Spelling suggestions: "subject:"team equation"" "subject:"beam equation""
1 |
Stochastic beam equation of jump type : existence and uniquenessLi, Ziteng January 2018 (has links)
This thesis explores one kind of equation used to model the physics behind one beam with two ends fixed. Initially, Woinowsky Krieger sets a nonlinear partial differential equation (PDE) model by attaching one nonlinear term to the classic linear beam equation. From Zdzislaw Brezezniak, Bohdan Maslowski, Jan Seidler, they demonstrate this model mixed with one Brownian motion term describing random fluctuation. After stochastic modifications, this model becomes more accurate to the behaviors of beam vibrations in reality, and theoretically, the solution has better properties. In this thesis, the model includes more complex noises which cover the condition of random uncontinuous disturbance in the language of Poisson random measure. The major breakthrough of this work is the proof of existence and uniqueness of solutions to this stochastic beam equation and solves the flaws of previous work on proof.
|
2 |
Numerical simulation of the Dynamic Beam Equation using the SBP-SAT methodStiernström, Vidar January 2014 (has links)
A stable boundary treatment of the dynamic beam equation (DBE) with two different sets of boundary conditions has been conducted using the summation-by-parts-simultaneous-approximation-term (SBP-SAT) method. As the DBE involves a fourth derivative in space the numerical boundary treatment is highly non-trivial. Using SBP-SAT operators together with suitable time integration schemes the DBE has been simulated and a convergence study has been made. The results show that the SBP-SAT method produces a stable discretistation that is accurate enough to capture the dispersive nature of the dynamic beam equation. In additions simulations were made presenting the importance of a stable boundary treatment showing that the numerical solutions diverge when the boundaries were not handled correctly.
|
3 |
Numerical simulations of the Dynamic Beam Equation in discontinuous mediaWik, Niklas, Niemelä, David, Wagner Zethrin, Valter January 2020 (has links)
The study examines the Projection method and the simultaneousapproximation-term (SAT) method as boundary treatment for the dynamic beam equation using summation-by-parts (SBP) operators for handling the inner domain. The methods are examined for both the homogeneous constant coefficient case, and the inhomogeneous piecewise constant coefficient case with a coupled interface. The outer boundaries are handled by SAT or Projection, the coupled interfaced is handled by Projection or a mix between Projection and SAT. Solutions are integrated in time with finite central difference schemes and compared to analytical solutions. A convergence study is conducted with respect to the spatial discretization to measure the accuracy, and the stability is examined by numerical simulations of the CFL-condition. The study shows that Projection has the same accuracy as SAT for most boundary conditions while allowing for a larger timestep. A discontinuity in the medium is found to be handled equally accurate by Projection and the Projection and SAT mixture for all but one case studied, where the mixture was slightly more accurate.
|
4 |
Regularization of Parameter Problems for Dynamic Beam ModelsRydström, Sara January 2010 (has links)
The field of inverse problems is an area in applied mathematics that is of great importance in several scientific and industrial applications. Since an inverse problem is typically founded on non-linear and ill-posed models it is a very difficult problem to solve. To find a regularized solution it is crucial to have a priori information about the solution. Therefore, general theories are not sufficient considering new applications. In this thesis we consider the inverse problem to determine the beam bending stiffness from measurements of the transverse dynamic displacement. Of special interest is to localize parts with reduced bending stiffness. Driven by requirements in the wood-industry it is not enough considering time-efficient algorithms, the models must also be adapted to manage extremely short calculation times. For the developing of efficient methods inverse problems based on the fourth order Euler-Bernoulli beam equation and the second order string equation are studied. Important results are the transformation of a nonlinear regularization problem to a linear one and a convex procedure for finding parts with reduced bending stiffness.
