• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 19
  • 19
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Ontogeny- and Sex-Dependent Contributions of the Neuronal Nitric Oxide Synthase (nNOS) Gene to Rewarding and Psychomotor Stimulating Effects of Cocaine

Balda, Mara A. 10 June 2009 (has links)
Multiple interactions between dopamine (DA), glutamate, and nitric oxide (NO) in mesolimbic and corticostriatal circuits suggest that NO may play a critical role in cocaine-induced behavioral and neural plasticity. Clinical and preclinical studies have revealed that females and adolescents display unique vulnerabilities to the behavioral and neurochemical effects of cocaine as a result of sex-dependent and ontogeny-dependent differences in dopaminergic systems. Thus, my research objectives were to investigate the contributions of the neuronal nitric oxide synthase (nNOS) gene, ontogeny, and gender on the rewarding and sensitizing effects of cocaine. I found that nNOS significantly influences the rewarding aspects of cocaine in adolescent mice and adult male mice (i.e., major deficits in several phases of cocaine conditioned place preference (CPP) were detected in nNOS knockout (KO) adolescent mice and nNOS KO adult male mice). However, the contribution of nNOS was sex-dependent as CPP phases were normal in KO adult females. In contrast to CPP, I found a major ontogeny-dependent contribution of nNOS to the sensitizing effects of cocaine. Namely, while nNOS is essential for the development of behavioral sensitization in adult males, this type of behavioral plasticity develops independently of nNOS during adolescence. The contribution of nNOS was once again sex-dependent as behavioral sensitization was normal in adult KO females. Together, this line of investigation has revealed that the NO-signaling pathway has a) a sex-dependent role in the neuroplasticity underlying cocaine CPP and b) a sex-dependent and ontogeny-dependent influence on cocaine-induced behavioral sensitization. Stereological and western blot analysis revealed that a sensitizing regimen of cocaine resulted in an increase in nNOS and tyrosine hydroxylase (TH) immunoreactivity in the dorsal striatum (dST) of adult, but not adolescent, wild-type (WT) male mice. In the absence of nNOS, dopaminergic neurons in the ventral tegmental area (VTA) were severely reduced and cocaine caused a downregulation of dST TH suggesting that nitrergic levels modulate TH. Thus, the finding that nNOS is essential for the development of sensitization in adulthood, but not adolescence, together with the fact that cocaine upregulated nNOS and TH in the dST in adult, but not adolescent mice, strongly suggest that the nitrergic system underlies behavioral sensitization through modulation of the dopaminergic system in adulthood. These findings suggest different approaches in the clinical treatment of drug craving and drug-seeking behavior in adolescent and adult patients.
12

Transgenerational Evidence of Increases in Dopamine D2 Receptor Sensitivity in Rodents: Impact on Sensorimotor Gating, the Behavioral Response to Nicotine and BDNF

Gill, Wesley D., Burgess, Katherine C., Vied, Cynthia, Brown, Russell W. 01 October 2021 (has links)
Background/Aims: Neonatal quinpirole (NQ) treatment to rats increases dopamine D2 (DAD2) receptor sensitivity in adult animals. We investigated if increased DAD2 sensitivity would be passed to the next (F1) generation, and if these animals demonstrated sensorimotor gating deficits and enhanced behavioral responses to nicotine. Methods: Male and female rats were intraperitoneal (IP) administered quinpirole (1 mg/kg) or saline (NS) from postnatal day (P)1–21. Animals were either behaviorally tested (F0) or raised to P60 and mated, creating F1 offspring. Results: Experiment 1 revealed that F1 generation animals that were the offspring of at least one NQ-treated founder increased yawning behavior, a DAD2-mediated behavioral event, in response to acute quinpirole (0.1 mg/kg). F1 generation rats also demonstrated increased striatal β arrestin-2 and decreased phospho-AKT signaling, consistent with increased G-protein independent DAD2 signaling, which was equal to F0 NQ-treated founders, although this was not observed in all groups. RNA-Seq analysis revealed significant gene expression changes in the F1 generation that were offspring of both NQ-treated founders compared to F0 NQ founders and controls, with enrichment in sensitivity to stress hormones and cell signaling pathways. In Experiment 2, all F1 generation offspring demonstrated sensorimotor gating deficits compared to controls, which were equivalent to F0 NQ-treated founders. In Experiment 3, all F1 generation animals demonstrated enhanced nicotine behavioral sensitization and nucleus accumbens (NAcc) brain-derived neurotrophic factor (BDNF) protein. Further, F1 generation rats demonstrated enhanced adolescent nicotine conditioned place preference equivalent to NQ-treated founders conditioned with nicotine. Conclusions: This represents the first demonstration of transgenerational effects of increased DAD2 sensitivity in a rodent model.
13

