• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 10
  • 2
  • 1
  • Tagged with
  • 38
  • 38
  • 26
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Preparation and characterization of iron oxide electrode materials for lithium-ion batteries by electrochemical and spectroscopic (XPS, ToF-SIMS) methods / Préparation et caractérisation des matériaux d'électrode en oxyde de fer pour les batteries lithium-ion par méthodes électrochimiques et spectroscopiques (XPS, ToF-SIMS)

Tian, Bingbing 10 July 2014 (has links)
Les batteries lithium-ion sont largement utilisées comme source d'énergie pour les appareils électroniques portables. L'oxyde de fer (principalement α-Fe2O3), l'un des oxydes de métal de transition les plus important, a suscité l’intérêt scientifique depuis qu'il a été reporté comme matériau d'anode pour les batteries lithium-ion en raison de sa capacité théorique élevée (1007 mAh g-1), de son respect de l'environnement, de son abondance et de son faible coût. Dans cette thèse, une électrode modèle en couche mince d'oxyde de fer a été préparée par simple oxydation thermique à 300 °C dans l'air d'un substrat de fer métallique pur, utilisé aussi comme collecteur de courant. Une variété de techniques d'analyse, électrochimiques (CV, EIS et cyclage galvanostatique), spectroscopiques (XPS, ToF-SIMS) et microscopiques (MEB et AFM), ont été mises en oeuvre pour étudier les mécanismes réactionnels et la chimie de surface de l'oxyde de fer à différents stades de lithiation/délithiation et cyclage. / Lithium-ion batteries (LIBs) are widely used as power sources for portable electronic devices. Iron oxide (mainly α-Fe2O3), as one of the most important transition metal oxide, has attracted attention due to its high theoretical capacity (1007 mAh g-1), environmental friendliness, abundance and low cost since reported as anode material for LIBs. In this thesis, an iron oxide thin film model electrode was prepared by simple thermal oxidation of pure metallic iron substrate at 300 oC in air, also used as a current collector. Electrochemical methods (CV, EIS and galvanostatic cycling) were combined with surface (XPS, ToF-SIMS) and microscopic (SEM, AFM) analytical techniques to investigate the reaction mechanisms and the surface chemistry of the iron oxide thin film at different stages of lithiation/delithiation and upon cycling.
12

Exploration of new sulfate-based cathode materials for lithium ion batteries / Exploration de nouveaux matériaux à base de sulfates pour des batteries lithium ion

