• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 29
  • 24
  • 9
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 165
  • 43
  • 42
  • 40
  • 30
  • 25
  • 22
  • 18
  • 17
  • 15
  • 14
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

La Boucle Locale Radio et la Démodulation directe de signaux larges bandes à 26GHz.

Abou Chakra, Sara 12 1900 (has links) (PDF)
La Boucle Locale Radio (BLR) ou Wireless Local Loop (WLL) est un système qui connecte les abonnés du réseau téléphonique commuté public (PSTN) grâce à une liaison radio. La BLR doit offrir les services suivants: la voix téléphonique, les données dans la bande du son et les services numériques. En France, les bandes de fréquence allouées à la BLR sont autour de 26 et 3,5 GHz. Les caractéristiques de la BLR à 26 GHz sont définies par la norme IEEE 802.16c. Dans le cadre de cette thèse, une boucle constituée de deux émetteurs/récepteurs fonctionnant dans la bande de 26 GHz a été étudiée. Le système était constitué dans un premier temps de composants disponibles commercialement. Il a été simulé avec le logiciel ADS de Agilent Technologies, et ensuite mis en œuvre au laboratoire RFM. Les récepteurs employés dans cette plate-forme étaient des récepteurs hétérodynes. Leur structure était donc complexe et la transmission altérée par les non-appariements en gain et en phase entre les voies I et Q des démodulateurs en quadrature. Afin de réduire sa complexité tout en gardant les mêmes performances du système, nous avons choisi de proposer une architecture homodyne du récepteur en introduisant le réflectomètre "cinq-port". Le réflectomètre cinq-port est un circuit passif linéaire ayant deux entrées et trois sorties. Il est constitué d'un circuit interféromètrique à cinq accès et de trois détecteurs de puissance. Un démodulateur cinq-port en technologie coaxiale a donc été introduit dans le système de transmission à 26 GHz. La démodulation étant validée avec ce circuit, un démodulateur cinq-port en technologie MHIC était réalisé. Afin de régénérer les signaux I et Q à partir des tensions de sortie du démodulateur cinq-port, un algorithme numérique particulier traite ces trois signaux. Ce traitement effectue simultanément la synchronisation trame et symbole ainsi que la synchronisation porteuse sur chaque trame de donnée transmise. Il inclut aussi une procédure adaptative d'auto-calibrage qui permet de régénérer les signaux I et Q tout en corrigeant tous les défauts de la chaîne de transmission contenant le cinq-port. Ce même traitement permet de corriger les non-appariements entre les deux voies d'un démodulateur classique en quadrature. Le système de transmission complet a été validé en réalisant la démodulation de signaux modulés en QPSK et en 16QAM avec des débits binaires atteignant 40 Mbit/s. Les diagrammes de constellation de phase obtenus étaient bien normalisés et les taux d'erreurs binaires étaient très proches que ceux définis par la norme de la BLR.
52

Bluetooth Enhanced Data Rate Baseband Modeling and Implementation

Zou, Lei January 2006 (has links)
<p>The main issue of this thesis is making the behaviour model of Bluetooth EDR (enhanced data rate) baseband signal processing. This Bluetooth baseband project is part of the soft defined radio project at electrical engineering department, Linköping University.</p><p>In this project, both the basic rate and EDR model were built and simulated. The GFSK and π/4 DQPSK digital modulation and demodulation were implemented in C code. The BER was tested to evaluate the demodulation results. Furthermore, the error correction (FEC) and the error checking (HEC,CRC) were also implemented according to the Bluetooth standards. The CRC flag was detected to test the payload demodulation results.</p><p>Especially, GFSK and π/4 DQPSK specifications have to be combined with each other at sample rate of ADC.</p><p>Finally, the basic rate and EDR model were simulated to measure the BER and CRC performance.</p><p>From the simulation results, the receiver filter, synchronization and channel condition were three key points in this Bluetooth EDR system implementation.</p><p>So we get further understanding about the Bluetooth system specification and DSP implementation methods.</p>
53