Aspectos Comportamentais e Moleculares da Sensibilização Cruzada entre Estresse e Cocaina. / Behavioral and molecular aspects of the cross-sensitization between stress and cocaine

Araujo, Ana Paula Natalini de 10 August 2001 (has links)
Vários estudos clínicos demonstram que existem fatores adicionais ao efeito reforçador primário das drogas que determinam por que alguns indivíduos permanecem usuários ocasionais, enquanto outros progridem para a farmacodependência. Evidências clínicas apontam o estresse como uma variável importante na iniciação, manutenção e recaída ao uso da cocaína ou morfina. Em roedores, a cocaína induz a sensibilização comportamental que se caracteriza pelo aumento progressivo da atividade motora no decorrer do seu uso prolongado. Esse fenômeno é um dos eventos que emergem no decurso temporal das adaptações que levam à farmacodependência. Recentemente foi sugerido que a sensibilização é a gênese do uso compulsivo de drogas. Muitos estudos revelam que o estresse induz a sensibilização comportamental cruzada com os psicostimulantes. O objetivo desse trabalho foi avaliar a sensibilização cruzada entre o estresse e a cocaína, bem como os mecanismos neurais subjacentes. Para tanto foram avaliados as concentrações plasmáticas da corticosterona, a atividade locomotora basal e a induzida por cocaína, e a atividade da PKA nos animais expostos aos estresses agudo ou crônico, previsível ou imprevisível. A exposição ao estresse crônico previsível (EP) aumentou a atividade locomotora basal e a induzida por cocaína. A exposição ao EP aumentou as concentrações basais da corticosterona mas não alterou a atividade da PKA no núcleo acumbens e no corpo estriado. Assim, podemos concluir que a exposição a EP induziu sensibilização comportamental cruzada à cocaína, sendo que esse efeito não se correlacionou com as alterações na atividade da PKA. / A potential etiologic factor in substance abuse is stress, and it is possible that chronic exposure to stressful life’s events is related to the development of drug dependence and relapse. Behavioral sensitization is defined as an augmentation of a response to a drug during repeated drug exposure. Behavioral sensitization has been shown to occur to the locomotor and reinforcing effects of cocaine, amphetamine and other drugs of abuse. It has been suggested that sensitization is the genesis of compulsive drug use. Converging evidence suggests that exposure to stress induces behavioral sensitization to psychostimulant drugs. The present study investigates behavioral and molecular aspects of the cross-sensitization between stress and cocaine. We evaluated the basal and cocaine-induced locomotor activity, corticosterone plasma levels and protein kinase cAMP-dependent (PKA) activity in animals exposed to acute or chronic predictable and unpredictable stress. Increased basal and cocaine-induced locomotor activity was observed in animals exposed to chronic predictable stress. Chronic predictable stress increased basal corticosterone levels but did not change protein kinase A activity in both accumbens and striatum. In conclusion, predictable stress produced sensitization to locomotor effects of cocaine but this effect did not correlate with changes in PKA activity.
14

Participação do sistema da orexina na sensibilização comportamental ao efeito estimulante do etanol em camundongos machos / Role of orexin system in ethanol-induced behavioral sensitization in male mice