Lander, Laura 04 November 2016 (has links)
Ces vingt dernières années, les batteries lithium-ion sont devenues dominantes parmi les technologies de stockage d’énergie électrique. Selon les applications, ces batteries (ou les matériaux qui la constituent) doivent présenter différentes spécificités: notamment une grande densité d’énergie, un bas coût, des contraintes de sécurité et de durabilité. Dans ce but, le développement de nouveaux matériaux d’électrode est indispensable. Nous nous sommes engagés, dans cette thèse, dans la synthèse des nouveaux composés polyanioniques à base de sulfates et fluorosulfates comme matériaux d’électrodes positives. Au cours de notre étude, nous avons synthétisé un nouveau polymorphe de KFeSO4F, de symétrie monoclinique, dont nous avons déterminé la structure en combinant la diffraction des rayons X et des neutrons sur poudre. Il est possible d’extraire électrochimiquement K+ de KFeSO4F et de réinsérer Li+ dans cette nouvelle matrice «FeSO4F» à un potentiel moyen de 3.7 V vs. Li+/Li0. Ensuite, nous nous sommes penchés vers des matériaux dépourvus de fluor et nous avons découvert une nouvelle phase Li2Fe(SO4)2 orthorhombique, qui présente des propriétés électrochimiques intéressantes avec un potentiel de 3.73 et 3.85 V vs. Li+/Li0 et une bonne cyclabilité. Nous avons également étudié le composé langbeinite K2Fe2(SO4)3 pour son aptitude à intercaler Li+ une fois le K+ extrait, avec cependant peu de succès. Néanmoins, en examinant d’autres phases langbeinites K2M2(SO4)3 avec M=métaux de transition 3d, nous avons découvert un nouveau composé K2Cu2(SO4)3, qui cristallise dans une structure différente de celle des langbeinites. Enfin, nous n’avons pas seulement étudié ces nouveaux matériaux pour leurs propriétés électrochimiques mais nous avons été également capables de révéler d’autres caractéristiques physiques intéressantes, notamment magnétiques. Les composés Li2Fe(SO4)2 orthorhombique et KFeSO4F monoclinique s’ordonnent antiferromagnétiquement à longue distance et leur structure magnétique autorise un couplage magnéto-électrique. / Lithium-ion batteries (LIBs) have become the dominating electrical energy storage technology in the last two decades. However, depending on their applications, LIBs need to fulfill several requirements such as high energy density, low-cost, safety and sustainability. This calls for the development of new electrode materials. Focusing on the cathode side, we embarked on the synthesis of novel sulfate- and fluorosulfate-based polyanionic compounds. During the course of our study, we discovered a monoclinic KFeSO4F polymorph, whose structure was determined via combined X-ray and neutron powder diffraction. We could electrochemically extract K+ and reinsert Li+ into this new polymorphic “FeSO4F” matrix at an average potential of 3.7 V vs. Li+/Li0. We then turned towards fluorine-free materials and synthesized a new orthorhombic Li2Fe(SO4)2 phase, which presents appealing electrochemical properties in terms of working potential (3.73 and 3.85 V vs. Li+/Li0) and cycling stability. In a next step, we tested langbeinite K2Fe2(SO4)3 for its aptitude to intercalate Li+ once K+ is extracted, with however little success. Nevertheless, exploring other langbeinite K2M2(SO4)3 phases (M=3d transition metal), we discovered a new K2Cu2(SO4)3 compound, which crystallizes in an orthorhombic structure distinct from the langbeinite one. Finally, we investigated these compounds not only for their electrochemistry, but we were also able to demonstrate other interesting physical properties, namely magnetic features. Orthorhombic Li2Fe(SO4)2 and monoclinic KFeSO4F both present a long-range antiferromagnetic spin ordering whose symmetry allows a magnetoelectric effect.
13

Études des phénomènes de mouillabilité et des cinétiques d’imprégnation des électrodes positives par l’électrolyte : application aux batteries Lithium-Ion / Study of wetting and impregnation phenomena of the positive electrodes by the electrolyte : application to Lithium-Ion batteries

Lacassagne, Elodie 16 July 2014 (has links)
Le contact entre l'électrode et l'électrolyte est primordial pour le bon fonctionnement d'une batterie Lithium-Ion. L'imprégnation de l'électrode positive par un électrolyte liquide a toujours été considérée comme totale, cependant les phénomènes ne sont pas exactement connus. Ainsi, ces travaux s'intéressent à l'influence de la composition de l'électrode positive (matière active et agent conducteur) sur cette imprégnation. Après une première étude des propriétés conductrices, électrochimiques et morphologiques d'électrodes présentant des formulations plus ou moins éloignées des formulations industrielles, une méthode utilisant l'équation de Washburn a été développée afin d'étudier l'imprégnation des pores modélisés par un ensemble de tubes capillaires. L'utilisation de l'hexadecane, considéré comme un liquide parfaitement mouillant, a permis de déterminer la taille effective des pores indépendamment de l'électrolyte, et celle-ci a pu être comparée à des résultats obtenus grâce à la méthode de thermoporosimétrie. Puis, les régimes de Washburn obtenus lors de la diffusion de l'électrolyte ont mis en évidence les cinétiques d'ascension. Par la suite, la méthode de Washburn a été utilisée afin de caractériser les propriétés d'imprégnation d'électrodes élaborées avec un nouveau liant et selon un procédé innovant s'affranchissant de l'utilisation de solvant. L'utilisation d'un additif permettant la création de porosité d'une part, et la réticulation du liant d'autre part permettent d'obtenir une imprégnation de l'électrolyte comparable à celle observée pour les électrodes fabriquées par voie solvant / The contact between the electrode and the electrolyte is essential for a Lithium-Ion battery functioning. The impregnation of a positive electrode by the electrolyte has always been considered as total; however the phenomena are not exactly known. Thus, in this work, the influence of the positive electrode composition (active material, conductive agent and binder) on the impregnation has been investigated. After a first study focusing on the conductive, electrochemical and morphological properties of the electrodes, with different types of formulation, a method using Washburn equation has been developed in order to study the impregnation of the electrode’s pores, which were modeled as capillary tubes. With the use of hexadecane, considered as a perfectly wetting liquid, the effective pore size has been determined and then compared to the results given by the thermoporosimetry method. Then, the kinetics of ascension have been identified with the Washburn regimes obtained with the diffusion of the electrolyte in the cathodes. Afterwards, Washburn method has been used in order to characterize the impregnation properties of electrodes elaborated with an innovative process without solvent. Thanks to the use of an additive allowing the creation of porosity in one hand and the reticulation of the binder in the other hand, an impregnation of these new electrode by the electrolyte has been considered as comparable to the one observed for the cathodes made with solvent
14

