• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 9
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 18
  • 12
  • 11
  • 11
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Intraday Analysis & Prediction of Volume Distribution on the Stockholm Stock Exchange : An exploratory study of volume distribution and automated trading / Analys av volymfördelning på Stockholmsbörsen

Ribom, Henrik, Sjöberg, Mathias January 2015 (has links)
The purpose of this study is to create a model of prediction for the volume distribution. Due to the lack of previous studies on the subject, an exploratory approach is used, with the purpose of serving as a proof of concept for further research. By looking at all market data from the Stockholm stock exchange the volume distribution of individual order books are matched with a mixed beta distribution and scaled by a prediction based on a linear regression. The model provided in this study outperforms the floating mean by quite a good margin. Some days are, almost by definition, impossible to get an accurate prediction on. Intraday news with a big impact have a tendency to skew the results away from the predicted value. To remedy this the initial model is expanded by using intraday data to catch up on trends / Syftet med denna rapport är att skapa en model för prediction av höglikvida aktiers volym fördelingen på stockholmsbörsen. Detta görs på ett utforskande sätt och agerar som konceptvalidering och bevis att grunda vidare forsking på. Genom att titta på all marknadsdata på stockholmsbörsen kommer den kumulativa volym fördelingen av induviduela aktier skapas. För att sedan bli matchad mot en mixture beta fördeling och skalas med en prediktion erhållen från en linjär regrission. Modelen som presenteras i rapporten fungerar bättre som prediktion än det flytande medelet. Det finns dock dagar som av sin natur är omöjliga att förutspå, exempelvis när en stor nyhet blir känd. För att kompensera för detta expanderas modelen genom att använda data från samma dag som ska prediceras och detta förbättrar modelen för den resterande tiden av dagen.
12

Alternative regression models to Beta distribution under Bayesian approach / Modelos de regressão alternativos à distribuição Beta sob abordagem bayesiana

Paz, Rosineide Fernando da 25 August 2017 (has links)
The Beta distribution is a bounded domain distribution which has dominated the modeling the distribution of random variable that assume value between 0 and 1. Bounded domain distributions arising in various situations such as rates, proportions and index. Motivated by an analysis of electoral votes percentages (where a distribution with support on the positive real numbers was used, although a distribution with limited support could be more suitable) we focus on alternative distributions to Beta distribution with emphasis in regression models. In this work, initially we present the Simplex mixture model as a flexible model to modeling the distribution of bounded random variable then we extend the model to the context of regression models with the inclusion of covariates. The parameters estimation is discussed for both models considering Bayesian inference. We apply these models to simulated data sets in order to investigate the performance of the estimators. The results obtained were satisfactory for all the cases investigated. Finally, we introduce a parameterization of the L-Logistic distribution to be used in the context of regression models and we extend it to a mixture of mixed models. / A distribuição beta é uma distribuição com suporte limitado que tem dominado a modelagem de variáveis aleatórias que assumem valores entre 0 e 1. Distribuições com suporte limitado surgem em várias situações como em taxas, proporções e índices. Motivados por uma análise de porcentagens de votos eleitorais, em que foi assumida uma distribuição com suporte nos números reais positivos quando uma distribuição com suporte limitado seira mais apropriada, focamos em modelos alternativos a distribuição beta com enfase em modelos de regressão. Neste trabalho, apresentamos, inicialmente, um modelo de mistura de distribuições Simplex como um modelo flexível para modelar a distribuição de variáveis aleatórias que assumem valores em um intervalo limitado, em seguida estendemos o modelo para o contexto de modelos de regressão com a inclusão de covariáveis. A estimação dos parâmetros foi discutida para ambos os modelos, considerando o método bayesiano. Aplicamos os dois modelos a dados simulados para investigarmos a performance dos estimadores usados. Os resultados obtidos foram satisfatórios para todos os casos investigados. Finalmente, introduzimos a distribuição L-Logistica no contexto de modelos de regressão e posteriormente estendemos este modelo para o contexto de misturas de modelos de regressão mista.
13

Equação de estimação generalizada e influência local para modelos de regressão beta com medidas repetidas / Generalized estimating equation and local influence to beta regression models with repeated measures

