Spelling suggestions: "subject:"biodegradation"" "subject:"diodegradation""
381 |
Treatment of 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE) by an edible fungus Pleurotus pulmonarius.January 2006 (has links)
Chan Kam Che. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 199-219). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstracts --- p.iii / 摘要 --- p.v / Contents --- p.vii / List of figures --- p.xiv / List of tables --- p.xix / Abbreviations --- p.xxii / Chapter Chapter I --- Introduction --- p.1 / Chapter 1.1 --- Persistent organic pollutants --- p.1 / Chapter 1.2 --- DDT and DDE --- p.2 / Chapter 1.2.1 --- Background --- p.2 / Chapter 1.2.2 --- Health effects --- p.4 / Chapter 1.2.3 --- Environmental exposure of DDE --- p.4 / Chapter 1.2.4 --- Level of DDE in human --- p.9 / Chapter 1.2.5 --- Biodegradation of DDE --- p.10 / Chapter 1.3 --- Remediation methods --- p.11 / Chapter 1.3.1 --- Physical/ chemical treatment --- p.11 / Chapter 1.3.2 --- Bioremediation --- p.13 / Chapter 1.4 --- Fungal Bioremediation --- p.14 / Chapter 1.5 --- Ligninolytic enzymes --- p.15 / Chapter 1.5.1 --- Laccase --- p.15 / Chapter 1.5.2 --- Peroxidases --- p.20 / Chapter 1.5.2.1 --- Manganese Peroxidase (MnP) --- p.20 / Chapter 1.5.2.1 --- Lignin Peroxidase (LiP) --- p.24 / Chapter 1.6 --- Cultivation of Pleurotus pulmonarius --- p.27 / Chapter 1.7 --- Enzyme technology on environmental cleanup and its limitation --- p.28 / Chapter 1.8 --- Aims and objectives of this study --- p.29 / Chapter Chapter II --- Materials and Methods --- p.30 / Chapter 2.1 --- Organism and growth conditions --- p.30 / Chapter 2.2 --- Cultivation and the expression of the ligninolytic enzyme-coding genes during solid-state-fermentation of edible mushroom Pleurotus pulmonarius --- p.30 / Chapter 2.3 --- Treatment of DDE by living P. pulmonarius --- p.31 / Chapter 2.3.1 --- Optimization of DDE removal in broth system --- p.31 / Chapter 2.3.1.1 --- Effects of initial DDE concentration on the removal of DDE --- p.32 / Chapter 2.3.1.2 --- Effects of inoculum size on the removal of DDE --- p.33 / Chapter 2.3.1.3 --- Effects of incubation time on the removal of DDE and transcriptional profiles of the ligninolytic enzyme-coding genes --- p.33 / Chapter 2.3.2 --- Optimization of DDE removal in soil system --- p.34 / Chapter 2.3.2.1 --- Effects of initial DDE concentration on the removal of DDE --- p.34 / Chapter 2.3.2.2 --- Effects of inoculum size on the removal of DDE --- p.35 / Chapter 2.3.2.3 --- Effects of incubation time on the removal of DDE --- p.35 / Chapter 2.3.2.4 --- Transcription of the ligninolytic enzyme-coding genes --- p.35 / Chapter 2.4 --- Treatment of DDE by 1st SMC of p. pulmonarius grown on straw-based compost --- p.36 / Chapter 2.4.1 --- Optimization of DDE removal in soil system --- p.36 / Chapter 2.5 --- Treatment of DDE by crude enzyme preparations of P. pulmonarius grown on straw-based compost --- p.36 / Chapter 2.5.1 --- Optimization of DDE removal in broth system --- p.36 / Chapter 2.5.1.1 --- Effects of initial DDE concentration on the removal of DDE --- p.37 / Chapter 2.5.1.2 --- Effects of amounts of crude enzyme preparations on the removal of DDE --- p.37 / Chapter 2.5.1.3 --- Effects of incubation time on the removal of DDE --- p.37 / Chapter 2.5.2 --- Optimization of DDE removal in soil system --- p.37 / Chapter 2.5.2.1 --- Effects of initial DDE concentration on the removal of DDE --- p.38 / Chapter 2.5.2.2 --- Effects of amount of crude enzyme preparations on the removal of DDE --- p.38 / Chapter 2.5.2.3 --- Effects of incubation time on the removal of DDE --- p.38 / Chapter 2.6 --- Soil characterization --- p.39 / Chapter 2.6.1 --- Identification of organic contaminants in soil sample from Gene Garden using Gas Chromatography/Mass Spectrometry (GC/MS) --- p.39 / Chapter 2.6.2 --- Determination of soil texture --- p.42 / Chapter 2.6.3 --- Fresh soil/air-dried sample moisture --- p.44 / Chapter 2.6.4 --- "Soil pH, electrical conductivity & salinity" --- p.44 / Chapter 2.6.5 --- Total organic carbon contents --- p.44 / Chapter 2.6.6 --- Total nitrogen and total phosphorus --- p.44 / Chapter 2.6.7 --- Available nitrogen --- p.45 / Chapter 2.6.8 --- Available phosphorus --- p.45 / Chapter 2.6.9 --- Potassium value --- p.46 / Chapter 2.7 --- Quantification of residual DDE level --- p.47 / Chapter 2.7.1 --- Preparation of DDE stock solution --- p.47 / Chapter 2.7.2 --- Extraction and quantification of DDE using Gas Chromatography with Electron Capture Detector (GC/μECD) --- p.47 / Chapter 2.7.3 --- Identification of DDE breakdown products by GC/MS --- p.50 / Chapter 2.8 --- Extraction of protein and ligninolytic enzymes --- p.53 / Chapter 2.8.1 --- Protein assay --- p.53 / Chapter 2.8.2 --- Laccase assay --- p.53 / Chapter 2.8.3 --- Manganese peroxidase assay --- p.54 / Chapter 2.8.4 --- Calculation of activity and specific activity of laccase and manganese peroxidase --- p.54 / Chapter 2.9 --- Estimation of fungal biomass --- p.55 / Chapter 2.9.1 --- Preparation of ergosterol standard solution --- p.56 / Chapter 2.9.2 --- Analysis of ergosterol content --- p.56 / Chapter 2.10 --- Expression of the ligninolytic enzyme-coding genes --- p.58 / Chapter 2.10.1 --- Preparation of ribonuclease free reagents and apparatus --- p.58 / Chapter 2.10.2 --- RNA isolation and purification --- p.58 / Chapter 2.10.3 --- cDNA synthesis --- p.59 / Chapter 2.10.4 --- Semi-quantification of ligninolytic enzyme-coding gene expression by RT-PCR --- p.59 / Chapter 2.11 --- Preparation of crude enzyme preparations from P. pulmonarius compost --- p.63 / Chapter 2.12 --- "Assessment criteria: removal efficiency, RE, and removal capacity, RC" --- p.63 / Chapter 2.13 --- Statistical analysis “ --- p.64 / Chapter Chapter III --- Results --- p.65 / Chapter 3.1 --- Soil characterization --- p.65 / Chapter 3.2 --- Cultivation and the expression of the ligninolytic enzyme-coding genes during solid-state-fermentation of edible mushroom Pleurotus pulmonarius --- p.66 / Chapter 3.2.1 --- Mushroom yield --- p.66 / Chapter 3.2.2 --- Protein content --- p.66 / Chapter 3.2.3 --- Specific ligninolytic enzymes activities --- p.66 / Chapter 3.2.4 --- Ergosterol content --- p.69 / Chapter 3.2.5 --- Ligninolytic enzymes productivities --- p.69 / Chapter 3.2.6 --- Expression of the ligninolytic enzyme-coding genes during solid-state-fermentation --- p.72 / Chapter 3.3 --- Treatment of DDE by living P. pulmonaruis --- p.78 / Chapter 3.3.1 --- Optimization of DDE removal in broth system --- p.78 / Chapter 3.3.1.1 --- Effects of initial DDE concentration on the removal of DDE --- p.78 / Chapter 3.3.1.1.1 --- Effects of DDE on biomass development --- p.78 / Chapter 3.3.1.1.2 --- Protein content --- p.78 / Chapter 3.3.1.1.3 --- Specific ligninolytic enzyme activities --- p.78 / Chapter 3.3.1.1.4 --- Ligninolytic enzyme productivities --- p.79 / Chapter 3.3.1.1.5 --- DDE removal and removal capacity --- p.79 / Chapter 3.3.1.2 --- Effects of inoculum sizes on the removal of DDE --- p.84 / Chapter 3.3.1.2.1 --- Effects of DDE on biomass development --- p.84 / Chapter 3.3.1.2.2 --- Protein content --- p.84 / Chapter 3.3.1.2.3 --- Specific ligninolytic enzyme activities --- p.85 / Chapter 3.3.1.2.4 --- Ligninolytic enzyme productivities --- p.85 / Chapter 3.3.1.2.5 --- DDE removal and removal capacity --- p.85 / Chapter 3.3.1.3 --- Effects of incubation time on the removal of 4.0 mM DDE/g biomass --- p.89 / Chapter 3.3.1.3.1 --- Effects of DDE on biomass development --- p.89 / Chapter 3.3.1.3.2 --- Protein content --- p.89 / Chapter 3.3.1.3.3 --- Specific ligninolytic enzyme activities and ligninolytic enzyme productivities --- p.89 / Chapter 3.3.1.3.4 --- DDE removal and removal capacity --- p.90 / Chapter 3.3.1.3.5 --- Putative degradation derivatives --- p.90 / Chapter 3.3.1.3.6 --- Expression of the ligninolytic enzyme-coding genes during the removal of 4.0 mM DDE/g biomass --- p.94 / Chapter 3.3.1.4 --- Effects of incubation time on the removal of 10.0 mM DDE/g biomass --- p.100 / Chapter 3.3.1.4.1 --- Effects of DDE on biomass development --- p.100 / Chapter 3.3.1.4.2 --- Protein content --- p.100 / Chapter 3.3.1.4.3 --- Specific ligninolytic enzyme activities and ligninolytic enzyme productivities --- p.100 / Chapter 3.3.1.4.4 --- Expression of the ligninolytic enzyme-coding genes during the