Le système LixNiO2 : de l'électrochimie à la cristallographie

Peres, Jean-Paul 14 November 1996 (has links) (PDF)
Le nickelate de lithium "LiNiO2" est l'un des matériaux les plus prometteurs en tant qu'électrode positive pour batteries lithium-carbone. La désintercalation des ions lithium d'un tel matériaux hôte a été étudiée tant sur le plan électrochimique que cristallographique. L'électrochimie a été utilisée de manière spécifique, comme une sonde locale, permettant de rendre compte des processus cristallochimiques internes au matériau. Un modèle explicitant les mécanismes de transition de phase dans le système "LixNiO2" (0.25 < x < 1.00) a été proposé en accord avec les données expérimentale (diffraction des rayons X, diffraction électronique, spectroscopie EXAFS) et les caractéristiques du comportement de la batterie. L'évolution du matériau, après un cyclage électrochimique de longue durée, a également été étudiée sur le plan textural et structural.
15

Étude structurale et électrochimique de films de LiCoO2 préparés par pulvérisation cathodique : application aux microaccumulateurs tout solide

Tintignac, Sophie 16 December 2008 (has links) (PDF)
Au cours de ce travail de thèse, nous avons mis au point un procédé d'élaboration reproductible de films minces de LiCoO2 par pulvérisation cathodique radio fréquence. L'étude paramétrique nous a permis de déterminer les conditions de dépôt optimales ainsi que les conditions de traitement thermique post-dépôt les plus adaptées afin d'aboutir aux meilleures propriétés électrochimiques pour ces électrodes. Une fois optimisés, les films minces ont été étudiés en électrolyte liquide et nous avons notamment évalué l'influence sur les performances électrochimiques de l'épaisseur du film, de la densité de courant employée, ainsi que des bornes de potentiel utilisées. Nous avons mis en évidence un excellent comportement des films sur une large gamme d'épaisseurs et régimes. La capacité obtenue pour un film de 3,6 µm à 10 µA.cm-2 est de 240 µAh.cm-2. Une étude par microspectrométrie Raman permet de montrer que les changements structuraux induits par les processus électrochimiques sont mineurs et limités à une élongation réversible des liaisons Co-O dans l'axe d'empilement. L'intégration d'un film de 450 nm d'épaisseur dans un microaccumulateur tout solide (LiCoO2/LiPON/Li) a confirmé les excellents résultats obtenus en électrolyte liquide avec une capacité de 25 µAh.cm-2. Là encore, le comportement du film reste inchangé pour des densités de courant élevées allant jusqu'à 800 µA.cm-2. Le cyclage du microaccumulateur à 10 µA.cm-2 a été maintenu pendant plus de 800 cycles sans perte notable de capacité. Pour la première fois on démontre que des films minces de LiCoO2 élaborés par pulvérisation cathodique et recuits à 500°C peuvent être utilisés dans un microaccumulateur au lithium tout solide avec des performances proches de la théorie
16

