• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 7
  • 5
  • 2
  • 1
  • Tagged with
  • 39
  • 39
  • 19
  • 19
  • 14
  • 13
  • 12
  • 11
  • 11
  • 11
  • 11
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analysis of Settlement-Induced Bending Moments in Battered Piles within a Levee Embankment

Johnson, Jehu Brick 09 May 2015 (has links)
Settlement-Induced Bending Moments (SIBM) are an important design condition that must be considered whenever battered piles are placed in settling soils. The objective of this research was to investigate various parameters which can affect SIBM in battered piles within a levee embankment. The results from the current study were compared and verified against those obtained from centrifuge testing and alternative numerical simulations. A series of centrifuge testing as well as finite difference numerical simulations in Fast Langrangian Analysis of Continua (FLAC) were conducted. Different parameters which may affect the bending moments were investigated including pile connection fixity, batter, and stiffness of the pile as well as the magnitude of settlement. The simulations show that these parameters can have large impacts on the magnitude and location of the bending moments. Findings of this research can be used to validate or identify the need for adjustment of the current modeling/design approach.
12

Bending Moments and Deformations of Conical Shell on Euler-Winkler Elastic Foundation.

Chung, Kit Man Peter January 1981 (has links)
<p> Various analytical methods for studying the behaviour of shallow conical shells on Euler-Winkler elastic foundation are presented. </p> <p> To account for the nature of concrete and the geometric properties of the shallow conical shell, Poisson's ratio and certain radial and circumferential deformations of the middle surface are neglected in deriving the basic differential equation. Analytical methods employed in the solution of this shell problem are the GECKELER and asymptotic types of approximations. </p> <p> The presentations of various methods of analysis are made for a representative case of dimensions and loadings of the conical shell to make them as applicable as possible to the cases of thin conical shell commonly encountered in industry. </p> <p> The shell structure studied is a tank in the form of a rotationally symmetrical cylindrical shell supported by a shallow conical shell foundation. The construction joint between the conical shell and the cylindrical shell is either monolithic or hinged. </p> <p> The analytical results of this water tank supported on Euler-Winkler elastic foundation are compared with the corresponding findings of W. Flügge, who assumed a uniform soil bearing pressure acting on the conical shell structure. </p> The method of analysis which possesses obvious advantages over the other methods studied is selected to examine the effect of different elastic stiffness coefficients of the soil. The validity of simplifying the soil bearing pressure to a uniform distribution by most designers can consequently be studied by comparing it to the bearing pressures of an ideal elastic soil which is postulated to react to its deformation like a bed of independent elastic springs. </p> / Thesis / Master of Engineering (ME)
13

Redistribution of bending moment in continous structures of reinforced concrete

Hsu, Ko-chi 09 November 2012 (has links)
Generalized moment-curvature relations of reinforced concrete members for various cases have been developed. For a limited range of parameters, graphs have been prepared. With these graphs, and within the range of the parameters given, is possible to solve statically indeterminate structures of reinforced concrete with accuracy taking account of the effects of creep in the concrete. / Master of Science
14

KOLFIBERFÖRSTÄRKNING – En jämförelse mellan kolfiberförstärkning och traditionella förstärkningsmetoder / CARBON FIBER REINFORCEMENT – A comparison between carbon fiber reinforced poly and traditional reinforcement methods

