• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 64
  • 28
  • 17
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 256
  • 50
  • 42
  • 30
  • 25
  • 24
  • 21
  • 21
  • 19
  • 18
  • 16
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Nuclear magnetic resonance studies on bentonite in complex mixed systems

Goryan, Alexander S. January 2012 (has links)
In this work 23Na MAS NMR was validated as a successful quantitative method for studies of exchanging sodium in bentonites useful, in particular, for studies of ion-exchange kinetics. Na-enriched bentonites equilibrated in a re-circulated process water at iron-oxide pelletizing plants may acquire properties of Ca-bentonites after already 20 minutes of the equilibration time, since >50 % of sodium ions will be exchanged by calcium ions during first minutes of bentonite placed in contact with the process water. It was shown that all sodium activated bentonites used in this study exchange >50% of sodium in Na+/Ca2+ and ca 20 % of sodium in binary Na+/Mg2+ systems with the same bentonite/solution ratio and same concentrations of these ions in aqueous solutions as in the process water at a pelletizing plant. In total, approximately 50 % of the exchangeable sodium in original bentonites was exchanged after equilibrating of bentonites in the process water already after 20 minutes. Experimental Na+/Ca2+ exchange curves for ‘model’ Ca2+(aq) solutions and for process water are very similar as Ca2+ is the dominant constituent in the process water. Since bivalent ions (Ca2+ and Mg2+) that present in the process water readily replace Na+ ions, Na-bentonite transforms into Ca- or Mg- bentonite, which have worse rheological, swelling and, therefore, binding properties. This ion-exchange process can influence the binder performance in the pelletizing process. Taking into account that fluorapatite is one of the components present in a blend of minerals processed, possible interactions between orthophosphate (the principal anionic component of apatites) and bentonites in aqueous suspensions are considered. It was found that sorption of orthophosphate on Ca-montmorillonite follows a different pattern from sorption of orthophosphate on aluminum oxides and kaolinite. While there is a small amount of sorption below pH 7, which may involve inner-sphere complexation and precipitation of AlPO4 to Al-OH edge sites on the montmorillonite crystals, most sorption of orthophosphate occurs at higher pH. Both macroscopic sorption measurements and solid-state 31P MAS NMR suggest that above pH 7 there is precipitation of proton depleted calcium phosphate phases. Based on both 31P chemical shifts and 31P chemical shift anisotropies it was concluded that the principal precipitated phased are most likely ‘brushite-like’ phases. Very short spin-lattice T2(31P) relaxation times (≤100 μs) for the orthophosphate/bentonite systems can possibly be explained by the presence of paramagnetic Fe in bentonites. Since there are insufficient concentrations of soluble Fe species in the supernatant solution that may give rise to the observed effects, it is likely that orthophosphate is precipitated as thin layers on the surfaces of montmorillonite crystals, where phosphorus may interact with Fe atoms present in the crystal lattice. PO4-tetrahedra in sorbed species can be also distorted giving rise to a larger 31P CSA than for pure ‘apatite-like phases’. 29Si MAS and 1H-29Si CP/MAS NMR experiments on bentonite samples also performed in this work provide information about impurities of quartz in bentonites, a level of substitution of aluminum by iron atoms in the structure of montmorillonite and about the degree of hydration of montmorillonite. 29Si NMR experiments on bentonite incubated with waterglass in aqueous suspensions at concentrations of sodium silicates as in the process water demonstrated that one can follow the process of polymerization of waterglass in solutions and also detect sodium silicates polymerized on surfaces of bentonites already after 1 hour of incubation. Polymerized waterglass sorbed on bentonite surfaces may also alter rheological, swelling and, therefore, binding properties of sodium-activated bentonites used in pelletization of iron-oxide ores.
182

Investigation of Temperature, Solution Strength, and Applied Stress Effects on Cation Exchange Processes in Geosynthetic Clay Liners