Venezuela, Maria Kelly 04 March 2008 (has links)
Utilizando a teoria de função de estimação linear ótima (Crowder, 1987), propomos equações de estimação generalizadas para modelos de regressão beta (Ferrari e Cribari-Neto, 2004) com medidas repetidas. Além disso, apresentamos equações de estimação generalizadas para modelos de regressão simplex baseadas nas propostas de Song e Tan (2000) e Song et al. (2004) e equações de estimação generalizadas para modelos lineares generalizados com medidas repetidas baseadas nas propostas de Artes e Jorgensen (2000) e Liang e Zeger (1986). Todas essas equações de estimação são desenvolvidas sob os enfoques da modelagem da média com homogeneidade da dispersão e da modelagem conjunta da média e da dispersão com intuito de incorporar ao modelo uma possível heterogeneidade da dispersão. Como técnicas de diagnóstico, desenvolvemos uma generalização de algumas medidas de diagnóstico quando abordamos quaisquer equações de estimação definidas tanto para modelagem do parâmetro de posição considerando a homogeneidade do parâmetro de dispersão como para modelagem conjunta dos parâmetros de posição e dispersão. Entre essas medidas, destacamos a proposta da influência local (Cook, 1986) desenvolvida para equações de estimação. Essa medida teve um bom desempenho, em simulações, para destacar corretamente pontos influentes. Por fim, realizamos aplicações a conjuntos de dados reais. / Based on the concept of optimum linear estimating equation (Crowder, 1987), we develop generalized estimating equation (GEE) to analyze longitudinal data considering marginal beta regression models (Ferrari and Cribari-Neto, 2004). The GEEs are also presented to marginal simplex models for longitudinal continuous proportional data proposed by Song and Tan (2000) and Song et al. (2004) and to generalized linear models for longitudinal data based on the proposes of Artes and J$\\phi$rgensen (2000) and Liang and Zeger (1986). All of them are developed focusing the assumption of homogeneous dispersion and with varying dispersion. For the diagnostic techniques, we generalize some diagnostic measures for estimating equations to model the position parameter considering an homogeneous dispersion parameter and for joint modelling of position and dispersion parameters to take in account a possible heterogeneous dispersion. Among these measures, we point out the local influence (Cook, 1986) developed to estimating equations. This measure can correctly show influential observations in simulation study. Finally, the theory is applied to real data sets.
14

Flexible models for hierarchical and overdispersed data in agriculture / Modelos flexíveis para dados hierárquicos e superdispersos na agricultura

Sercundes, Ricardo Klein 29 March 2018 (has links)
In this work we explored and proposed flexible models to analyze hierarchical and overdispersed data in agriculture. A semi-parametric generalized linear mixed model was applied and compared with the main standard models to assess count data and, a combined model that take into account overdispersion and clustering through two separate sets of random effects was proposed to model nominal outcomes. For all models, the computational codes were implemented using the SAS software and are available in the appendix. / Nesse trabalho, exploramos e propusemos modelos flexíveis para a análise de dados hierárquicos e superdispersos na agricultura. Um modelo linear generalizado semi- paramétrico misto foi aplicado e comparado com os principais modelos para a análise de dados de contagem e, um modelo combinado que leva em consideração a superdispersão e a hierarquia dos dados por meio de dois efeitos aleatórios distintos foi proposto para a análise de dados nominais. Todos os códigos computacionais foram implementados no software SAS sendo disponibilizados no apêndice.
15

Equação de estimação generalizada e influência local para modelos de regressão beta com medidas repetidas / Generalized estimating equation and local influence to beta regression models with repeated measures