Macedo, Giovana Camila de [UNIFESP] 30 March 2011 (has links) (PDF)
Made available in DSpace on 2015-07-22T20:50:34Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-03-30. Added 1 bitstream(s) on 2015-08-11T03:26:11Z : No. of bitstreams: 1 Publico-12803.pdf: 1327527 bytes, checksum: 4fb071f9df6c6a7299fea37a3cbfb20a (MD5) / As orexinas são dois neuropeptídeos, orexina-A e orexina-B, derivados do mesmo gene precursor (pré-pro-orexina), produzidos em alguns milhares de neurônios localizados na área perifornicial do Hipotálamo lateral. Apesar de ter uma produção restrita ao hipotálamo, os neurônios orexinérgicos projetam-se amplamente para todo o cérebro regulando uma série de funções endócrinas e homeostáticas. Evidências recentes, no entanto, mostram o envolvimento do sistema da orexina no circuito de recompensa. Neste estudo avaliamos o envolvimento do sistema da orexina na sensibilização comportamental induzida por etanol. No experimento 1 foi utilizado o modelo de sensibilização comportamental e os animais do grupo salina, agudo (uma administração de EtOH) e crônico (7 administrações de EtOH) foram tratados durante 14 dias para verificar o desenvolvimento de sensibilização comportamental; após o término do tratamento os animais foram perfundidos e a imunorreatividade de duplas marcações para orexina e c-Fos foi avaliada pela técnica de imunohistoquímica. No experimento 2 foi utilizado o modelo de sensibilização comportamental para verificar se o antagonista de receptor do tipo 1 da orexina, SB 334867, bloqueia esse fenômeno. No primeiro experimento não houve diferença estatística entre os grupos salina, agudo e crônico quanto à ORX+c-Fos-IR; porém os animais tratados cronicamente com EtOH apresentaram uma tendência de aumento da dupla marcação de neurônios orexinérgicos indicando que o desenvolvimento da sensibilização comportamental produz ativação desses neurônios; além disso, os animais tratados cronicamente com etanol desenvolveram a sensibilização comportamental. No segundo experimento, o SB 334867 bloqueou a expressão deste fenômeno, indicando que o sistema orexinérgico parece influenciar de maneira importante o processo de sensibilização comportamental, já que a administração sistêmica do SB334867 bloqueou a expressão da sensibilização comportamental aos efeitos estimulantes do etanol em camundongos machos. / Orexins are two neuropeptides, orexin-A and orexin-B, derived from the same precursor gene (pre-pro-orexin) produced by a few thousand neurons located in the perifornical area of the lateral hypothalamus. Despite having a restricted production, orexinergic neurons project widely to brain structures that regulate a number of endocrine and homeostatic functions. Recent evidence suggests the involvement of the orexin system in the reward circuit. We evaluated the role of this system in ethanol-induced behavioral sensitization. In Experiment 1 was used the behavioral sensitization model (development), in which animals were chronically treated for 14 days with saline, acute ethanol after saline treatment or with ethanol (seven administration) to induce behavioral sensitization; at the end of the treatment animals were perfused and immunohistochemistry technique was used to determine double staining for orexin and c-Fos (ORX+c-Fos-IR). In Experiment 2 behavioral sensitization was induced and SB 334867, an orexin-1 receptor antagonist, was used to examine whether it could block the expression of this phenomenon. The results of Experiment 1 showed no statistical difference among the groups (saline, acute and chronic) as to ORX+c-Fos-IR, although animals chronically treated with EtOH exhibited an trend to more double staining of orexin neurons indicating that this treatment regimen activates this neuropeptide system. In the second experiment, SB 334867 blocked the expression of this phenomenon. The orexin system seems to influence the process of behavioral sensitization, since systemic administration of SB 334867 blocked the expression of this phenomenon induced by a stimulant dose of ethanol in male mice. / TEDE / BV UNIFESP: Teses e dissertações
15

Aspectos Comportamentais e Moleculares da Sensibilização Cruzada entre Estresse e Cocaina. / Behavioral and molecular aspects of the cross-sensitization between stress and cocaine