Barbaranelli, Andreas, Bengtsson, Pär January 2017 (has links)
Att en byggnadsdel kan vara i behov av en förstärkning är inte ovanligt i dagsläget. Det kan handla om ett bjälklag som kommer utsättas för mer last då verksamheten ändras från bostad till kontorslandskap. Alternativa lösningar till att förstärka en sådan konstruktion skulle antingen vara att införa stålbalkar och pelare eller gjuta på det befintliga bjälklaget. Det som få konstruktörer och entreprenörer tänker på är att en kolfiberlösning kan vara ett smidigare alternativ. Examensarbetes syfte är att undersöka om kolfiberförstärkningar kan konkurrera med traditionella förstärkningsmetoder. Lyfta fram för-och nackdelar för samtliga förstärkningsmetoder och väga dem mot varandra utifrån en beräkningssynpunkt och utförandemässigt. Metoder för att få en bra förståelse för hur kolfiber höjer böjmomentkapaciteten är laboration med provtryckningar samt beräkningar på ett verkligt broprojekt. I båda fallen har kolfiberlösningen jämförts med traditionella lösningar. Arbetets resultat visar att kolfiberförstärkningar kan, i många fall, ersätta traditionella förstärkningsmetoder. Detta på grund av sin lätta vikt och höga draghållfasthet som gör det möjligt att på ett effektivt sätt höja böjmomentkapaciten hos byggnadsdelar. Enligt laborationen gav kolfiberförstärkningen ungefär samma procentuella ökning i hållfasthet som en plattstålförstärkning. / A building part could need a reinforcement. It could be a system of joists that are soon going to be loaded with heavier loads when business is changing from residence to an office. The alternate solution to reinforce that kind of construction would be with steel beams and columns or increase the height of the floor with more concrete. What few constructors and contractors know are the solution with carbon fiber reinforcement could be a better alternative. The purpose of the thesis is to study if carbon fiber reinforcement could compete with traditional reinforcement methods. From a calculating and a work-related perspective the project will underline the pro and cons with all of the reinforcement methods. To demonstrate how carbon fiber increase the bending moment capacity have lab and calculation of a real bridge project been executed. In both cases have a carbon fiber solution been compared with traditional reinforcement methods. The result of the thesis shows that carbon fiber reinforcement could replace traditional methods in many cases. The pros with the carbon fiber reinforcement is the light weight and high tensile strength that makes it possible, on an efficient way, increase the bending moment capacity in a building part. The thesis lab result shows that a carbon fiber reinforcement does have the same percentage increase in strength as a flat steel reinforcement.
15

Pilares esbeltos de concreto armado com seção variável / Concrete slender columns with variable cross sections

Malakoski, Joice 30 July 1998 (has links)
São descritas as recomendações da Norma Brasileira NBR-6118/1978 e do Código Modelo do Comité Euro-internacional du Béton CEB-1990 para a verificação da estabilidade de pilares esbeltos de concreto armado com seção variável submetidos à flexão normal composta, empregando-se a teoria do método geral. Para a obtenção dos momentos de segunda ordem são descritos os métodos de Engesser-Vianello e da integração numérica das curvaturas das seções transversais ao longo do pilar. Para a determinação do momento fletor absorvido pelas seções em função da curvatura proveniente da flexão do pilar sob a ação de uma força normal, desenvolvem-se as expressões para seções retangulares e circulares (cheias e vazadas) com base nas relações de tensão-deformação dos materiais segundo a norma e o código supracitados. Apresenta-se também um programa para microcomputador, elaborado em linguagem PASCAL, destinado à verificação da estabilidade de pilares com opção de adoção dos critérios da NBR-6118/1978 ou do CEB-1190. Não foram abordados os efeitos decorrentes de vibrações, fazendo-se apenas a descrição dos métodos de consideração dos efeitos decorrentes da deformação lenta. / The recommendations of Brazilian Code NBR-6118/1978 and Comité Euro-Internacional du Béton Model Code CEB-1990 are described, for stability verification of concrete slender columns with variable cross sections, subjected to axial load and bending moment, using the exact method. To obtain the second order bending moments, the Engesser-Vianello method and the numeric integration of the cross section curvatures along the longitudinal axial of column method are described. To obtain of bending moment supported by the cross sections due to curvature resultant of the column flexure under axialload, expressions for rectangular and circular (full and hollow) cross sections are developed, using stress-strain relations for materials proposed by model codes above mentioned. It\'s also presented a software written in PASCAL language for microcomputer and destined to column stability verification, with option to adopt the NBR-6118/1978 or CEB-1990 model code recommendations. Effects due to vibrations were nor included. Methods to take in account creep effects were described.
16