Maria Kelly Venezuela 04 March 2008 (has links)
Utilizando a teoria de função de estimação linear ótima (Crowder, 1987), propomos equações de estimação generalizadas para modelos de regressão beta (Ferrari e Cribari-Neto, 2004) com medidas repetidas. Além disso, apresentamos equações de estimação generalizadas para modelos de regressão simplex baseadas nas propostas de Song e Tan (2000) e Song et al. (2004) e equações de estimação generalizadas para modelos lineares generalizados com medidas repetidas baseadas nas propostas de Artes e Jorgensen (2000) e Liang e Zeger (1986). Todas essas equações de estimação são desenvolvidas sob os enfoques da modelagem da média com homogeneidade da dispersão e da modelagem conjunta da média e da dispersão com intuito de incorporar ao modelo uma possível heterogeneidade da dispersão. Como técnicas de diagnóstico, desenvolvemos uma generalização de algumas medidas de diagnóstico quando abordamos quaisquer equações de estimação definidas tanto para modelagem do parâmetro de posição considerando a homogeneidade do parâmetro de dispersão como para modelagem conjunta dos parâmetros de posição e dispersão. Entre essas medidas, destacamos a proposta da influência local (Cook, 1986) desenvolvida para equações de estimação. Essa medida teve um bom desempenho, em simulações, para destacar corretamente pontos influentes. Por fim, realizamos aplicações a conjuntos de dados reais. / Based on the concept of optimum linear estimating equation (Crowder, 1987), we develop generalized estimating equation (GEE) to analyze longitudinal data considering marginal beta regression models (Ferrari and Cribari-Neto, 2004). The GEEs are also presented to marginal simplex models for longitudinal continuous proportional data proposed by Song and Tan (2000) and Song et al. (2004) and to generalized linear models for longitudinal data based on the proposes of Artes and J$\\phi$rgensen (2000) and Liang and Zeger (1986). All of them are developed focusing the assumption of homogeneous dispersion and with varying dispersion. For the diagnostic techniques, we generalize some diagnostic measures for estimating equations to model the position parameter considering an homogeneous dispersion parameter and for joint modelling of position and dispersion parameters to take in account a possible heterogeneous dispersion. Among these measures, we point out the local influence (Cook, 1986) developed to estimating equations. This measure can correctly show influential observations in simulation study. Finally, the theory is applied to real data sets.
16

Alternative regression models to Beta distribution under Bayesian approach / Modelos de regressão alternativos à distribuição Beta sob abordagem bayesiana

Rosineide Fernando da Paz 25 August 2017 (has links)
The Beta distribution is a bounded domain distribution which has dominated the modeling the distribution of random variable that assume value between 0 and 1. Bounded domain distributions arising in various situations such as rates, proportions and index. Motivated by an analysis of electoral votes percentages (where a distribution with support on the positive real numbers was used, although a distribution with limited support could be more suitable) we focus on alternative distributions to Beta distribution with emphasis in regression models. In this work, initially we present the Simplex mixture model as a flexible model to modeling the distribution of bounded random variable then we extend the model to the context of regression models with the inclusion of covariates. The parameters estimation is discussed for both models considering Bayesian inference. We apply these models to simulated data sets in order to investigate the performance of the estimators. The results obtained were satisfactory for all the cases investigated. Finally, we introduce a parameterization of the L-Logistic distribution to be used in the context of regression models and we extend it to a mixture of mixed models. / A distribuição beta é uma distribuição com suporte limitado que tem dominado a modelagem de variáveis aleatórias que assumem valores entre 0 e 1. Distribuições com suporte limitado surgem em várias situações como em taxas, proporções e índices. Motivados por uma análise de porcentagens de votos eleitorais, em que foi assumida uma distribuição com suporte nos números reais positivos quando uma distribuição com suporte limitado seira mais apropriada, focamos em modelos alternativos a distribuição beta com enfase em modelos de regressão. Neste trabalho, apresentamos, inicialmente, um modelo de mistura de distribuições Simplex como um modelo flexível para modelar a distribuição de variáveis aleatórias que assumem valores em um intervalo limitado, em seguida estendemos o modelo para o contexto de modelos de regressão com a inclusão de covariáveis. A estimação dos parâmetros foi discutida para ambos os modelos, considerando o método bayesiano. Aplicamos os dois modelos a dados simulados para investigarmos a performance dos estimadores usados. Os resultados obtidos foram satisfatórios para todos os casos investigados. Finalmente, introduzimos a distribuição L-Logistica no contexto de modelos de regressão e posteriormente estendemos este modelo para o contexto de misturas de modelos de regressão mista.
17