Ana Paula Natalini de Araujo 10 August 2001 (has links)
Vários estudos clínicos demonstram que existem fatores adicionais ao efeito reforçador primário das drogas que determinam por que alguns indivíduos permanecem usuários ocasionais, enquanto outros progridem para a farmacodependência. Evidências clínicas apontam o estresse como uma variável importante na iniciação, manutenção e recaída ao uso da cocaína ou morfina. Em roedores, a cocaína induz a sensibilização comportamental que se caracteriza pelo aumento progressivo da atividade motora no decorrer do seu uso prolongado. Esse fenômeno é um dos eventos que emergem no decurso temporal das adaptações que levam à farmacodependência. Recentemente foi sugerido que a sensibilização é a gênese do uso compulsivo de drogas. Muitos estudos revelam que o estresse induz a sensibilização comportamental cruzada com os psicostimulantes. O objetivo desse trabalho foi avaliar a sensibilização cruzada entre o estresse e a cocaína, bem como os mecanismos neurais subjacentes. Para tanto foram avaliados as concentrações plasmáticas da corticosterona, a atividade locomotora basal e a induzida por cocaína, e a atividade da PKA nos animais expostos aos estresses agudo ou crônico, previsível ou imprevisível. A exposição ao estresse crônico previsível (EP) aumentou a atividade locomotora basal e a induzida por cocaína. A exposição ao EP aumentou as concentrações basais da corticosterona mas não alterou a atividade da PKA no núcleo acumbens e no corpo estriado. Assim, podemos concluir que a exposição a EP induziu sensibilização comportamental cruzada à cocaína, sendo que esse efeito não se correlacionou com as alterações na atividade da PKA. / A potential etiologic factor in substance abuse is stress, and it is possible that chronic exposure to stressful life’s events is related to the development of drug dependence and relapse. Behavioral sensitization is defined as an augmentation of a response to a drug during repeated drug exposure. Behavioral sensitization has been shown to occur to the locomotor and reinforcing effects of cocaine, amphetamine and other drugs of abuse. It has been suggested that sensitization is the genesis of compulsive drug use. Converging evidence suggests that exposure to stress induces behavioral sensitization to psychostimulant drugs. The present study investigates behavioral and molecular aspects of the cross-sensitization between stress and cocaine. We evaluated the basal and cocaine-induced locomotor activity, corticosterone plasma levels and protein kinase cAMP-dependent (PKA) activity in animals exposed to acute or chronic predictable and unpredictable stress. Increased basal and cocaine-induced locomotor activity was observed in animals exposed to chronic predictable stress. Chronic predictable stress increased basal corticosterone levels but did not change protein kinase A activity in both accumbens and striatum. In conclusion, predictable stress produced sensitization to locomotor effects of cocaine but this effect did not correlate with changes in PKA activity.
16

Recherche des mécanismes impliqués dans la modulation de la vulnérabilité à la cocaïne par les conditions environnementales / Mechanism involved in the modulation of cocaine vulnerability by environmental manipulation

Lafragette, Audrey 08 November 2016 (has links)
Une influence des conditions de vie sur le phénomène de dépendance a été observée chez l'Homme et modélisée chez l'animal. Ainsi chez les rongeurs, l'exposition à un environnement enrichi (EE) réduit le risque d'addiction, alors qu'un stress l'augmente. Les mécanismes responsables de ces influences environnementales sur la dépendance ont été l'objet de mes recherches. D'une part, nous avons montré que des injections chroniques de cocaïne augmentent l'expression du facteur de transcription ΔFosB dans les cellules striatales exprimant le récepteur dopaminergique D1R (D1R+), alors que l'EE seul l'augmente spécifiquement dans les cellules D1R(-). De façon intéressante, ces effets sont abolis lorsque la cocaïne est administrée à des souris exposées à l'EE. Ces résultats suggèrent que la prévention de la sensibilisation comportementale par l'EE corrèle avec une accumulation modifiée de ΔFosB. D'autre part, le laboratoire avait montré que le passage d'un EE à un environnement standard augmentait la vulnérabilité à la cocaïne. Toujours dans le but de découvrir les mécanismes impliqués, nous nous sommes intéressés au système endocannabinoïde (ECS), un régulateur du stress et aux processus épigénétiques. Nous avons observé que ce switch environnemental modulait l'expression de différents acteurs de l'ECS, en particulier le récepteur CB1 dans l'amygdale, et aussi celle de la protéine régulatrice de la transcription MeCP2 (Methyl CpG-binding-Protein-2) dans le noyau accumbens. Dans son ensemble, ce travail a permis d'identifier des mécanismes moléculaires, régulés par différentes manipulations environnementales, et pouvant participer à la vulnérabilité aux drogues d'abus. / Influences of life conditions on the phenomenon of addiction has been observed in Human and modeled in animals. Indeed, in rodents, exposure to enriched environment (EE) reduces the risk of addiction, whereas stress increases it. The mechanisms responsible for these environmental influences on addiction have been the object of my thesis. On one hand, we have shown that chronic injections of cocaine increase the expression of the transcription factor ΔFosB in striatal cells expressing the dopaminergic receptor D1 (D1R(+) cells) whereas EE by itself increases it specifically in D1R(-) cells. Interestingly, these effects were abolished when cocaine is administrated to mice exposed to EE. These results suggest that the prevention of the behavioral sensitization induced by EE correlates with a modified accumulation of ΔFosB. On the other hand, our laboratory has shown that switching mice from EE to a standard environment increases the vulnerability to cocaine. In order to uncover the mechanisms underlying this potentiation, we studied the endocannabinoid system, involved in stress regulation and in epigenetic processes. We have observed that the environmental switch modulates the expression of different actors of the endocannabinoid system, especially the CB1 receptor in the amygdala, and of MeCP2 (Methyl CpG-binding-Protein-2), a protein involved in the control of transcription in the nucleus accumbens. Altogether, this work allowed us to highlight molecular mechanisms that are regulated by environmental manipulations and that could participate to the individual vulnerability to drugs of abuse.
17

