainsi possible à 4 % près. / Accurate lithium-ion battery State of Charge (SoC) and State of Health (SoH) estimations are nowadays a crucial point, especially when considering an industrial use. These estimations enable to improve robustness and reliability of hardware using such batteries. This thesis focuses on researching lithium-ion batteries state of health estimators, in particular considering Lithium Iron Phosphate (LFP) and Lithium Manganese Oxide (LMO) chemistries.Researches have been targeted towards SoH estimators straight embeddable into electric vehicles (EV) computers. Cost and reliability constraints are thus the main guideline for this work.Although existing literature offers various SoH estimators, those who are embedded or embeddable are still little studied. A complete literature review about SoH estimators, embedded or not, is therefore proposed. Lithium-ion batteries detailed operation and ageing mechanisms are also presented.The main part of this work is dedicated to Incremental Capacity Analysis (ICA) use with electric vehicle constraints, such as current levels available with a typical EV mission profile or existing measurements on the Battery Management System (BMS). Incremental Capacity Analysis is implemented in an innovative way and leads to a remaining capacity estimator with a high robustness to conditions of use variations, including an extended temperature range.A second method, dedicated to LMO chemistry, take advantage of the fact that the battery potential is representative of its state of charge. Partial Coulomb counting is thus performed, with a dynamic management of integration limits, depending on the battery state.Outcomes of this work are two complete and accurate SoH estimators, one for each chemistry, leading to a remaining capacity estimation accurate within 4 %.
39

Modélisation électrochimique du comportement d’une cellule Li-ion pour application au véhicule électrique / Electrochemical modeling of lithium-ion cell behaviour for electric vehicles

Falconi, Andrea 05 October 2017 (has links)
Le développement futur des véhicules électriques est lié à l’amélioration des performances des batteries qu’ils contiennent. Parallèlement aux recherches sur les nouveaux matériaux ayant des performances supérieures en termes d'énergie, de puissance, de durabilité et de coût, il est nécessaire développer des outils de modélisation pour : (i) simuler l'intégration de la batterie dans la chaine de traction et (ii) pour le système de gestion de la batterie, afin d'améliorer la sécurité et la durabilité. Soit de façon directe (par exemple, la prévention de surcharge ou de l’emballement thermique) soit de façon indirecte (par exemple, les indicateurs de l’état de charge). Les modèles de batterie pourraient aussi être utilisés pour comprendre les phénomènes physiques et les réactions chimiques afin d'améliorer la conception des batteries en fonction des besoins de l’utilisateur et de réduire la durée des phases de test. Dans ce manuscrit, un des modèles les plus communs décrivant les électrodes poreuses des batteries au lithium-ion est revisité. De nombreuses variantes dans la littérature s’inspirent directement du travail mené par le professeur J. Newman et son équipe de chercheurs à l’UC Berkeley. Pourtant relativement peu d’études analysent en détail les capacités prédictives de ce modèle. Dans ce travail, pour étudier ce modèle, toutes les grandeurs physiques sont définies sous une forme adimensionnelle, comme on l'utilise couramment dans la mécanique des fluides : les paramètres qui agissent de manière identique ou opposée sont regroupés et le nombre total de paramètres du modèle est considérablement réduit. Cette étude contient une description critique de la littérature incluant le référencement des paramètres du modèle développé par le groupe de Newman et les techniques utilisées pour les mesurer, ainsi que l’écriture du modèle dans un format adimensionnel pour réduire le nombre de paramètres. Une partie expérimentale décrit les modifications de protocoles mis en œuvre pour améliorer la reproductibilité des essais. Les études effectuées sur le modèle concernent d’une part l’identification des états de lithiation dans la cellule avec un attention particulière sur la précision obtenue, et enfin une prospection numérique pour examiner l’influence de chaque paramètre sur les réponses de la batterie en décharge galvanostatique puis en mode impulsion et relaxation. / The future development of electric vehicles is mostly dependent of improvements in battery performances. In support of the actual research of new materials having higher performances in terms of energy, power, durability and cost, it is necessary to develop modeling tools. The models are helpful to simulate integration of the battery in the powertrain and crucial for the battery management system, to improve either direct (e.g. preventing overcharges and thermal runaway) and indirect (e.g. state of charge indicators) safety. However, the battery models could be used to understand its physical phenomena and chemical reactions to improve the battery design according with vehicles requirements and reduce the testing phases. One of the most common model describing the porous electrodes of lithium-ion batteries is revisited. Many variants available in the literature are inspired by the works of prof. J Newman and his research group from UC Berkeley. Yet, relatively few works, to the best of our knowledge, analyze in detail its predictive capability. In the present work, to investigate this model, all the physical quantities are set in a dimensionless form, as commonly used in fluid mechanics: the parameters that act in the same or the opposite ways are regrouped and the total number of simulation parameter is greatly reduced. In a second phase, the influence of the parameter is discussed, and interpreted with the support of the limit cases. The analysis of the discharge voltage and concentration gradients is based on galvanostatic and pulse/relaxation current profiles and compared with tested commercial LGC cells. The simulations are performed with the software Comsol® and the post-processing with Matlab®. Moreover, in this research, the parameters from the literatures are discussed to understand how accurate are the techniques used to parametrize and feed the inputs of the model. Then, our work shows that the electrode isotherms shapes have a significant influence on the accuracy of the evaluation of the states of charges in a complete cell. Finally, the protocols to characterizes the performance of commercial cells at different C-rates are improved to guarantee the reproducibility.
40