removal of 10.0 mM DDE/g biomass --- p.102 / Chapter 3.3.2 --- Optimization of DDE removal in soil system --- p.107 / Chapter 3.3.2.1 --- Effects of initial DDE concentration on the removal of DDE --- p.107 / Chapter 3.3.2.1.1 --- Ergosterol content --- p.107 / Chapter 3.3.2.1.2 --- Protein content --- p.107 / Chapter 3.3.2.1.3 --- Specific ligninolytic enzyme activities and ligninolytic enzyme productivities --- p.107 / Chapter 3.3.2.1.4 --- DDE removal and removal capacity --- p.108 / Chapter 3.3.2.2 --- Effects of inoculum sizes on the removal of DDE --- p.111 / Chapter 3.3.2.2.1 --- Ergosterol content --- p.111 / Chapter 3.3.2.2.2 --- Protein content --- p.111 / Chapter 3.3.2.2.3 --- Specific ligninolytic enzyme activities and ligninolytic enzyme productivities --- p.111 / Chapter 3.3.2.2.4 --- DDE removal and removal capacity --- p.112 / Chapter 3.3.2.3 --- Effects of incubation time on the removal of DDE --- p.115 / Chapter 3.3.2.3.1 --- Ergosterol content --- p.115 / Chapter 3.3.2.3.2 --- Protein content --- p.115 / Chapter 3.3.2.3.3 --- Specific ligninolytic enzyme activities and ligninolytic enzyme productivities --- p.115 / Chapter 3.3.2.3.4 --- DDE removal and removal capacity --- p.116 / Chapter 3.3.2.3.5 --- Putative degradation derivatives --- p.116 / Chapter 3.3.2.4 --- Transcription of the ligninolytic enzyme-coding genes --- p.121 / Chapter 3.4 --- Treatment of DDE by 1st SMC of p. pulmonarius grown on straw-based compost --- p.127 / Chapter 3.4.1 --- Optimization of DDE removal in soil system --- p.127 / Chapter 3.4.1.1 --- Effects of initial DDE concentration on the removal of DDE --- p.127 / Chapter 3.4.1.1.1 --- Ergosterol content --- p.127 / Chapter 3.4.1.1.2 --- Protein content --- p.127 / Chapter 3.4.1.1.3 --- Specific ligninolytic enzyme activities and ligninolytic enzyme productivities --- p.127 / Chapter 3.4.1.1.4 --- DDE removal and removal capacity --- p.128 / Chapter 3.4.1.2 --- Effects of inoculum sizes on the removal of DDE --- p.132 / Chapter 3.4.1.2.1 --- Ergosterol content --- p.132 / Chapter 3.4.1.2.2 --- Protein content --- p.132 / Chapter 3.4.1.2.3 --- Specific ligninolytic enzyme activities and ligninolytic enzyme productivities --- p.132 / Chapter 3.4.1.2.4 --- DDE removal and removal capacity --- p.133 / Chapter 3.4.1.3 --- Effects of incubation time on the removal of DDE --- p.136 / Chapter 3.4.1.3.1 --- Ergosterol content --- p.136 / Chapter 3.4.1.3.2 --- Protein content --- p.136 / Chapter 3.4.1.3.3 --- Specific ligninolytic enzyme activities and ligninolytic enzyme productivities --- p.136 / Chapter 3.4.1.3.4 --- DDE removal and removal capacity --- p.137 / Chapter 3.4.1.3.5 --- Putative degradation derivatives --- p.137 / Chapter 3.5 --- Treatment of DDE by crude enzyme preparations of P. pulmonarius grown on straw-based compost --- p.142 / Chapter 3.5.1 --- The crude enzyme preparations of P. pulmonarius grown on straw-based compost --- p.142 / Chapter 3.5.2 --- Optimization of DDE removal in broth system --- p.143 / Chapter 3.5.2.1 --- Effects of initial DDE concentration on the removal of DDE --- p.143 / Chapter 3.5.2.2 --- Effects of amounts of crude enzyme preparations on the removal of DDE --- p.145 / Chapter 3.5.2.3 --- Effects of incubation time on the removal of DDE --- p.147 / Chapter 3.5.2.4 --- Putative degradation derivatives --- p.147 / Chapter 3.5.3 --- Optimization of DDE removal in soil system --- p.151 / Chapter 3.5.3.1 --- Effects of initial DDE concentration on the removal of DDE --- p.151 / Chapter 3.5.3.2 --- Effects of amounts of crude enzyme preparations on the removal of DDE --- p.151 / Chapter 3.5.3.3 --- Effects of incubation time on the removal of DDE --- p.154 / Chapter 3.5.3.4 --- Putative degradation derivatives --- p.154 / Chapter Chapter IV --- Discussions --- p.158 / Chapter 4.1 --- Quantification of the expression of the ligninolytic enzyme-coding genes --- p.158 / Chapter 4.2 --- Artificial cultivation and the expression of the ligninolytic enzyme-coding genes during solid-state-fermentation of edible mushroom Pleurotus pulmonarius --- p.164 / Chapter 4.3 --- Treatment of DDE by living P. pulmonarius --- p.166 / Chapter 4.3.1 --- Optimization of