探討安非他命引發的制約場地偏好行為的分子機制:以大腦神經滋養因子為例 / Investigation of molecular mechanisms on amphetamine induced conditioned place preference: the role of Brain-Derived Neurotrophic Factor (BDNF)

張庭源 Unknown Date (has links)
制約場地偏好行為為研究藥物成癮的常用模式之一,對於其行為表現及再復發的神經機制,多巴胺系統佔有舉足輕重的地位。而大腦神經滋養因子(BDNF)與多巴胺系統密切相關,影響其神經元可塑性。故本研究以BDNF來作為目標分子,進行一系列的實驗探討制約場地偏好的神經機制。實驗一A以不同劑量安非他命建立制約場地偏好行為,並分析其BDNF mRNA的表現量。實驗結果顯示1 mg/kg安非他命能夠引發制約場地偏好行為,但是對於內側前額葉、紋狀體、依核、背側海馬迴、杏仁核等五個區塊的BDNF mRNA無顯著的影響效果。實驗一B再次確認實驗一A的結果,顯示俱有安非他命引發制約場地偏好行為的受試,其大腦五個區塊BDNF mRNA沒有顯著的變化。實驗二探測制約場地偏好行為再復發對於相同的五個區塊BDNF mRNA變化。結果發現0.75 mg/kg安非他命能誘發制約場地偏好再復發行為,並且能引發內側前額葉中BDNF mRNA的增加,但對其餘四個區塊則無明顯的影響效果。實驗三以單次注射安非他命探討對於BDNF mRNA是否有立即性的影響,結果顯示五個區塊皆無明顯的變化。實驗四以安非他命引發的行為致敏化反應為行為模式,偵測BDNF mRNA的表現情形。結果發現藥物制約配對組與單次注射安非他命組在活動量上無顯著的差異,顯示出無行為致敏化反應的發生。檢驗五個區塊BDNF mRNA的表現,亦沒有發現明顯的改變。綜合以上的實驗結果,本研究得到安非他命制約場地偏好再復發行為,會伴隨內側前額葉BDNF mRNA的增加。而單獨的安非他命引發制約場地偏好行為,並不會改變BDNF mRNA。這些結果顯示BDNF參與在較複雜的制約學習行為歷程,而不是在單獨的藥物注射或與環境配對的制約過程。 / Conditioned place preference (CPP) is widely used as an experimental behavioral model in the study of drug addiction and reward learning. Brain dopamine systems play an important role to drive the CPP performance and its relapse. Brain-derived neurotrophic factor (BDNF) is closely related to dopamine system that can promote neuron plasticity involved in certain types of behavior. Taking BDNF as the target molecule, this project conducted a series of experiments to delve into the neural mechanism of CPP. Different doses of amphetamine on the CPP behavior were assessed in Experiment 1A, and BDNF mRNA was tested after CPP test. The results show that 1 mg/kg amphetamine significantly induced CPP, but no significant effect on BDNF mRNA in any of five brain areas tested, including medial prefrontal cortex, striatum, nucleus accumbens, dorsal hippocampus and amygdala. The results of Experiment 1A was further confirmed by Experiment 1B, indicating no significant change on BDNF mRNA in five brain areas of rats with significant amphetamine-induced CPP. Experiment 2 examined the effects of CPP relapse and tested BDNF mRNA in the aforementioned five brain areas. The results show that 0.75 mg/kg amphetamine significantly induced CPP relapse and also increased BDNF mRNA level in medial prefrontal cortex. Such an increase of BDNF mRNA was not observed in any other four areas. Single acute injection of amphetamine was administered in Experiment 3 to delve into the possible immediate drug effect on BDNF mRNA. Its results show no significant change on five brain areas following this acute drug treatment. Experiment 4 used amphetamine-induced behavioral sensitization as a behavioral mode to determine the expression of BDNF mRNA. The results show no significant difference both for amphetamine-paired group and acute amphetamine group on locomotion, that indicated no behavioral sensitization formed in this test. There was no significant difference in the expression of BDNF mRNA in five brain areas. These results indicate that amphetamine-induced CPP relapse, but not CPP performance itself, is accompanied by the increase of BDNF mRNA level in medial prefrontal cortex. These findings indicate that BDNF is involved in place conditioning formed by psychostimulant drug when it is reinstated after extinction, rather than by a solitary drug injection or a relatively simple conditioning process by pairing drug with the environmental context.
18