Eksperimentinio akrobatinio lėktuvo skrydžio analizė / Flight analysis of experimental aerobatic airplane

Vasiljevas, Artūras 21 June 2013 (has links)
Baigiamajame magistro darbe nagrinėjamos būsimo eksperimentinio akrobatinio lėktuvo aerodinaminės savybės. Pristatomos tokio pobūdžio sritys (temos), kaip tinkamo sparno profilio parinkimas orlaiviui, reikalingo sparno formos apibrėžimas, sparno būsimos charakteristikos ir parametrų apskaičiavimas, kitų orlaivio dalių ir jų įtakos visai lėktuvo dinamikai analizavimas. Kadangi analizuojamas dvivietis eksperimentinis akrobatinis lėktuvas, tikintis geresnių rodiklių, pasirinktas palyginimo objektas  dvivietis akrobatinis mokomasis lėktuvas SU 29. Remiantis šio lėktuvo esamomis charakteristikomis ir parametrais, pateikiamos išvados ir siūlymai. / The thesis examines the aerodynamics of future experimental aerobatic aircraft. Featured in such areas (topics): proper selection of an aircraft wing profile, the required form of the wing, the wing's future performance and parameter estimation, other aircraft parts and their impact on the entire plane dynamics analysis. As analyzed double seated, experimental aerobatic plane in the hope of better indicators selected comparison object  double seated acrobatic training plane SU 29. Based on the existing aircraft characteristics and parameters, the conclusions and recommendations will be made.
17

Pilares esbeltos de concreto armado com seção variável / Concrete slender columns with variable cross sections

Joice Malakoski 30 July 1998 (has links)
São descritas as recomendações da Norma Brasileira NBR-6118/1978 e do Código Modelo do Comité Euro-internacional du Béton CEB-1990 para a verificação da estabilidade de pilares esbeltos de concreto armado com seção variável submetidos à flexão normal composta, empregando-se a teoria do método geral. Para a obtenção dos momentos de segunda ordem são descritos os métodos de Engesser-Vianello e da integração numérica das curvaturas das seções transversais ao longo do pilar. Para a determinação do momento fletor absorvido pelas seções em função da curvatura proveniente da flexão do pilar sob a ação de uma força normal, desenvolvem-se as expressões para seções retangulares e circulares (cheias e vazadas) com base nas relações de tensão-deformação dos materiais segundo a norma e o código supracitados. Apresenta-se também um programa para microcomputador, elaborado em linguagem PASCAL, destinado à verificação da estabilidade de pilares com opção de adoção dos critérios da NBR-6118/1978 ou do CEB-1190. Não foram abordados os efeitos decorrentes de vibrações, fazendo-se apenas a descrição dos métodos de consideração dos efeitos decorrentes da deformação lenta. / The recommendations of Brazilian Code NBR-6118/1978 and Comité Euro-Internacional du Béton Model Code CEB-1990 are described, for stability verification of concrete slender columns with variable cross sections, subjected to axial load and bending moment, using the exact method. To obtain the second order bending moments, the Engesser-Vianello method and the numeric integration of the cross section curvatures along the longitudinal axial of column method are described. To obtain of bending moment supported by the cross sections due to curvature resultant of the column flexure under axialload, expressions for rectangular and circular (full and hollow) cross sections are developed, using stress-strain relations for materials proposed by model codes above mentioned. It\'s also presented a software written in PASCAL language for microcomputer and destined to column stability verification, with option to adopt the NBR-6118/1978 or CEB-1990 model code recommendations. Effects due to vibrations were nor included. Methods to take in account creep effects were described.
18

Statické řešení betonového komínu / Static solution of concrete chimney

Kašparů, Jakub January 2013 (has links)
The goal of this Master´s thesis is a review of a reinforced concrete chimney´s stack and a foundation design based on a combination of M+N load. Two bar models (by ČSN and EN) and one shall model were created to analyze internal forces. The fine element software SCIA ENGINEERING was used to create the models. The loads taken into consideration - for analysis include self weight, lining, temperature, wind, and Karman vortex. The stack was horizontally divided by several cuts which were investigated. The stack and foundation were designed by an algorithm created in the program MS EXCEL. The piles were designed in the program GEO 5. Drawings include - drawings of shapes and drawings of the reinforcement of specifics part of chimney.
19