DDE removal in broth system --- p.166 / Chapter 4.3.2 --- Optimization of DDE removal in soil system --- p.169 / Chapter 4.3.3 --- Phylogeny of the ligninolytic enzyme-coding genes --- p.170 / Chapter 4.3.3.1 --- Laccase coding genes --- p.170 / Chapter 4.3.3.2 --- MnP coding genes --- p.175 / Chapter 4.3.4 --- Transcription of the ligninolytic enzyme-coding genes --- p.178 / Chapter 4.4 --- Treatment of DDE by 1st SMC of P. pulmonarius grown on straw-based compost --- p.183 / Chapter 4.4.1 --- Optimization of DDE removal in soil system --- p.183 / Chapter 4.5 --- Treatment of DDE by crude enzyme preparations of P. pulmonarius grown on straw-based compost --- p.184 / Chapter 4.6 --- Cost-effectiveness of the bioremediation method --- p.185 / Chapter 4.7 --- Further investigations --- p.194 / Chapter Chapter V --- Conclusions --- p.197 / References --- p.199
|
382 |
Removal of Sulfamethoxazole by Adsorption and Biodegradation in the Subsurface: Batch and Column Experiments with Soil and Biochar AmendmentsYao, Wenwen 24 January 2018 (has links)
The wide use and the incomplete metabolism of antibiotics, along with the poor removal efficiency of current treatment systems, results in the introduction of large quantities of antibiotics to the environment through the discharge of treated and untreated wastewater. If not treated or attenuated near the source of discharge, the antibiotics can be distributed widely in the environment. In this research, sulfamethoxazole (SMX), a common sulfonamide antibiotic, was selected as a model compound due to its presence in the environment and its resistance to remediation and natural attenuation. Among the various entry routes, discharges from on-site disposal systems are of particular interest due to the wide use of these systems. The complex nature of subsurface transport downstream of these systems adds difficulties to the removal of SMX from subsurface discharges. For this research, two processes that impact SMX removal, biodegradation and sorption, were examined to determine the primary factors governing the elimination of SMX from septic effluent discharges in the subsurface. To characterize the biodegradation of SMX, batch experiments were conducted with SMX in the presence of septic effluent and soil for both aerobic and anoxic conditions. Results showed that SMX removal was limited in the septic effluent but increased in the presence of soil, demonstrating the important role of the soil in SMX removal in both aerobic and anoxic conditions. Addition of external nutrients (ammonium and sulfate) had small effects on SMX removal, although SMX removal was enhanced under aerobic condition with increased dissolved organic carbon. To overcome the limited sorption of SMX on soil, soil amendments were developed and evaluated using biochar, a green and cost-effective adsorbent. Biochars produced from different types of feedstock were characterized for different pyrolysis temperatures, and their adsorption behaviors were examined and compared with commercial biochar and activated carbon (AC). Adsorption isotherms were developed and adsorption kinetics of soil, biochar and AC were studied. Results showed that adsorption on soil, biochar and AC followed three different kinetics models and their equilibrium isotherms followed the Freunlich model. Higher adsorption rates were achieved with biochars prepared at the higher temperature. A lab-engineered biochar with pine sawdust at 500 °C achieved comparable sorption capacity to AC. SMX transport in subsurface was also explored with saturated soil columns filled with soil that was mixed with biochar at different percentages. Significant SMX removal (including complete elimination at a low flowrate and over 90 % elimination at a high flowrate) for all cases was primarily attributed to biodegradation. These results provide insight into the transport and transformations affecting SMX, and then provide a basis for developing low-cost approaches for the mitigation of SMX.
|
383 |
A Feasibility Study of Bioremediation in a Highly Organic Contaminated SoilWalsh, Jami Beth 25 May 1999 (has links)