Implication de la neurotransmission glutamatergique dans la sensibilisation comportementale à court terme aux amphétamines / Implication of the glutamatergic neurotransmission in short-term behavioral sensitization to amphetamine

Degoulet, Mickaël 29 June 2010 (has links)
Bien que la neurotransmission glutamatergique joue un rôle pivot dans le développement et l’expression de la sensibilisation comportementale aux amphétamines, le rôle spécifique de certaines structures glutamatergiques qui projettent sur l’aire tegmentale ventrale et/ou le noyau accumbens n’est pas encore bien caractérisé. Nous montrons que l’hippocampe dorsal, la partie prélimbique du cortex préfrontal et l’amygdale basolatérale joue un rôle prépondérant dans les réponses locomotrices induites par l’administration aiguë (développement de la sensibilisation) et chronique (expression de la sensibilisation) d’amphétamines, suggérant les réponses locomotrices aux amphétamines impliquent un ensemble de structures glutamatergiques corticolimbiques. Par la suite, nous nous sommes intéressés au rôle de la neurotransmission glutamatergique associée aux récepteurs NMDA dans le noyau accumbens, qui est considéré comme le noyau clé de l’expression de la sensibilisation, sur le développement à court terme de la sensibilisation aux amphétamines. De plus, nous montrons le développement de la sensibilisation à court terme aux amphétamines requiert l’activation concomitante de certains récepteurs NMDA au glutamate et nicotiniques à l’acétylcholine dans le noyau accumbens. De plus, l’activation concomitante de ces récepteurs sous tend également la libération de dopamine induite par les amphétamines dans le noyau accumbens. L’ensemble de ces données montre que la neurotransmission glutamatergique, et les structures glutamatergiques qui projettent sur l’aire tegmentale ventrale et/ou le noyau accumbens, joue un rôle majeur dans la sensibilisation comportementale à court terme aux amphétamines. / Although it is well admitted that the glutamatergic neurotransmission plays a pivotal role in the development and expression of behavioral sensitization to amphetamine, the specific role of glutamatergic structures that project to the ventral tegmental and/or the nucleus accumbens is less well studied. We showed that the dorsal hippocampus, the prelimbic part of the prefrontal cortex and the basolateral amygdala play a critical role in both acute (development of sensitization) and chronic (expression of sensitization) locomotor responses induced by amphetamine, suggesting that behavioral responses to amphetamine are mediated by circuitry of corticolimbic glutamatergic structures. Next, we investigated the role of glutamatergic NMDA receptors contained in the nucleus accumbens, which is seen as the key structure for the expression of sensitization, in the development of short term sensitization to amphetamine. Interestingly, we showed that, contrasting with the current dichotomous thinking that has attributed specialized functions to the ventral tegmental area and the nucleus accumbens, respectively in the development and the expression of behavioral sensitization, concomitant activation of certain types of NMDA and nicotinic receptors in the nucleus accumbens is also required for the development of short term sensitization. Furthermore, we showed that concomitant activation of these receptors sustained the amphetamine-induced dopamine release in the nucleus accumbens. All these data show that glutamatergic neurotransmission, and glutamatergic structures which project onto mésoaccumbens system, plays a major role in short-term behavioral sensitization to amphetamine.
19