Adaptive MIMO Systems with Channel State Information at Transmitter

Huang, Jinliang January 2009 (has links)
This dissertation presents adaptation techniques that can achieve high spectral efficiency for single user multiple-input multiple-output (MIMO) systems. Two types of adaptation techniques, adaptive modulation and adaptive powe allocation, are employed to adapt the rate and the transmit power to fading channels. We start by investigating the adaptive modulation subject to a certain bit-error-ratio (BER) constraint, either instantaneous BER constraint or average BER constraint. The resulting average spectral efficiencies are obtained in closed-form expressions. It turns out that, by employing the average BER constraint, we can achieve the optimal average spectra efficiency at the cost of prohibitive computational complexity. On the other hand, instantaneous BER constraint leads to inferior performance with little computational complexity. In order to achieve comparable performance to the average BER constraint with limited complexity, a non-linear optimization method is proposed. To further enhance the average spectra efficiency, adaptive power allocation schemes are considered to adjust the transmit power across the temporal domain or the spatial domain, depending on the specific situation. Provided the closed-form expressions of the average spectral efficiency, the optimal MIMO coding scheme that offers the highest average spectral efficiency under the same circumstances can be identified. As we take into account the effect of imperfect channel estimation, the adaptation techniques are revised to tolerate interference introduced by the channel estimation errors. As a result, the degradation with respect to the average spectral efficiency is in proportion to signal-to-noise ratio (SNR). In order to facilitate fast development and verification of the adaptation schemes proposed for various MIMO systems, a reconfigurable Link Layer Simulator (LiLaS) which accommodates a variety of wireless/wireline applications is designed in the environment of MATLAB/OCTAVE. The idea of the simulator is originated from Software Defined Radio (SDR) and evolved to suit Cognitive Radio (CR) applications. For the convenience of modification and reconfiguration, LiLaS is functionally divided into generic blocks and all blocks are parameterized. / QC 20100812
54

Data Detection and Channel Estimation of OFDM Systems Using Differential Modulation

Khizir, Zobayer Abdullah 13 August 2009
Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation technique which is robust against multipath fading and very easy to implement in transmitters and receivers using the inverse fast Fourier transform and the fast Fourier transform. A guard interval using cyclic prefix is inserted in each OFDM symbol to avoid the inter-symbol interference. This guard interval should be at least equal to, or longer than the maximum delay spread of the channel to combat against inter-symbol interference properly.<p> In coherent detection, channel estimation is required for the data detection of OFDM systems to equalize the channel effects. One of the popular techniques is to insert pilot tones (reference signals) in OFDM symbols. In conventional method, pilot tones are inserted into every OFDM symbols. Channel capacity is wasted due to the transmission of a large number of pilot tones. To overcome this transmission loss, incoherent data detection is introduced in OFDM systems, where it is not needed to estimate the channel at first. We use differential modulation based incoherent detection in this thesis for the data detection of OFDM systems. Data can be encoded in the relative phase of consecutive OFDM symbols (inter-frame modulation) or in the relative phase of an OFDM symbol in adjacent subcarriers (in-frame modulation). We use higher order differential modulation for in-frame modulation to compare the improvement of bit error rate. It should be noted that the single differential modulation scheme uses only one pilot tone, whereas the double differential uses two pilot tones and so on. Thus overhead due to the extra pilot tones in conventional methods are minimized and the detection delay is reduced. It has been observed that the single differential scheme works better in low SNRs (Signal to Noise Ratios) with low channel taps and the double differential works better at higher SNRs. Simulation results show that higher order differential modulation schemes don¡¯t have any further advantages. For inter-frame modulation, we use single differential modulation where only one OFDM symbol is used as a reference symbol. Except the reference symbol, no other overhead is required. We also perform channel estimation using differential modulation. Channel estimation using differential modulation is very easy and channel coefficients can be estimated very accurately without increasing any computational complexity. Our simulation results show that the mean square channel estimation error is about ¡¼10¡½^(-2) at an SNR of 30 dB for double differential in-frame modulation scheme, whereas channel estimation error is about ¡¼10¡½^(-4) for single differential inter-frame modulation. Incoherent data detection using classical DPSK (Differential Phase Shift Keying) causes an SNR loss of approximately 3 dB compared to coherent detection. But in our method, differential detection can estimate the channel coefficients very accurately and our estimated channel can be used in simple coherent detection to improve the system performance and minimize the SNR loss that happens in conventional method.
55