Passive Force on Skewed Bridge Abutments with Reinforced Concrete Wingwalls Based on Large-Scale Tests

Smith, Kyle Mark 01 July 2014 (has links) (PDF)
Skewed bridges have exhibited poorer performance during lateral earthquake loading when compared to non-skewed bridges (Apirakvorapinit et al. 2012; Elnashai et al. 2010). Results from small-scale laboratory tests by Rollins and Jessee (2012) and numerical modeling by Shamsabadi et al. (2006) suggest that skewed bridge abutments may provide only 35% of the non-skewed peak passive resistance when a bridge is skewed 45°. This reduction in peak passive force is of particular importance as 40% of the 600,000 bridges in the United States are skewed (Nichols 2012). Passive force-deflection results based on large-scale testing for this study largely confirm the significant reduction in peak passive resistance for abutments with longitudinal reinforced concrete wingwalls. Large-scale lateral load tests were performed on a non-skewed and 45° skewed abutment with densely compacted sand backfill. The 45° skewed abutment experienced a 54% reduction in peak passive resistance compared to the non-skewed abutment. The peak passive force for the 45° skewed abutment was estimated to occur at 5.0% of the backwall height compared to 2.2% of the backwall height for the non-skewed abutment. The 45° skewed abutment displayed evidence of rotation, primarily pushing the obtuse side of the abutment into the backfill, significantly more than the non-skewed abutment as it was loaded into the backfill. The structural and geotechnical response of the wingwalls was also monitored during large-scale testing. The wingwall on the obtuse side of the 45° skewed abutment experienced nearly 6 times the amount of horizontal soil pressure and 7 times the amount of bending moment compared to the non-skewed abutment. Pressure and bending moment distributions are provided along the height of the wingwall and indicate that the maximum moment occurs approximately 20 in (50.8 cm) below the top of the wingwall. A comparison of passive force per unit width suggests that MSE wall abutments provide 60% more passive resistance per unit width compared to reinforced concrete wingwall and unconfined abutment geometries at zero skew. These findings suggest that changes should be made to current codes and practices to properly account for skew angle in bridge design.
20

BRIDGE EDGE BEAM : NON-LINEAR ANALYSIS OF REINFORCEDCONCRETE OVERHANG SLAB BY FINITEELEMENT METHOD

Yaqoob, Saima January 2017 (has links)
Bridge edge beam system is an increasing concern in Sweden. Because it is the mostvisible part of the structure which is subjected to harsh weather. The edge beamcontributes to the stiffness of overhang slab and helps to distribute the concentratedload. The design of edge beam is not only affected by the structural members, but it isalso affected by non-structural members.The aim of the thesis is to investigate the influence of edge beam on the structuralbehavior of reinforced concrete overhang slab. A three-dimensional (3D) non-linearfinite element model is developed by using the commercial software ABAQUS version6.1.14. The load displacement curves and failure modes were observed. The bendingmoment and shear capacity of the cantilever slab is studied.The validated model from non-linear analysis of reinforced concrete slab gives morestiffer result and leads to the high value of load capacity when comparing with theexperimental test. The presence of the edge beam in the overhang slab of length 2.4 mslightly increases the load capacity and shows ductile behavior due to the self-weightof the edge beam. The non-linear FE-analysis of overhang slab of length 10 m leads tomuch higher load capacity and gives stiffer response as compare to the overhang slabof 2.4 m. The presence of the edge beam in the overhang slab of length 10 m giveshigher load capacity and shows stiffer response when comparing with the overhangslab of length 10 m. This might be due to the self-weight of the edge beam and theoverhang slab is restrained at the right side of the slab.

Page generated in 0.0951 seconds