Katzenberger, Kurt 01 December 2022 (has links) (PDF)
A laboratory test program was conducted to investigate the effects of temperature, solution strength, and applied stress over increasing conditioning durations on cation exchange processes in sodium bentonite (Na-B) geosynthetic clay liners (GCLs). The test program was intended to determine if the variables of temperature, solution strength, and applied stress had beneficial or detrimental effects on the engineering behavior of Na-B GCLs in municipal solid waste (MSW) landfills and laboratory testing applications. Needlepunched-reinforced, double non-woven Na-B GCL specimens were conditioned in fluids of increasing ionic strength (DI water, 2 mM CaCl2, 50 mM CaCl2, and 200 mM CaCl2 representing control, pore water, mild MSW leachate, and harsh MSW leachate, respectively), temperatures of 5 degrees C, 20 degrees C, 40 degrees C, and 60 degrees C, and overburden stresses (30 kPa and 500 kPa representing stresses experienced by cover and bottom liner systems, respectively) which are all representative of geoenvironmental conditions observed in MSW landfill barrier systems. Cation exchange in the bentonite component of all conditioned Na-B GCL specimens was quantified by measuring the bound cation (BC) complexes and cation exchange capacities (CEC) of the specimens using inductively coupled plasma-optical emission spectroscopy (ICP-OES) analysis and by conducting index tests to determine the dimensional characteristics, swell index, and gravimetric moisture content of the specimens. For zero stress conditions, periodic measurements of electrical conductivity, total dissolved solids, sodium and calcium cation concentration, and temperature of the conditioning fluids were recorded to supplement bound cation complex data. For applied stress conditions, electrical conductivity, total dissolved solids, and temperature of the conditioning fluid were recorded. For zero stress conditions, 152 mm x 152 mm Na-B GCL specimens were conditioned in all conditioning fluids and temperatures over increasing time durations ranging from 4 hours to 32 days. For applied stress conditions, 60-mm-diameter Na-B GCL specimens were conditioned in 50 mM CaCl2 conditioning fluid at all temperatures for 4 to 16 days under the applied overburden stresses of 30 kPa and 500 kPa. Temperature, solution strength, and applied stress were all observed to affect cation exchange in the bentonite component of Na-B GCLs. Cation exchange processes were observed to increase with increasing temperature, increasing solution strength, and decreasing applied overburden stress. The majority of cation exchange processes were observed to occur within 8 to 10 days for specimens conditioned under zero stress. Cation exchange processes were observed to have a higher sensitivity to changes in solution strength (up to 625% increase in the change of Na+ BC from DI water to 200 mM CaCl2) compared to changes in temperature (up to 52% increase in the change of Na+ BC from 5 degrees C to 60 degrees C) in zero stress conditions. Changes in the bound cations of the Na-B GCL specimens over time were not reflected in the periodic electrical conductivity measurements taken of the high strength conditioning fluids. The results of this study can be used for quality assurance evaluations of in-service GCLs using thresholds developed for index properties. From the numerical thresholds determined in this study, hydrated Na-B GCL specimens sampled from the field conditioned under zero stress that exhibit swell indices greater than or equal to approximately 70% of the swell index reported by the manufacturer and gravimetric moisture contents of greater than or equal to approximately 200% will likely exhibit adequate hydraulic barrier performance. Hydrated Na-B GCL specimens sampled from the field conditioned under zero stress that exhibit swell indices of less than or equal to approximately 20% of the swell index reported by the manufacturer and gravimetric moisture contents of less than or equal to approximately 100% will likely exhibit inadequate hydraulic barrier performance. The Na-B GCL component of cover liner systems may be susceptible to high rates of cation exchange due to experiencing low overburden stress and elevated temperatures compared to typical earth temperatures. The Na-B GCL component of bottom liner systems may exhibit low rates of cation exchange due to experiencing high overburden stress and cooler temperatures.
183

Study of sorption properties of Eu on MX-80 bentonite under highly saline, reducing conditions, and under saline, reducing conditions

Yang, Jieci January 2021 (has links)
Pu (III) is one of the key elements in the safety assessments of Canadian deep geological repository program (DGR). Sorption is a potential mechanism for retarding radionuclide transport from a DGR to the environment. In the current scenario, Pu (III) is considered to be a dominant radioactive element in the deep geological groundwater. Eu, considered to be a chemical analogue of Pu (III), its sorption behavior is now the target of our research. This thesis investigates the sorption properties of Eu on MX-80 under saline reducing conditions, and highly saline reducing conditions. The thermodynamic sorption modelling of Eu is also need to be applied. A surface sorption model is also developed by applying computer program for Eu (III) on MX-80 to investigate the sorption mechanisms of Eu (III) sorption. / Thesis / Master of Applied Science (MASc)
184

Characterizing Clay-Microbe-Metal Interactions: Implications for Metal Immobilization