|
5 |
Regularization of Parameter Problems for Dynamic Beam ModelsRydström, Sara January 2010 (has links)
<p>The field of inverse problems is an area in applied mathematics that is of great importance in several scientific and industrial applications. Since an inverse problem is typically founded on non-linear and ill-posed models it is a very difficult problem to solve. To find a regularized solution it is crucial to have <em>a priori</em> information about the solution. Therefore, general theories are not sufficient considering new applications.</p><p>In this thesis we consider the inverse problem to determine the beam bending stiffness from measurements of the transverse dynamic displacement. Of special interest is to localize parts with reduced bending stiffness. Driven by requirements in the wood-industry it is not enough considering time-efficient algorithms, the models must also be adapted to manage extremely short calculation times.</p><p>For the developing of efficient methods inverse problems based on the fourth order Euler-Bernoulli beam equation and the second order string equation are studied. Important results are the transformation of a nonlinear regularization problem to a linear one and a convex procedure for finding parts with reduced bending stiffness.</p>
|
6 |
Étude de la stabilité de quelques systèmes d'équations des ondes couplées sur des domaines bornés et non bornés / Study of the stability of a certain systems of coupled wave equations and of the Rayleigh beam equation on bounded and unbounded domainsBassam, Maya 18 December 2014 (has links)
La thèse est portée essentiellement sur la stabilisation indirecte d’un système de deux équations des ondes couplées et sur la stabilisation frontière de poutre de Rayleigh.Dans le cas de la stabilisation d’un système d’équations d’onde couplées, le contrôle est introduit dans le système directement sur le bord du domaine d’une seule équation dans le cas d’un domaine borne ou à l’intérieur d’une seule équation mais dans le cas d’un domaine non borné. La nature du système ainsi couplé dépend du couplage des équations et de la nature arithmétique des vitesses de propagations, et ceci donne divers résultats pour la stabilisation polynomiale ainsi la non stabilité.Dans le cas de la stabilisation de poutre de Rayleigh, l’équation est considérée avec un seul contrôle force agissant sur bord du domaine. D’abord, moyennant le développement asymptotique des valeurs propres et des vecteurs propres du système non contrôlé, un résultat d’observabilité ainsi qu’un résultat de bornétude de la fonction de transfert correspondant sont obtenus. Alors, un taux de décroissance polynomial de l’énergie du système est établi. Ensuite, moyennant une étude spectrale combinée avec une méthode fréquentielle, l’optimalité du taux obtenu est assurée. / The thesis is driven mainly on indirect stabilization system of two coupled wave equations and the boundary stabilization of Rayleigh beam equation. In the case of stabilization of a coupled wave equations, the Control is introduced into the system directly on the edge of the field of a single equation in the case of a bounded domain or inside a single equation but in the case of an unbounded domain. The nature of thus coupled system depends on the coupling equations and arithmetic Nature of speeds of propagation, and this gives different results for the polynomial stability and the instability. In the case of stabilization of Rayleigh beam equation, we consider an equation with one control force acting on the edge of the area. First, using the asymptotic expansion of the eigenvalues and vectors of the uncontrolled system an observability result and a result of boundedness of the transfer function are obtained. Then a polynomial decay rate of the energy of the system is established. Then through a spectral study combined with a frequency method, optimality of the rate obtained is assured.
|
7 |
Analyse et contrôle de systèmes fluide-structure avec conditions limites sur la pression / Analysis and control of fluid-structure systems with boundary conditions involving the pressureCasanova, Jean-Jérôme 05 July 2018 (has links)
Le sujet de la thèse porte sur l'étude (existence, unicité, régularité) et le contrôle de problèmes fluide-structure possédant des conditions limites sur la pression. Le système étudié couple une partie fluide, décrite par les équations de Navier-Stokes incompressibles dans un domaine 2D et une partie structure, décrite par une équation 1D de poutre amortie située sur une partie du bord du domaine fluide. Dans le Chapitre 2, on étudie l'existence de solutions fortes pour ce modèle. Nous démontrons des résultats de régularité optimale pour le système de Stokes avec conditions de bord mixtes sur un domaine non régulier. Ces résultats sont ensuite utilisés pour prouver l'existence et l'unicité de solutions fortes, locales en temps, pour le système fluide-structure sans hypothèse de petitesse sur les données initiales. Le Chapitre 3 réutilise l'analyse précédente dans le cadre de solutions périodiques en temps. Nous développons un critère d'existence de solutions périodiques pour un problème parabolique abstrait. Ce critère est ensuite appliqué au système fluide-structure et nous obtenons l'existence de solutions