Uma priori beta para distribuição binomial negativa

OLIVEIRA, Cícero Carlos Felix de 08 July 2011 (has links)
Submitted by (ana.araujo@ufrpe.br) on 2016-05-25T16:16:39Z No. of bitstreams: 1 Cicero Carlos Felix de Oliveira.pdf: 934310 bytes, checksum: 4f4332b0b319f6bf33cdc1d615c36324 (MD5) / Made available in DSpace on 2016-05-25T16:16:39Z (GMT). No. of bitstreams: 1 Cicero Carlos Felix de Oliveira.pdf: 934310 bytes, checksum: 4f4332b0b319f6bf33cdc1d615c36324 (MD5) Previous issue date: 2011-07-08 / This dissertation is being dealt with a discrete distribution based on Bernoulli trials, which is the Negative Binomial distribution. The main objective is to propose a new non-informative prior distribution for the Negative Binomial model, which is being termed as a possible prior distribution Beta(0; 0), which is an improper distribution. This distribution is also known for the Binomial model as Haldane prior, but for the Negative Binomial model there are no studies to date. The study of the behavior of this prior was based on Bayesian and classical contexts. The idea of using a non-informative prior is the desire to make statistical inference based on the minimum of information prior subjective as possible. Well, makes it possible to compare the results of classical inference that uses only sample information, for example, the maximum likelihood estimator. When is compared the Beta(0; 0) distribution with the Bayes-Laplace prior and Jeffreys prior, based on the Bayesian estimators (posterior mean and posterior mode) and the maximum likelihood estimator, note that the possible Beta(0; 0) prior is less informative than the others prior. It is also verified that is prior possible is a limited distribution in parameter space, thus, an important feature for non-informative prior. The main argument shows that the possible Beta(0; 0) prior is adequate, when it is applied in a predictive posterior distribution for Negative Binomial model, leading the a Beta-Negative Binomial distribution (which corresponds the a hypergeometric multiplied by a probability). All observations citas are strengthened by several studies, such as: basic concepts related to Bayesian Inference and concepts of the negative binomial distribution and Beta-Negative Binomial (a mixture of Beta with the negative binomial) distribution. / Nesta dissertação está sendo abordado uma distribuição discreta baseada em ensaios de Bernoulli, que é a distribuição Binomial Negativa. O objetivo principal é prôpor uma nova distribuição a priori não informativa para o modelo Binomial Negativa, que está sendo denominado como uma possível distribuição a priori Beta(0; 0), que é uma distribuição imprópria. Essa distribuição também é conhecida para o modelo Binomial como a priori de Haldane, mas para o modelo Binomial Negativa não há nenhum estudo até o momento. O estudo do comportamento desta a priori foi baseada nos contextos bayesiano e clássico. A ideia da utilização de uma a priori não informativa é o desejo de fazer inferência estatística baseada no mínimo de informação subjetiva a priori quanto seja possível. Assim, torna possível a comparação com os resultados da inferência clássica que só usa informação amostral, como por exemplo, o estimador de máxima verossimilhança. Quando é comparado a distribuição Beta(0; 0) com a priori de Bayes - Laplace e a priori de Jeffreys, baseado-se nos estimadores bayesiano (média a posteriori e moda a posteriori) e no estimador de máxima verossimilhança, nota-se que a possível a priori Beta(0; 0) é menos informativa do que as outras a priori. É verificado também, que esta possível a priori é uma distribuição limitada no espaço paramétrico, sendo assim, uma característica importante para a priori não informativa. O principal argumento mostra que a possível a priori Beta(0; 0) é adequada, quando ela é aplicada numa distribuição a posteriori preditiva para modelo Binomial Negativa, levando a uma distribuição Beta Binomial Negativa (que corresponde a uma hipergeométrica multiplicada por uma probabilidade). Todas as observações citadas são fortalecidas por alguns estudos feitos, tais como: conceitos básicos associados à Inferência Bayesiana e conceitos das distribuições Binomial Negativa e Beta Binomial Negativa (que uma mistura da Beta com a Binomial Negativa).
18

Condition measuring and lifetime modelling of disconnectors, circuit breakers and other electrical power transmission equipment