Comportement électrochimique de matériaux à haut potentiel : LiCoPO4 et LiNi1/3Mn3/2O4, en électrodes couches minces ou composites. / Electrochemical behavior of high potential materials : LiCoPO4 and LiNi1/3Mn3/2O4 as thin films or composites electrodes

Dumaz, Philippe 07 December 2017 (has links)
L'utilisation de sources naturelles illimitées telles que l'énergie solaire, éolienne ou hydraulique est en plein essor. Cependant leurs productions énergétiques sont fortement liées aux conditions climatiques et sont donc intermittentes. Ces systèmes nécessitent donc d'être associés à du stockage d'énergie, afin de lisser la production avant injection sur le réseau. Pour toutes ces raisons, les batteries Li-ion doivent intégrer de nouveaux matériaux d'électrode permettant d'obtenir une grande puissance et une haute densité d'énergie, tout en conservant une durée de vie élevée et une sécurité d'utilisation.Dans ce contexte, notre travail a consisté à préparer des matériaux à hauts potentiels, le LiCoPO4 (LCP) et le LiNi0.5Mn1.5O4 (LNMO). Ces derniers s'inscrivent parfaitement dans le contexte de développement de matériaux à haute densité d'énergie puisqu'ils possèdent des potentiels d'oxydation de 4,8 et 4,7 V vs Li +/Li et des densités d'énergies massiques théoriques de 802 et 691 Wh.kg-1 par rapport au lithium, respectivement.Ces matériaux ont d'abord été synthétisés sous forme de couches minces afin d'obtenir des électrodes modèles pour étudier de manière fondamentale les propriétés de transport des matériaux et ses interactions en présence d'un électrolyte liquide notamment les phénomènes à l'interface électrode/électrolyte. La compréhension des matériaux acquise au cours de ce premier axe a permis de transposer et d'adapter ces techniques de caractérisation aux systèmes plus complexes que sont les électrodes composites.Les propriétés de ces matériaux vis-à-vis de l'insertion et la désinsertion du lithium ont ensuite été testées et caractérisées en cellules électrochimiques. De nombreux paramètres cinétiques et thermodynamiques ont été extrait grâce à plusieurs techniques électrochimiques telles que la titration intermittente (GITT), la spectroscopie d'impédance (PEIS et GEIS), le cyclage galvano-statique et les tests de puissance. Nous proposons d'ailleurs une méthode simple, à partir de ces tests de puissance, pour déterminer le coefficient de diffusion du lithium. Enfin, nous tentons de répondre à plusieurs questions qui demeurent en suspens concernant la cyclabilité et la perte de capacité de ces matériaux à haut potentiel au cours de cyclage long et nous proposons une technique très simple permettant d'améliorer de façon étonnamment efficace la cyclabilité d'électrodes composites de LNMO. / The use of unlimited natural sources such as solar, wind or hydraulic power is booming. However, their energy production is dependant of climatic conditions and is therefore intermittent. These systems are usually associated with energy storage, in order to smooth the production before injection on the network. For all these reasons, Li-ion batteries need to incorporate new electrode materials to achieve high power and high energy density while maintaining a long life and safe use.In this context, our work consisted in preparing high potential materials, LiCoPO4 (LCP) and LiNi0.5Mn1.5O4 (LNMO). The latter are perfectly integered in the context of development of materials with high energy density since they have an oxidation potential of 4.8 and 4.7 V vs Li + / Li and theoretical mass energy densities of 802 and 691 Wh.kg-1 over lithium, respectively.These materials were first synthesized in the form of thin thin films to obtain model electrodes to study the kinetics and thermodynamics properties of materials transport and interactions with the presence of a liquid electrolyte including phenomena at the electrode interface / electrolyte. The understanding acquired during this first axis allowed us to transpose and adapt these characterization techniques to more complex systems : composite electrodes.The properties of these materials with respect to lithium insertion and desinsertion have been tested and characterized in electrochemicals cells. Kinetic and thermodynamic parameters have been extracted using several electrochemical techniques such as intermittent titration (GITT), impedance spectroscopy (PEIS and GEIS), galvano-static cycling and power tests. We propose a simple method, based on power tests, to determine the diffusion coefficient of lithium. Finally, we attempt to answer several questions that remain unsolved about the capacity loss of high potential materials during long cycling, and we propose a very simple technique for improving the cycling of composites electrodes of LNMO.
17