Synthesis of magnetic nanoparticles and carbon based nanohybrid materials for biomedical and energy application / Synthèse de matériaux hybrides à base de carbone et de nanoparticules magnétiques : application dans le biomédical et dans le domaine de l'énergie

Liu, Xiao Jie 18 December 2014 (has links)
Les travaux de cette thèse ont été consacrés à la synthèse de nanoparticules magnétiques d'oxyde de fer et d'oxyde de cobalt et de nanoparticules coeur-coquille constituées d'un coeur d'oxyde de fer recouvert d'oxyde de cobalt et à l'élaboration de nanomatériaux - composites nanostructures carbonées/nanoparticules d'oxyde métallique - pour des applications dans le domaine biomédical et celui de l'énergie. Pour la synthèse des NPs, la forme et la taille des NPs sont fortement dépendantes des conditions de réaction (nature des ligands, des solvants, température de réaction ... ) , ce qui affecte leurs propriétés magnétiques. De plus, des simulations ont montré que les chaînes de stéarate peuvent désorber plus facilement les atomes de fer que les atomes de cobalt et se libérer pour former des germes, ce qui pourrait expliquer le comportement distinctif entre les deux complexes. Ces nanoparticules magnétiques ont été synthétisées à l'intérieur de nanotubes de carbone en deux étapes aboutissant à des taux de remplissage très importants. Après fonctionnalisation, ces nanocomposites ont été introduits dans de cellules tumorales et ont été magnétiquement manipulées. Ils se sont révélés être très efficaces en tant qu'agents de contraste en IRM mais également dans le domaine de l'hyperthermie (activation sous éclairage dans le domaine de !'Infrarouge proche). Enfin, de nouveaux composites à partir de nanoparticules de Nb20 5 et de graphène (ou NTCs) ont été synthétisés et des résultat~prometteurs ont été obtenus dans des tests de batterie lithium-ion : leur utilisation en tant qu'anode a permis d'obtenir des capacités réversibles de 260 mAh/g. / This thesis was focused on the synthesis of magnetic nanoparticles of iron oxide and cobalt oxide and core-shell nanoparticles, consisting of a cobalt oxide coated iron oxide and on the development of composite nanomaterials - nanostructures carbon /metal oxide nanoparticles - for applications in the biomedical field and the energy. For the synthesis of NPs, the shape and size of NPs are dependent of the reaction conditions, which further affect their magnetic properties. Meanwhile, simulation showed that stearate chains can desorb more easily from iron atoms and release to form seeds than from cobalt atoms, which might explain distinctive behavior between the bath complexes. Regarding nanostructures carbon/metal oxide nanoparticles hybrid materials, the properties of the filled magnetic CNTs as heat mediator for photothermal ablation and as contrast agent for MRI were then evaluated and promising results have been obtained. Last, new composite materials (Nb205 nanoparticles/graphene or NTCs) were synthesized and promising results were obtaines in lithium battery tests : their use as anode allowed obtaining reversible capacities of 260 mAh/g.

Page generated in 0.1271 seconds