Holland, Steven P. 10 1900 (has links)
<p>Bentonite clays and Fe-reducing bacteria have been independently identified as important geochemical agents possessing the ability to influence metal(loid) mobility in aqueous environments. In the context of metal(loid) immobilization, however, the interactions occurring between Fe-reducing bacteria and bentonite clays remain largely undescribed. This thesis examines the immobilization of Cu<sup>2+</sup>, Cd<sup>2+</sup>, and As<sup>5+</sup> from aqueous solution by natural bentonite clays, and compares sorption to sterile bentonite clays with sorption in the presence of Fe-reducing bacteria. The research questions under investigation in this thesis are: 1) What are the influences of potentially metal-tolerant Fe-reducing bacteria on metal(loid) uptake by bentonite clay sorbents of varying smectite content and on the stability of bentonite clay-sorbed metal(loid)s?; and 2) Are there differences in the influence of Fe-reducing bacteria on Cd<sup>2+</sup> and Cu<sup>2+</sup> sorption to bentonite clays when As<sup>5+</sup>, a reducible, metabolically-available metalloid, is present in solution?</p> <p>While the influence of bacterial augmentation on Cu<sup>2+</sup> sorption was negligible in these experiments, Cd<sup>2+</sup> sorption was enhanced in the presence of Fe-reducing bacteria, and most profoundly, As displayed time-dependent desorption during the experimental timeframe in the presence of Fe-reducing bacteria. These results highlight the existence of potential limitations to the use of bentonite clay sorbents for metal(loid)-contaminated wastewater reclamation, identifying the microbially-vulnerable nature of metal(loid) sorption reactions. Abundant facets concerning clay-bacterial-metal(loid) interactions exist which require further characterization and experimentation to generate deeper understanding of the potential utility of, as well as limitations to, the use of clay mineral-based sorbents for the sequestration of toxic metal(loid)s from aqueous solution.</p> / Master of Science (MSc)
185

Soil-Bentonite Cutoff Walls: Hydraulic Conductivity and Contaminant Transport

Britton, Jeremy Paul 15 August 2001 (has links)
Soil-bentonite cutoff walls are commonly used to contain contaminants in the subsurface. A key property in determining the effectiveness of a cutoff wall is its hydraulic conductivity. There are important difficulties and uncertainties regarding the accuracy of commonly used methods of measuring the hydraulic conductivity of cutoff walls. When predicting contaminant transport through cutoff walls, common practice is to use the average hydraulic conductivity of the wall. There are some cases, however, such as circumferential cutoff walls with inward hydraulic gradients, where it is also important to consider the variability in hydraulic conductivity from point to point in the wall in contaminant transport studies. A pilot-scale facility was envisioned where subsurface barrier issues such as those mentioned above could be studied. In 1998, the Subsurface Barrier Test Facility (SBTF) was constructed. In this facility, pilot-scale subsurface barriers can be installed using real construction equipment and tested in a controlled environment. The effectiveness of various methods of measuring the hydraulic conductivity of cutoff walls was studied by building and testing three pilot-scale soil-bentonite cutoff walls at the SBTF. The following currently used test methods were evaluated: API tests on grab samples, lab tests on undisturbed samples, piezometer tests (slug tests), and piezocone soundings. The use of slug tests in cutoff walls was improved in this research in the areas of avoiding hydraulic fracture and accounting for the close proximity of the trench walls. The SBTF allows for measurement of the global, average hydraulic conductivity of an installed pilot-scale cutoff wall, which is a useful value to compare to the results of the above-mentioned tests. The two main factors differentiating the results of the different test methods used for the pilot-scale walls were remolding and sample size. Remolding of the API samples significantly reduced the hydraulic conductivity of these samples compared to the hydraulic conductivity measured in lab tests on undisturbed samples, which were of similar size. For the other tests, the degree and extent of remolding were less significant compared to in the API tests. For these tests, the scale of the measurement is believed to be the main factor differentiating the results. Hydraulic conductivity was found to increase as the sample volume increased, with the global measurement of the average hydraulic conductivity producing the highest value. The influence of variability in hydraulic conductivity on contaminant transport through cutoff walls was studied from a theoretical standpoint using the one-dimensional advection-diffusion equation. Charts were developed that can be used to estimate the flux through a cutoff wall based on knowledge of the average hydraulic conductivity of the wall and an estimate of the variability in hydraulic conductivity. Data sets of hydraulic conductivity from lab tests on soil-bentonite samples from four cutoff wall case histories were used to estimate typical values of variability. The contaminant transport analyses showed that the effect of variability may be significant when the hydraulic gradient opposes the concentration gradient, which is the case for a circumferential cutoff wall with an inward hydraulic gradient. The goal of a circumferential cutoff wall with an inward hydraulic gradient is to reduce the outward diffusive flux of contaminant by inducing an inward advective flux. The effect of variability in hydraulic conductivity is to reduce the effectiveness of this scheme. / Ph. D.
186