The focus of this study is on the use of bioremediation, as the primary method of decontamination for a soil contaminated with industrial waste oils. The area from which the samples were taken was used as a disposal site for oily wastewater for a period of more than 20 years. During this time the soil became severely contaminated. The site is approximately 1 acre in area and consists of three distinct soil strata: a solidified petroleum layer, a peat layer and a layer of muck and mud. This soil is approximately 96% organic matter. The purpose of this study is to determine if: given these site characteristics, is bioremediation a feasible option. Three phases were conducted to determine the usefulness of bioremediation in this situation. Phase one focused on the removal of total petroleum hydrocarbons (TPH) through nutrient addition and aeration. Phase two focused on quantifying and characterizing the reductions observed in phase one. Phase three again focused on quantifying and characterizing the reductions observed in phase one. The three phases of the study provided strong evidence that bioremediation was occurring in the soil and therefore, would be a viable means of remediation for a site with similar characteristics.
|
384 |
A statistical evaluation of six classes of hydrocarbons: which classes are promising for future biodegraded ignitable liquid research?Burdulis, Arielle 12 March 2016 (has links)
The current methods for identifying ignitable liquid residues in fire debris are heavily based on the holistic, qualitative interpretation of chromatographic patterns with the mass spectral identification of selected peaks. The identification of neat, unweathered ignitable liquids according to ASTM 1618 using these methods is relatively straightforward for the trained analyst. The challenges in fire debris analysis arise with phenomena such as evaporation, substrate interference, and biodegradation. These phenomena result in alterations of chromatographic patterns which can lead to misclassifications or false negatives. The biodegradation of ignitable liquids is generally known to be more complex than evaporation [20], and proceeds in a manner that is dependent on numerous factors such as: composition of the petroleum product/ignitable liquid, structure of the hydrocarbon compound, soil type, bacterial community, the type of microbial metabolism that is occurring, and the environmental conditions surrounding in the sample. While nothing can be done to prevent the biodegradation, continued research on biodegraded ignitable liquids and the characterization of the trends observed may be able to provide insight into how an analyst can identify a biodegraded ignitable liquid residue.
This research utilized normalized abundance values of select ions from pre-existing gas chromatography-mass spectrometry (GC-MS) data on samples from three different gasoline and diesel biodegradation studies. A total of 18 ions were selected to indicate the presence of six hydrocarbon classes (three each for alkanes, aromatics, cycloalkanes, naphthalenes, indanes, and adamantanes) based on them being either base peaks or high abundance peaks within the electron impact mass spectra of compounds within that hydrocarbon class. The loss of ion abundance over the degradation periods was assessed by creating scatter plots and performing simple linear regression analyses. Coefficient of determination values, the standard error of the estimate, the slope, and the slope error of the best fit line were assessed to draw conclusions regarding which classes exhibited desirable characteristics, relative to the other classes, such as a linear degradation, low variation in abundance within the sampling days, and a slow rate of abundance loss over the degradation period. Additional analyses included two-way analysis of the variance (ANOVA), to assess the effects of time as well as different soil type on the degradation of the hydrocarbons, stepwise multinomial logistic regressions to identify which classes were the best predictors of the type of ignitable liquid, and one-way ANOVAs to determine where the differences in the ratios of hydrocarbon classes existed within each of the ignitable liquids, as well as between the two liquids.