Data Detection and Channel Estimation of OFDM Systems Using Differential Modulation

Khizir, Zobayer Abdullah 13 August 2009 (has links)
Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation technique which is robust against multipath fading and very easy to implement in transmitters and receivers using the inverse fast Fourier transform and the fast Fourier transform. A guard interval using cyclic prefix is inserted in each OFDM symbol to avoid the inter-symbol interference. This guard interval should be at least equal to, or longer than the maximum delay spread of the channel to combat against inter-symbol interference properly.<p> In coherent detection, channel estimation is required for the data detection of OFDM systems to equalize the channel effects. One of the popular techniques is to insert pilot tones (reference signals) in OFDM symbols. In conventional method, pilot tones are inserted into every OFDM symbols. Channel capacity is wasted due to the transmission of a large number of pilot tones. To overcome this transmission loss, incoherent data detection is introduced in OFDM systems, where it is not needed to estimate the channel at first. We use differential modulation based incoherent detection in this thesis for the data detection of OFDM systems. Data can be encoded in the relative phase of consecutive OFDM symbols (inter-frame modulation) or in the relative phase of an OFDM symbol in adjacent subcarriers (in-frame modulation). We use higher order differential modulation for in-frame modulation to compare the improvement of bit error rate. It should be noted that the single differential modulation scheme uses only one pilot tone, whereas the double differential uses two pilot tones and so on. Thus overhead due to the extra pilot tones in conventional methods are minimized and the detection delay is reduced. It has been observed that the single differential scheme works better in low SNRs (Signal to Noise Ratios) with low channel taps and the double differential works better at higher SNRs. Simulation results show that higher order differential modulation schemes don¡¯t have any further advantages. For inter-frame modulation, we use single differential modulation where only one OFDM symbol is used as a reference symbol. Except the reference symbol, no other overhead is required. We also perform channel estimation using differential modulation. Channel estimation using differential modulation is very easy and channel coefficients can be estimated very accurately without increasing any computational complexity. Our simulation results show that the mean square channel estimation error is about ¡¼10¡½^(-2) at an SNR of 30 dB for double differential in-frame modulation scheme, whereas channel estimation error is about ¡¼10¡½^(-4) for single differential inter-frame modulation. Incoherent data detection using classical DPSK (Differential Phase Shift Keying) causes an SNR loss of approximately 3 dB compared to coherent detection. But in our method, differential detection can estimate the channel coefficients very accurately and our estimated channel can be used in simple coherent detection to improve the system performance and minimize the SNR loss that happens in conventional method.
56

Misbehaving relay detection for cooperative communications using a known or unknown distribution functions

Wang, Sheng-Ming 11 January 2012 (has links)
In the cooperative communications, the users relay each other¡¦s signal and thus forming multiple transmission paths to the destination and therefore the system can achieve spatial diversity gain. Decode-and-forward and amplify-and-forward are the most popular relaying strategies in the literature due to their simplicity. However, in practice, cooperative users acting as relays may not always normally operated or trustworthy. When the relay misbehavior is present in the cooperative networks, the communication performance may degrade dramatically and the users may be even better off without cooperation. Therefore, it is necessary for the destination to determine the misbehaving relays and to take appropriate actions to ensure that cooperative advantages are preserved. In this thesis, we focus on developing a misbehaving relay detection method to detect whether or not the system is in the presence of some misbehaving relays. After performing misbehaving relay detection, the destination removes the signals from the un- reliable paths and then uses maximal ratio combing to achieve spatial diversity. The simulation results conducted by the thesis show that the proposed method is more robust as compared with those without employing misbehaving relay detection when the system is in the presence of some misbehaving relays.
57

Misbehaving Relay Detection for Cooperative Communications without the Knowledge of Relay Misbehaviors