Mechanical Behavior of Soil-Bentonite Cutoff Walls

Baxter, Diane Yamane 25 April 2000 (has links)
A soil-bentonite cutoff wall is a type of subsurface vertical barrier constructed by back-filling a trench with a mixture of soil, bentonite, and water. Although soil-bentonite cutoff walls are common, their mechanical behavior is not well understood. Current design procedures do not consider the final stress state of the consolidated soil-bentonite backfill or deformations in adjacent ground. The final stress state in the completed wall is important because it influences the hydraulic conductivity of the cutoff (Barrier 1995), the cutoff's susceptibility to hydraulic fracture, and the magnitude of deformations adjacent to the cutoff wall. Deformations adjacent to the cutoff wall can be significant and can cause damage to adjacent structures. The objectives of this research are to 1) add to the current body of knowledge of the properties of soil-bentonite mixtures, 2) evaluate constitutive models and select a model to represent soil-bentonite, 3) model a soil-bentonite cutoff wall using finite elements, and 4) investigate the influence of several factors on the deformations in adjacent ground. These objectives were met by first summarizing information from the literature on soil-bentonite properties and then performing a laboratory testing program on different soil-bentonite mixtures. Five constitutive models were evaluated to determine how well they match the data from the laboratory testing program. A model referred to as the RS model was chosen to best represent soil-bentonite, and provided a good match of the soil-bentonite behavior. The RS model, which is a special case of a more complicated existing model, is a non-associative Modified Cam Clay type model that has parameters to change the yield surface and plastic potential surface into ellipses of varying shapes. The RS model was implemented into the finite element program SAGE. A finite element model was developed using SAGE to simulate all stages of construction of a soil-bentonite cutoff wall including excavation of a trench under bentonite-water slurry, replacement of the bentonite-water slurry with soil-bentonite backfill, and consolidation of the soil-bentonite backfill. The model was calibrated with a well-documented case history, and predicted deformations in adjacent ground were close to measured deformations. Evaluation of the model indicates that there is good confidence in the prediction of deformations in adjacent ground, but there is lower confidence in the predicted stresses in the consolidated soil-bentonite and settlement of the backfill in the trench. A parametric study was then performed using the finite element model assuming sand sites of varying density and OCR. Deformations in adjacent ground were calculated for various soil conditions, soil-bentonite properties, and trench configurations. A correlation was found between maximum calculated settlement in adjacent ground and factor of safety against trench / Ph. D.
187

Tratamento terciário da indústria de laticinios através da adsorção de lactose em argila esmectítica. / Tertiary treatment of the dairy industry through the adsorption of lactose in bentonite clay.

Ferreira, Isabel Cristina Santos 23 March 2007 (has links)
Este trabalho, propõe nova tecnologia para tratamento de efluentes gerados pelas indústrias de laticínios. Atualmente este tipo de efluente, quando tratado, utiliza o processo biológico para reduzir a carga orgânica, contudo, este método, algumas vezes, não garante a remoção completa dos compostos orgânicos. Assim, é sugerido a utilização de argila bentonitica sódica para a adsorção da lactose como tratamento terciário do efluente da indústria de laticínios. A comprovação deste evento assim como sua quantificação foi realizada através de duas técnicas distintas: análise térmica e difração de raios-X. Os resultados obtidos foram positivos, pois comprovou-se não só a adsorção como também a absorção do material orgânico, no caso, a lactose na argila avaliada. Verificou-se a capacidade da argila bentonitica de Wyoming ab-adsorver até 50% da lactose. Assim, este trabalho oferece alternativa para o tratamento terciário do efluente das indústrias de laticínios. / This work considers new technology for effluent treatment generated by the dairy industries. Currently this type of effluent, when treated, uses the biological process to reduce the organic load, however, this method, some times, does not guarantee the complete removal of organic composites. Thus, the sodium bentonite use is suggested for the adsorption of the lactose as tertiary treatment of the effluent one of the dairy industry. The evidence of this event as well as its quantification was carried through two distinct techniques: thermal analysis and x-ray diffraction. The gotten results had been positive, therefore the adsorption not only proved the absorption of the organic material, in the case, the lactose in the evaluated clay. It was verified capacity of the Wyoming bentonite of to ab-adsorption up to 50% of the lactose. Therefore, this work offers alternative for the tertiary effluent treatment of the dairies industries.
188

Tratamento terciário da indústria de laticinios através da adsorção de lactose em argila esmectítica. / Tertiary treatment of the dairy industry through the adsorption of lactose in bentonite clay.