Analyse de la microstructure des matériaux actifs d'électrode positive de batteries Lithium-ion / Analysis of the behavior of nanostructured materials composing the new generation of Li-ion batteries

Cabelguen, Pierre-Etienne 06 December 2016 (has links)
Ce travail de thèse se base sur quatre matériaux modèles, de composition LiNi1/3Mn1/3Co1/3O2, qui différent de par leur microstructure. Le lien entre leur morphologie et les performances électrochimiques est étudié par la combinaison de la caractérisation exhaustive de leur microstructure, l’étude de leur comportement en batterie et la modélisation de leur réponse électrochimique. L’étape limitant le processus électrochimique est identifiée par voltampérométrie cyclique et nous montrons que la transition attendue d’une limitation par le transfert de charge à une limitation par la diffusion en phase solide a lieu à différents régimes selon la microstructure. Ce comportement est expliqué par l’utilisation d’outils de simulations numériques. Selon leur forme et leur agglomération, les cristallites agissent collectivement ou indépendamment les unes des autres. Ces résultats rationalisent les performances en puissance obtenues sur nos matériaux. Les résultats de simulation montrent également qu’une faible fraction de la surface développée est électroactive, ce qui remet en question la large utilisation de la surface BET dans la littérature. Nous montrons également que, si les matériaux poreux sont les plus performants en puissance gravimétrique, la tendance est inversée pour la puissance volumique. Les stratégies de nanostructuration largement employées, qui se basent sur la capacité spécifique pour caractériser les matériaux, ne doivent pas oublier faire oublier le compromis nécessaire entre surface développée et volume. / Four NMC materials are synthesized by co-precipitation. They exhibit a hierarchical architecture made of reasonably spherical agglomerates. One is constituted of flake-shaped, spatially oriented, crystallites that leave large apparent void spaces in the agglomerate, while the other results from the tight agglomeration of micron-sized cuboids. Porous material exhibits the best power performances. It is impossible to identify a geometrical parameter that predict performances, even after achieving the full characterization of the microstructures. Cyclic voltammetry reveals two behaviours depending on the shape of crystallites: processes limited by solid-state diffusion (cuboids) and the ones limited by charge transfer even at high rates (flake-shaped). This observation challenges active materials design strategies that assume diffusion as the limiting process of lithium intercalation. Focusing on enhancing kinetics could be the way to increase performances. Charge-transfer is first investigated by measuring electronic conductivities over a wide range of frequencies, allowing to discriminate relaxations arising at various length scales. We show that flake-shaped crystallites facilitate the motion of electrons at all scale levels compared to cuboids. Charge-transfer limitations originate from the electrolyte/material interface in materials exhibiting high surface areas. Numerical simulations reveal that BET measurements largely overestimate the actual electroactive surface, which is understood by HRTEM images of flake-shaped crystallites. Only a small percentage, limited to the edge plane is truly electroactive.
18

Développement de cathodes performantes pour batteries lithium/air / Development of high-performance cathodes for lithium/air batteries