Li, Chieh-kun 17 July 2012 (has links)
In the cooperative communications, the users relay each other's signal and thus form multiple transmission paths to the destination and therefore the system can achieve spatial diversity gain. Most studies in the literature assumed that cooperative users acting as the relays are normally operated and trustworthy. However, this may not always be true in practice. When the relay misbehaviors are present in the cooperative communications, the communication performance may degrade dramatically and the users may be even better off without cooperation. Therefore, it is necessary for the destination to determine the misbehaving relays and to take appropriate actions to ensure that cooperative advantages are preserved. This thesis considers both models in which the cooperative communications are with direct path (WDP) and without direct path (WODP). Utilizing the proposed Kolmogorov-Smirnov test mechanism, the destination identifies the misbehaving relays within the cooperative communications and then excludes their transmitting messages when performing the diversity combining to infer the symbols of interest sent by the source. In addition, this thesis provides the bit error rate (BER) analysis of the cooperative communications employing the proposed misbehaving relay detectors. The simulation results demonstrate that the proposed methods have robust performance when the relay misbehaviors are present in the cooperative communications.
58

Paradigms Optimization for a C-Band COFDM Telemetry with High Bit Efficiency

Skrzypczak, Alexandre, Thomas, Alain, Duponchel, Guillaume 10 1900 (has links)
ITC/USA 2013 Conference Proceedings / The Forty-Ninth Annual International Telemetering Conference and Technical Exhibition / October 21-24, 2013 / Bally's Hotel & Convention Center, Las Vegas, NV / Systems using single carrier modulations for flight test transmissions perfectly fit noisy and time selective channels. However, the densification of the airport environment now makes the aero channel also frequency selective due to multiple reflections on surrounding buildings, especially while taxiing and taking off. Obviously, this has a direct consequence on hardware resources and user data rates. In such a context, COFDM represents an appealing solution thanks to its inherent robustness to multipath fading channels. But a direct application of an off-the-shelf COFDM standard is not straightforward as these standards are designed for specific channels whose characteristics are quite different from the aero one. That is why we made an experiment at Toulouse-Blagnac airport to jointly sound the channel and qualify a COFDM waveform. This paper then describes the construction of the waveform and the results of the channel sounding. From this, different standard paradigms are compared.
59

Effects Of Solid State Power Amplifier Nonlinearity On Various Phase Shift Keying Modulation Schemes

Dudak, Celal 01 January 2005 (has links) (PDF)
This study concentrates on the performance evaluation of a specific modulation scheme under nonlinear operation. This modulation scheme is the phase shift keying (PSK) modulation, exemplified by the special cases of BPSK, QPSK, OQPSK, &amp / #960 / /4-QPSK. The specific nonlinear block is chosen to be the solid state power amplifier (SSPA) structure whose simulation model is the Rapp model. Varying transmitter filter characteristic and one of the power amplifier parameters constitute the main methodology of simulations. Bit error rate (BER), error vector magnitude (EVM), and Space Frequency Coordination Group (SFCG) spectral mask constraint are the evaluation parameters taken into account throughout this study. Simulation results support the initial literature survey, which reveals additional features showing how each modulation scheme is affected by various SSPA nonlinearity characteristics.
60

Bluetooth Enhanced Data Rate Baseband Modeling and Implementation

Zou, Lei January 2006 (has links)
The main issue of this thesis is making the behaviour model of Bluetooth EDR (enhanced data rate) baseband signal processing. This Bluetooth baseband project is part of the soft defined radio project at electrical engineering department, Linköping University. In this project, both the basic rate and EDR model were built and simulated. The GFSK and π/4 DQPSK digital modulation and demodulation were implemented in C code. The BER was tested to evaluate the demodulation results. Furthermore, the error correction (FEC) and the error checking (HEC,CRC) were also implemented according to the Bluetooth standards. The CRC flag was detected to test the payload demodulation results. Especially, GFSK and π/4 DQPSK specifications have to be combined with each other at sample rate of ADC. Finally, the basic rate and EDR model were simulated to measure the BER and CRC performance. From the simulation results, the receiver filter, synchronization and channel condition were three key points in this Bluetooth EDR system implementation. So we get further understanding about the Bluetooth system specification and DSP implementation methods.

Page generated in 0.0288 seconds