strictes, périodiques et régulières en temps, pour des termes sources périodiques suffisamment petits. Le quatrième volet de la thèse porte sur la stabilisation du système fluide-structure au voisinage d'une solution périodique. Le système linéarisé sous-jacent est décrit à l'aide d'un opérateur A(t) dont le domaine dépend du temps. Nous démontrons l'existence d'un opérateur parabolique d'évolution pour ce système linéaire. Cet opérateur est ensuite utilisé, dans le cadre de la théorie de Floquet, pour étudier le comportement asymptotique du système. Nous adaptons la théorie existante pour des opérateurs à domaine constant au cas de domaine non constant. Nous obtenons la stabilisation exponentielle du système linéaire à l'aide d'un contrôle sur la frontière du domaine fluide. / In this thesis we study the well-posedness (existence, uniqueness, regularity) and the control of fluid-structure system with boundary conditions involving the pressure. The fluid part of the system is described by the incompressible Navier- Stokes equations in a 2D rectangular type domain coupled with a 1D damped beam equation localised on a boundary part of the fluid domain. In Chapter 2 we investigate the existence of strong solutions for this model. We prove optimal regularity results for the Stokes system with mixed boundary conditions in non-regular domains. These results are then used to obtain the local-in-time existence and uniqueness of strong solutions for the fluid-structure system without smallness assumption on the initial data. Chapter 3 uses the previous analysis in the framework of periodic (in time) solutions. We develop a criteria for the existence of periodic solutions for an abstract parabolic system. This criteria is then used on the fluid- structure system to prove the existence of a periodic and regular in time strict solution, provided that the periodic source terms are small enough. In Chapter 4 we study the stabilisation of the fluid-structure system in a neighbourhood of a periodic solution. The underlying linear system involves an operator A(t) with a domain which depends on time. We prove the existence of a parabolic evolution operator for this linear system. This operator is then used to apply the Floquet theory and to describe the asymptotic behaviour of the system. We adapt the known results for an operator with constant domain to the case of operators with non constant domain. We obtain the exponential stabilisation of the linear system with control acting on a part of the boundary of the fluid domain.
|
8 |
Stabilisation et simulation de modèles d'interaction fluide-structure / Stabilisation and simulation of fluid-structure interaction modelsNdiaye, Moctar 09 December 2016 (has links)
L'objet de cette thèse est l'étude de la stabilisation de modèles d'interaction fluide-structure par des contrôles de dimension finie agissant sur la frontière du domaine fluide. L'écoulement du fluide est décrit par les équations de Navier-Stokes incompressibles tandis que l'évolution de la structure, située à la frontière du domaine fluide, satisfait une équation d'Euler-Bernoulli avec amortissement. Dans le chapitre 1, nous étudions le cas où le contrôle est une condition aux limites de Dirichlet sur les équations du fluide (contrôle par soufflage/aspiration). Nous obtenons des résultats de stabilisation locale du système non-linéaire autour d'une solution stationnaire instable de ce système. Dans les chapitres 2 et 3, nous nous intéressons au cas où le contrôle est une force appliquée sur la structure (contrôle par déformation de paroi). Dans le chapitre 2, nous considérons un modèle simplifié, où l'équation d'Euler-Bernoulli pour la structure est remplacée par un système de dimension finie. Nous construisons des lois de contrôle pour les systèmes de dimension infinie, ou pour leurs approximations semi-discrètes, capables de stabiliser les systèmes linéarisés avec un taux de décroissance exponentielle prescrit, et localement les systèmes non-linéaires. Nous présenterons des résultats numériques permettant de vérifier l'efficacité de ces lois de contrôles. / The aim of this thesis is to study the stabilization of fluid-structure interaction models by finite dimensional controls acting at the boundary of the fluid domain. The fluid flow is described by the incompressible Navier-Stokes equations while the displacement of the structure, localized at the boundary of the fluid domain, satisfies a damped Euler-Bernoulli beam equation. First, we study the case where the control is a Dirichlet boundary condition in the fluid equations (control by suction/blowing). We obtain local feedback stabilization results around an unstable stationary solution of this system. Chapters 2 and 3 are devoted to the case where control is a force applied to the structure (control by boundary deformation). We consider, in chapter 2, a simplified model where the Euler-Bernoulli equation for the structure is replaced by a system of finite dimension. We construct feedback control laws for the infinite dimensional systems, or for their semi-discrete approximations, able to stabilize the linearized systems with a prescribed exponential decay rate, and locally the nonlinear systems. We present some numerical results showing the efficiency of the feedback laws.