Isabel Cristina Santos Ferreira 23 March 2007 (has links)
Este trabalho, propõe nova tecnologia para tratamento de efluentes gerados pelas indústrias de laticínios. Atualmente este tipo de efluente, quando tratado, utiliza o processo biológico para reduzir a carga orgânica, contudo, este método, algumas vezes, não garante a remoção completa dos compostos orgânicos. Assim, é sugerido a utilização de argila bentonitica sódica para a adsorção da lactose como tratamento terciário do efluente da indústria de laticínios. A comprovação deste evento assim como sua quantificação foi realizada através de duas técnicas distintas: análise térmica e difração de raios-X. Os resultados obtidos foram positivos, pois comprovou-se não só a adsorção como também a absorção do material orgânico, no caso, a lactose na argila avaliada. Verificou-se a capacidade da argila bentonitica de Wyoming ab-adsorver até 50% da lactose. Assim, este trabalho oferece alternativa para o tratamento terciário do efluente das indústrias de laticínios. / This work considers new technology for effluent treatment generated by the dairy industries. Currently this type of effluent, when treated, uses the biological process to reduce the organic load, however, this method, some times, does not guarantee the complete removal of organic composites. Thus, the sodium bentonite use is suggested for the adsorption of the lactose as tertiary treatment of the effluent one of the dairy industry. The evidence of this event as well as its quantification was carried through two distinct techniques: thermal analysis and x-ray diffraction. The gotten results had been positive, therefore the adsorption not only proved the absorption of the organic material, in the case, the lactose in the evaluated clay. It was verified capacity of the Wyoming bentonite of to ab-adsorption up to 50% of the lactose. Therefore, this work offers alternative for the tertiary effluent treatment of the dairies industries.
189

Etanchéité de l’interface argilite-bentonite re-saturée et soumise à une pression de gaz, dans le contexte du stockage profond de déchets radioactifs / Sealing efficiency of an argillite-bentonite plug subjected to gas pressure, in the context of deep underground nuclear waste storage

Liu, JiangFeng 27 June 2013 (has links)
En France, le système de stockage profond de déchets radioactifs envisagé est constitué d’une barrière naturelle (roche hôte argileuse, argilite) et de barrières artificielles, comprenant des bouchons d’argile gonflante (bentonite)-sable pour son scellement. L'objectif de cette thèse est d’étudier l’efficacité du gonflement et du scellement des bouchons placés dans l’argilite, sous l’effet, à la fois, d’une pression d’eau et d’une pression de gaz (tel que formé dans le tunnel). Pour évaluer la capacité de scellement du bouchon bentonite/sable partiellement saturé en eau, on a évalué sa perméabilité au gaz Kgaz sous pression de confinement variable (jusqu’à 12MPa). L'étanchéité au gaz (Kgaz < 10-20m2) est obtenue sous confinement Pc≥9MPa si la saturation est d’au moins 86-91%. Par ailleurs, nous avons évalué le gonflement et l'étanchéité du bouchon de bentonite-sable imbibé d’eau dans un tube d’argilite ou de Plexiglas-aluminium lisse ou rugueux. La présence de gaz diminue la pression effective de gonflement (et la pression de percée de gaz) à partir d’une pression Pgaz= 4 MPa. Après saturation complète en eau, l’écoulement continu de gaz au travers du bouchon seul se fait à Pgaz=7-8MPa s’il dispose d’une interface lisse avec un autre matériau (tube métallique), alors que celui au travers de l’ensemble bouchon/argilite a lieu à Pgaz=7-7,5MPa. Le passage à travers le bouchon gonflé au contact d’une interface rugueuse se fait à une pression de gaz bien supérieure à la pression de gonflement du bouchon. Les essais de percée de gaz montrent que l'interface et l'argilite sont deux voies possibles de migration de gaz lorsque l’ensemble bouchon/roche hôte est complètement saturé / In France, the deep underground nuclear waste repository consists of a natural barrier (in an argillaceous rock named argillite), associated to artificial barriers, including plugs of swelling clay (bentonite)-sand for tunnel sealing purposes. The main objective of this thesis is to assess the sealing efficiency of the bentonite-sand plug in contact with argillite, in presence of both water and gas pressures. To assess the sealing ability of partially water-saturated bentonite/sand plugs, their gas permeability is measured under varying confining pressure (up to 12MPa). It is observed that tightness to gas is achieved under confinement greater than 9MPafor saturation levels of at least 86-91%. We than assess the sealing efficiency of the bentonite-sand plug placed in a tube of argillite or of Plexiglas-aluminium (with a smooth or a rough interface). The presence of pressurized gas affects the effective swelling pressure at values Pgas from 4MPa. Continuous gas breakthrough of fully water-saturated bentonite-sand plugs is obtained for gas pressures on the order of full swelling pressure (7-8MPa), whenever the plug is applied along a smooth interface. Whenever a rough interface is used in contact with the bentonite-sand plug, a gas pressure significantly greater than its swelling pressure is needed for gas to pass continuously. Gas breakthrough tests show that the interface between plug/argillite or the argillite itself are two preferential pathways for gas migration, when the assembly is fully saturated
190