Berenger, Sophie 28 January 2014 (has links)
Ces travaux de thèse sont consacrés à l’étude de cathodes performantes pour batteries lithium/air. Les performances de ce type de batteries sont principalement limitées par les phénomènes de diffusion d’oxygène dans la cathode et l’électrolyte ainsi que par la formation d’oxydes de lithium bouchant progressivement les pores de la cathode. Ainsi on ne peut envisager le développement de l’électrode à air sans prendre en compte l’influence de l’électrolyte organique et celui-ci a également était considéré dans cette étude. La porosité de l’électrode et la nature du catalyseur employé joue un grand rôle sur les performances de l’électrode. Les électrodes à base de tissus de carbone et contenant des nanofils de α-MnO2 ont fourni les meilleurs résultats au regard de la capacité et de la tenue au cyclage. Par ailleurs, des mesures de spectroscopie de masse in situ ont permis d’analyser la formation des produits gazeux lors de la charge. Le TEGDME est un électrolyte prometteur; néanmoins, la formation de dioxyde de carbone (CO2) est détectée dès 3,7 V vs. Li/Li+. / In this thesis, high-performance cathodes for lithium/air batteries have been investigated. The main limitations for lithium/air batteries are oxygen diffusion into the cathode and in the electrolyte and the progressive clogging of cathode pores by lithium oxide. The development of the air cathode is strongly dependant on the organic electrolyte used, thus the nature of the electrolyte has been here considered. Electrode porosity and the kind of catalyst employed influence the cathode performance. Promising results were obtained with carbon cloth based electrodes containing α-MnO2 nanotubes as catalyst with regards to capacity and cycle stability. Furthermore, formation of gaseous products during charging has been studied thanks to mass spectroscopy experiments. TEGDME is a promising electrolyte; nevertheless, carbon dioxide (CO2) has been detected up to 3.7 V vs. Li/Li+.
19

Vliv teploty na parametry lithium - iontových článků / Influence of temperature on parameters of lithium-ion cells

Kuthan, Jiří January 2019 (has links)
Masters Thesis summarizes the theoretical findings about lithium-ion akumulators. It gives a overview of the basic types of galvanic cells, then deals in detail with the lithium-on cell. It's composition, electrochemical principle of working, thermal dependence, construction and area of application. The thesis describes the basic methods of measuring lithium-on cells, such as cyclic charging and discharging, cyclic voltammetry. The practical part compares selected types of materials for negative elektrodes in different temperatures.
20

Optimisation de matériaux lamellaires d'électrode positive pour batteries lithium-ion de type Li1+x(Ni1/2-yMn1/2-yCo2y)1-xO2 via une modification de surface ou une substitution cationique

Bains, Jessica 13 February 2009 (has links) (PDF)
Deux approches ont été considérées pour l'optimisation de matériaux lamellaires d'électrode positive pour batteries lithium-ion de type Li1+x(Ni1/2-yMn1/2-yCo2y)1-xO2 : la modification de surface (coating) et la substitution partielle. Dans un premier temps, nous avons montré que la substitution anionique du fluor à l'oxygène n'était pas effective contrairement aux hypothèses proposées dans la littérature par certains auteurs, mais qu'en réalité une couche de LiF était formée à la surface de ces matériaux, quelle que soit la voie de synthèse utilisée. Ces matériaux "coatés" présentent néanmoins une cyclabilité améliorée en batterie au lithium. Leurs propriétés structurales et physico-chimiques ont été caractérisées en combinant notamment la diffraction des rayons X, la spectroscopie RMN MAS du 7Li et du 19F et la spectroscopie d'électrons Auger. Dans un second temps, nous avons étudié l'effet de la substitution de l'aluminium (électrochimiquement inerte) au cobalt au sein de ces matériaux lamellaires riches en nickel et en manganèse. Les conditions de synthèse ont été optimisées et un matériau intéressant a ainsi été proposé. La structure, et plus particulièrement la distribution cationique, ont été déterminées par des analyses chimiques, par diffraction des rayons X et par des mesures magnétiques : la substitution de l'aluminium au cobalt entraîne une surlithiation moindre, un taux d'échange Li+ / Ni2+ plus important et par conséquent une diminution du caractère bidimensionnel de la structure. Ces matériaux présentent une bonne cyclabilité même à des régimes élevés et une stabilité thermique améliorée à l'état désintercalé.

Page generated in 0.1671 seconds