探討心理興奮性藥物之環境相依行為致敏化之神經行為機制 / Investigation of the neurobehavioral mechanisms underlying context-dependent behavioral sensitization to psychostimulants

林懷瑠 Unknown Date (has links)
本研究以心理興奮性藥物(psychosimulants)引發之行為致敏化作為探討環境與藥物的配對學習如何影響個體長期使用藥物後對藥物的反應。首先於實驗一建立安非他命引發自發活動致敏化基本模式,以及不同的重複注射情境下致敏化的表現,結果顯示經由本實驗操弄注射情境的程序可有效引發在測試箱、飼養籠,和第三處的安非他命致敏化表現,並且致敏化自發活動表現量在測試箱組顯著高於飼養籠組和第三處組。實驗二對致敏化形成歷程中可能與安非他命配對的刺激進行消除,以釐清致敏化形成歷程中連結學習的要素,結果顯示消除程序沒有降低致敏化活動量的效果。實驗三使用中樞注射麩胺酸受體拮抗劑NBQX於依核以影響致敏化的連結學習歷程,結果顯示該操弄可阻斷在飼養籠重複注射安非他命引發的行為致敏化。測試箱組經過該操弄後其致敏化活動量顯著降低但仍有顯著的致敏化活動量表現。實驗四分別破壞前額葉皮質兩處次級區塊以瞭解其在致敏化連結學習歷程中扮演的角色,結果顯示破壞背側前額葉皮質只阻斷在飼養籠注射安非他命所引起的行為致敏化,破壞腹側前額葉皮質只阻斷測試箱組行為致敏化。綜合上述研究結果顯示安非他命引發致敏化的形成深受藥物配對的環境影響而可區分環境相依與環境獨立之行為致敏化,環境相依行為致敏化的行為機制可由場合建立的觀點加以解釋。在依核內之麩胺酸傳導和前額葉皮質次級區塊之功能在兩種行為致敏化上的差異可以反應環境相依和環境獨立行為致敏化的潛在神經機制可能有所不同。 / The present study investigated the neurobehavioral mechanisms of d-amphetamine (AMP) induced behavioral sensitization, with the aim to elucidate the role of associative learning between the context and drug. Experiment 1 compared the sensitization effects of repeated (AMP) conducted in three different contexts by the measurement of locomotion activity. The results showed that behavioral sensitization of locomotion was significantly induced AMP repeatedly injected in each of the contexts. However, the magnitudes of behavioral sensitization were different among those three conditions. The highest degree of sensitized locomotion was observed in the group with repeated AMP conducted in the test box in comparing to the other two groups with drug administration in the home cage and a third place, Experiment 2 was designed to examine the effects of extinction on the injection procedure and the contextual cue on the behavioral sensitization of AMP induced in the test box, the home cage, and a third place. The resu lts clearly indicate all three types of locomotion sensitization were resistant to the manipulation of extinction. Experiment 3 tested the effects of NBQX, a glutamatergic AMPA receptor antagonist, infused into the nucleus accumbens on the establishment of behavioral sensitization of AMP induced in the test box and the home cage. This intra-accumbens NBQX treatment significantly suppressed the formation of behavioral sensitization of AMP induced in the home cage, but not in the test box. Experiment 4 investigated the lesion effects of medial prefrontal cortex (mPFC) on the establishment of behavioral sensitization of AMP induced in the test box and the home cage. Two subareas of the mPFC, dorsal and ventral parts, were lesioned by ibotenic acid. The findings indicated a double dissociation existing in the mPFC subareas for the behavioral sensitization of AMP induced in different contexts. The lesion of ventral mPFC inhibited the formation of behavioral sensitization of AMP induced in the test box, whereas the lesion of dorsal mPFC attenuated the AMP sensitization induced at the home cage. Together, these data suggest that the association of the repeated drug effects pairing to the context is critical for the development of behavioral sensitization. Such sensitization can further be differentiated into the context-depentdent and context-independent forms based on the uniqueness of contextual cue in the environment where drug is administered. Different neural substrates are involved in the establishment of behavioral sensitization of AMP.

Page generated in 0.1244 seconds