Comportement hydromécanique et érosion des sols fins traités / Hydro-mechanical behavior and erosion of fine tread soils

Mehenni, Abdelwadoud 15 December 2015 (has links)
L’évolution actuelle du contexte socio-économique oblige les différents acteurs du secteur des travaux publics à s’adapter aux problématiques du développement durable. Dans le domaine des ouvrages en terre, les entreprises doivent proposer des solutions techniques de valorisation des matériaux situés dans l’emprise des projets afin de limiter les emprunts extérieurs et la mise en dépôt des sols non utilisés. Les techniques de traitement des sols constituent une possibilité de valoriser ces matériaux. Cette étude se focalise sur quatre produits de traitement (kaolinite, bentonite, chaux et ciment) ainsi que sur leurs effets sur le comportement hydromécanique et la résistance à l’érosion interne d’un limon fin. Un dispositif d’érosion interne HET optimisé a été spécialement conçu dans le cadre de ce travail pour déterminer les caractéristiques d’érosion des sols traités notamment à la chaux et au ciment. Au-delà de la caractérisation des effets du traitement sur le comportement hydromécanique à court terme des sols, le travail de cette étude s’étend sur la durabilité des traitements et l’évolution du comportent hydromécanique à long terme des sols traités soumis à des sollicitations hydriques de séchage-humidification. Cette étude de la durabilité est effectuée à travers une approche multi-échelle fondée sur des données d’études en laboratoire sur des éprouvettes de sol traité et des investigations in situ sur des ouvrages hydrauliques en sol traité. L’étude montre que les sollicitations hydriques peuvent dégrader les performances du sol traité. Cette dégradation se traduit par une augmentation de la conductivité hydraulique, une diminution de la résistance mécanique et aussi une diminution de la contrainte critique qui exprime une diminution de la résistance à l’érosion interne. La cinétique de perte de performances est conditionnée par la nature du produit de traitement et son dosage utilisé, et aussi par le niveau d’exposition, le nombre et l’intensité des cycles hydriques. Cependant, l’étude in situ montre qu’il est possible de diminuer la cinétique de dégradation des performances de sols à travers des dispositions constructives adaptées. / The current evolution of the social and economic context requires from the different actors of the public works sector to adapt their practices to the challenges of sustainable development. In the field of earthworks, companies must offer technical solutions to reuse the materials located in the vicinity of the projects in order to limit the borrowing materials and unused soils deposits. Soil treatment may allow the reuse of these materials. This study was focused on four treatment products (kaolinite, bentonite, lime and cement) as well as their effects on the hydro-mechanical behavior and internal erosion resistance of a fine silt. An enhanced HET device was designed in the framework of this study to determine the internal erosion characteristics of treated soils especially with lime and cement. Beyond the characterization of treatment effects on short-term hydro-mechanical behavior of soils, the work of this study extends to the durability of treatment and the evolution of long-term hydro-mechanical behavior of treated soils subjected to drying-wetting cycles. This study of sustainability was carried out through a multi-scale approach based on laboratory study data on soil samples and field investigations on hydraulic structures made of treated soil. The study showed that hydraulic conditions variations can decrease the performance of treated soils. These degradations result on an increase in hydraulic conductivity, a decrease of the mechanical strength and also a reduction in the critical shear stress which expresses a decrease of the internal erosion resistance. The kinetic of performance loss depends to the nature of the treatment product and percentage used as well as the exposure level, the number and amplitude of the hydraulic variations. However, the field study showed that it is possible to reduce the kinetic degradation of the soil performance through an appropriate construction design.

Page generated in 0.1031 seconds