Westerlund, Per January 2017 (has links)
The supply of electricity is important in modern society, so the outages of the electric grid should be few and short, especially for the transmission grid. A summary of the history of the Swedish electrical system is presented. The objective is to be able to plan the maintenance better by following the condition of the equipment. The risk matrix can be used to choose which component to be maintained. The risk matrix is improved by adding a dimension, the uncertainty of the probability. The risk can be reduced along any dimension: better measurements, preventive maintenance or more redundancy. The number of dimensions can be reduced to two by following iso-risk lines calculated for the beta distribution. This thesis lists twenty surveys about circuit breakers and disconnectors, with statistics about the failures and the lifetime. It also presents about forty condition-measuring methods for circuit breakers and disconnectors, mostly applicable to the electric contacts and the mechanical parts. A method for scheduling thermography based on analysis of variance of the current is tried. Its aim is to reduce the uncertainty of thermography and it is able to explain two thirds of the variation using the time of the day, the day of the week and the week number as explanatory variables. However, the main problem remains as the current is in general too low. A system with IR sensors has been installed at the nine contacts of six disconnectors with the purpose of avoiding outages for maintenance if the contacts are in a good condition. The measured temperatures are sent by radio and regressed against the square of the current, the best exponent found. The coefficient of determination $R^2$ is high, greater than 0.9. The higher the regression coefficient is, the more heat is produced at the contact. So this ranks the different contacts. Finally a framework for lifetime modelling and condition measuring is presented. Lifetime modelling consists in associating a distribution of time to failure with each subpopulation. Condition measuring means measuring a parameter and estimating its value in the future. If it exceeds a threshold, maintenance should be carried out. The effect of maintenance of the contacts is shown for four disconnectors. An extension of the risk matrix with uncertainty, a survey of statistics and condition monitoring methods, a system with IR sensors at contacts, a thermography scheduling method and a framework for lifetime modelling and condition measuring are presented. They can improve the planning of outages for maintenance. Finally a framework for lifetime modelling and condition measuring is presented. Lifetime modelling consists in associating a distribution of time to failure with each subpopulation. Condition measuring means measuring a parameter and estimating its value in the future. If it exceeds a threshold, maintenance should be carried out. The effect of maintenance of the contacts is shown for four disconnectors. An extension of the risk matrix with uncertainty, a survey of statistics and condition monitoring methods, a system with IR sensors at contacts, a thermography scheduling method and a framework for lifetime modelling and condition measuring are presented. They can improve the planning of outages for maintenance. / Elförsörjningen är viktig i det moderna samhället, så avbrotten bör vara få och korta, särskilt i stamnätet. En kortfattad historik över det svenska elsystemet presenteras. Målet är att kunna planera avbrotten för underhåll bättre genom att veta mera om apparaternas skick. Det är svårt att planera avbrott för underhåll och utbyggnad. Riskmatrisen är verktyg för att välja vad som ska underhållas och den kan förbättras genom att lägga till en dimension, sannolikhetens osäkerhet. Risken kan minskas längs med varje dimension: bättre mätningar, förebyggande underhåll och mer redundans. Antalet dimensioner kan igen bli två genom att följa linjer med samma risk, som är beräknade för betafördelningen. Denna avhandling tar upp tjugo studier av fel i brytare och frånskiljare med data om felorsak och livslängd. Den har också en översikt av ett fyrtiotal olika metoder för tillståndsmätningar för brytare och frånskiljare, som huvudsakligen rör de elektriska kontakterna och de mekaniska delarna. Ett system med IR sensorer har installerats på de nio kontakterna på sex frånskiljare. Målet är att minska antalet avbrott för underhåll genom att skatta skicket när frånskiljarna är i drift. De uppmätta temperaturerna tas emot genom radio och behandlas genom regression mot kvadraten av strömmen, då den bästa exponenten för strömmen visade sig vara 2,0. Förklaringsfaktorn $R^2$ är hög, över 0,9. För varje kontakt ger det en regressionskoefficient. Ju högre koefficienten är, desto mer värme utvecklas det i kontakten, vilket kan leda till skador på materialet. Koefficienterna ger en rangordning av frånskiljarna. Systemet kan också användas för att minska eller öka den tillåtna strömmen baserat på skicket. Slutligen förklaras ett ramverk för livslängdsmodellering och tillståndsmätning. Livslängdsmodellering innebär att koppla en fördelning för tiden till fel med varje delpopulation. Med tillståndsmätning avses att mäta en parameter och skatta dess värde i framtiden. Om den överskrider en tröskel, måste apparaten underhållas. Effekten av underhåll visas för fyra frånskiljare. En utveckling av riskmatrisen med osäkerheten, en sammanställning av statistik och metoder för tillståndsövervakning, ett system med IR-sensor vid kontakerna, en metod för termografiplanering och ett ramverk för livslängdsmodellering och tillståndsmätningar presenteras. De kan förbättra avbrottsplaneringen. / El suministro de energía eléctrica es importante en la sociedad moderna. Por eso los cortes eléctricos deben ser poco frecuentes y de poca duración, sobre todo en la red de transmisión. Esta tesis resume la historia del sistema eléctrico sueco. El objetivo es planificar los cortes mejor siguiendo la condición de los aparatos. La matriz de riesgo se utiliza muchas veces para escoger en qué aparatos debería realizarse mantenimiento. Esta matriz se puede mejorar añadiendo una dimensión: la incertidumbre de la probabilidad. El riesgo puede ser disminuido siguiendo cada una de las tres dimensiones: mejores mediciones, mantenimiento preventivo y mayor redundancia. El número de dimensiones puede reducirse siguiendo líneas del mismo riesgo calculadas para la distribución beta. Esta tesis presenta veinte estudios de fallos en interruptores y seccionadores con datos sobre la causa y el tiempo hasta la avería. Contiene también una visión general de cuarenta métodos para medir la condición de seccionadores e interruptores, aplicables en su mayoría a los contactos eléctricos y los componentes mecánicos. Se ha instalado un sistema con sensores infrarrojos en los seis contactos de nueve seccionadores. El objetivo es disminuir los cortes de servicio para mantenimiento, estimando la condición con el seccionador en servicio. Las temperaturas son transmitidas por radio y se hace una regresión con el cuadrado de la corriente, ya que el mejor exponente de la corriente resultó ser 2,0. $R^2$ alcanza un valor de 0,9 indicando un buen ajuste de los datos por parte del modelo. Existe un coeficiente de regresión para cada contacto y este sirve para ordenar los contactos según la necesidad de mantenimiento, ya que cuanto mayor sea el coeficiente más calor se produce en el contacto. Finalmente se explica que el modelado de tiempo hasta la avería consiste en asignar una distribución estadística a cada equipo. La monitorización del estado consiste en medir y estimar un parámetro y luego predecir su valor en el futuro. Si va a sobrepasar un cierto límite, el equipo necesitará de mantenimiento. Se presenta el efecto de mantenimiento de cuatro seccionadores. Un desarrollo de la matriz de riesgo, un conjunto de estadísticas y métodos de monitoreo de condición, un sistema de sensores IR situados cerca de los contactos, en método de planificación de termografía y un concepto para explicar la modelización de tiempo hasta la avería y de la monitorización de la condición han sido presentados y hace posible una mejor planificación de los cortes de servicio. / <p>QC 20170928</p>
19