|
9 |
Equações de quarta ordem na modelagem de oscilações de pontes / Fourth order equations modelling oscillations on bridgesFerreira Junior, Vanderley Alves 31 March 2016 (has links)
Equações diferenciais de quarta ordem aparecem naturalmente na modelagem de oscilações de estruturas elásticas, como aquelas observadas em pontes pênseis. São considerados dois modelos que descrevem as oscilações no tabuleiro de uma ponte. No modelo unidimensional estudamos blow up em espaço finito de soluções de uma classe de equações diferenciais de quarta ordem. Os resultados apresentados solucionam uma conjectura apresentada em [F. Gazzola and R. Pavani. Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations. Arch. Ration. Mech. Anal., 207(2):717752, 2013] e implicam a não existência de ondas viajantes com baixa velocidade de propagação em uma viga. No modelo bidimensional analisamos uma equação não local para uma placa longa e fina, suportada nas extremidades menores, livre nas demais e sujeita a protensão. Provamos existência e unicidade de solução fraca e estudamos o seu comportamento assintótico sob amortecimento viscoso. Estudamos ainda a estabilidade de modos simples de oscilação, os quais são classificados como longitudinais ou torcionais. / Fourth order differential equations appear naturally when modeling oscillations in elastic structures such as those observed in suspension bridges. Two models describing oscillations in the roadway of a bridge are considered. In the one-dimensional model we study finite space blow up of solutions for a class of fourth order differential equations. The results answer a conjecture presented in [F. Gazzola and R. Pavani. Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations. Arch. Ration. Mech. Anal., 207(2):717752, 2013] and imply the nonexistence of beam oscillation given by traveling wave profile with low speed propagation. In the two-dimensional model we analyze a nonlocal equation for a thin narrow prestressed rectangular plate where the two short edges are hinged and the two long edges are free. We prove existence and uniqueness of weak solution and we study its asymptotic behavior under viscous damping. We also study the stability of simple modes of oscillations which are classified as longitudinal or torsional.
|
10 |
Equações de quarta ordem na modelagem de oscilações de pontes / Fourth order equations modelling oscillations on bridgesVanderley Alves Ferreira Junior 31 March 2016 (has links)
Equações diferenciais de quarta ordem aparecem naturalmente na modelagem de oscilações de estruturas elásticas, como aquelas observadas em pontes pênseis. São considerados dois modelos que descrevem as oscilações no tabuleiro de uma ponte. No modelo unidimensional estudamos blow up em espaço finito de soluções de uma classe de equações diferenciais de quarta ordem. Os resultados apresentados solucionam uma conjectura apresentada em [F. Gazzola and R. Pavani. Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations. Arch. Ration. Mech. Anal., 207(2):717752, 2013] e implicam a não existência de ondas viajantes com baixa velocidade de propagação em uma viga. No modelo bidimensional analisamos uma equação não local para uma placa longa e fina, suportada nas extremidades menores, livre nas demais e sujeita a protensão. Provamos existência e unicidade de solução fraca e estudamos o seu comportamento assintótico sob amortecimento viscoso. Estudamos ainda a estabilidade de modos simples de oscilação, os quais são classificados como longitudinais ou torcionais. / Fourth order differential equations appear naturally when modeling oscillations in elastic structures such as those observed in suspension bridges. Two models describing oscillations in the roadway of a bridge are considered. In the one-dimensional model we study finite space blow up of solutions for a class of fourth order differential equations. The results answer a conjecture presented in [F. Gazzola and R. Pavani. Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations. Arch. Ration. Mech. Anal., 207(2):717752, 2013] and imply the nonexistence of beam oscillation given by traveling wave profile with low speed propagation. In the two-dimensional model we analyze a nonlocal equation for a thin narrow prestressed rectangular plate where the two short edges are hinged and the two long edges are free. We prove existence and uniqueness of weak solution and we study its asymptotic behavior under viscous damping. We also study the stability of simple modes of oscillations which are classified as longitudinal or torsional.
|
Page generated in 0.2977 seconds