Statistical Inference for a New Class of Skew t Distribution and Its Related Properties

Basalamah, Doaa 04 August 2017 (has links)
No description available.
20

Modelos de regressão estáticos e dinâmicos para taxas ou proporções: uma abordagem bayesiana / Regression of static and dynamic models for proportions or rates: a Bayesian approach

Correia, Leandro Tavares 01 June 2015 (has links)
Este trabalho apresenta um estudo de dados com resposta em intervalos limitados, mais especificamente no intervalo [0,1], como no caso de taxas e proporções. Em diversos casos práticos esta estrutura de dados apresenta uma quantidade não negligenciável de valores extremos (0 e 1) e que modelos usuais não são adequados para sua análise. Para esta situação propomos, por meio de um enfoque Bayesiano, modelos de regressão beta inflacionado de zeros e uns (BIZU) e modelos de regressão Tobit duplamente censurado adaptados nesse intervalo. Técnicas de diagnóstico e qualidade do ajuste também são discutidas. Apresentamos a análise desta estrutura de dados no contexto de série de tempo por meio da abordagem Bayesiana de modelos dinâmicos. Estudos de comportamento e previsão de séries de tempo foram explorados utilizando técnicas de Monte Carlo sequencial, conhecidas como filtro de partículas. Particularidades e competitividade entre as duas classes de modelos também foram discutidas. / This paper presents a study focused on observations in a limited interval , more specifically in [0,1] , such as rate and proportion data. In many practical cases this data structure has a considerable amount of extreme values (0 and 1) and usual classical models are not suitable for this type of data set. We propose two class of regression models to deal with this context: beta inflated of zeros and ones (BIZU) models and Tobit doubly censored models adapted in this interval. Fit quality and diagnostic techniques are also discussed. Time series of proportions are also developed through Bayesian dynamic models. Forecasting and behavioral analysis were explored using sequential Monte Carlo techniques, known as particle filters. Particularities and competitiveness between the two classes of models were also discussed as well.

Page generated in 0.1738 seconds