Hydrocarbon classes identified as exhibiting characteristics such as slow and/or reliable rates of abundance loss during biodegradation are thought of as desirable for future validation studies, where specific ranges of hydrocarbon class abundance(s) may be used to identify the presence of a biodegraded ignitable liquid. Classes of hydrocarbons that have experienced biodegradation that maintain an abundance close to that of a neat, non degraded counterpart, or that reliably degrade and have predictable abundance levels given a particular period of degradation, would be instrumental in determining whether or not an unknown sample contains an ignitable liquid residue. It is the hope that these assessments will not only provide helpful information to future researchers in the field of fire debris analysis, but that they will create interest in the quantitative, statistical assessment of ignitable liquid data for detection and identification purposes.
|
385 |
Estudo da compatibilização e da degradação de blendas polipropileno/poli (3-hidroxibutirato) (PP/PHB). / Compatibilization and degradation study of Polypropylene/Poly(3-hydroxybutyrate) (PP/PHB) blends.Roberta Kalil Sadi 27 July 2010 (has links)
O presente trabalho desenvolveu um estudo sobre a blenda polimérica Polipropileno/Poli(3-hidroxibutirato) (PP/PHB). Os principais objetivos desta pesquisa foram estudar a compatibilização da blenda PP/PHB, a influência da prévia fotodegradação sobre a biodegradação da blenda e o comportamento individual do PHB frente a fotodegradação. As blendas PP/PHB foram obtidas nas composições 90/10, 80/20, 70/30 e 60/40 (em peso) numa extrusora dupla-rosca. O estudo da compatibilização foi feito para a blenda PP/PHB 80/20 contendo ou não 10% dos seguintes compatibilizantes: polipropileno grafitizado com anidrido maleico (PP-g-MAn), poli(etileno-co-acrilato de metila) (P(E-co-MA)), poli(etileno-co-metacrilato de glicidila) (P(E-co-GMA)) e poli(etileno-co-acrilato de metila-co-metacrilato de glicidila) (P(E-co-MA-co-GMA)). A caracterização dos materiais foi realizada através de análises morfológicas, químicas e ensaios mecânicos (tração e impacto). Os resultados obtidos permitiram classificar a eficácia dos compatibilizantes na seguinte ordem: P(E-co-MA-co-GMA) >> P(E-co-MA) > P(E-co-GMA) PP-g-MAn. A fotodegradação do PHB foi investigada expondo-se este material numa câmara de envelhecimento artificial por 3, 6, 9 e 12 semanas. O efeito da radiação UV no PHB foi monitorado através de mudanças na sua massa molar, estruturas química e cristalina, bem como nas suas propriedades térmicas, morfológicas, óticas, mecânicas e de biodegradação. A radiação UV causou uma série de mudanças em todas as propriedades analisadas. Estes efeitos, entretanto, não se mostraram muito severos e um dos motivos apontados para isso foi a baixa transmitância da radiação UV apresentada pela amostra de PHB estudada, o que gerou um perfil de degradação muito pronunciado neste material. As blendas PP/PHB em todas as suas composições foram submetidas à radiação UV por 2 e 4 semanas e tiveram a sua biodegradabilidade avaliada por ensaios de perda de massa e de respirometria de Bartha (medida da produção de CO2). Os materiais antes e após as diferentes degradações foram caracterizados através de análises químicas, térmicas, morfológicas e de massa molar. Primeiramente, observou-se que, antes de qualquer degradação, a biodegradação da fase PHB foi suprimida dentro das blendas, o que foi atribuído ao PHB constituir a fase dispersa das misturas. A prévia fotodegradação retardou a biodegradação do PHB e acelerou a biodegradação do PP e de todas as blendas PP/PHB. A maior capacidade biodegradativa do PP e das blendas foi relacionada à cisão de cadeia e formação de grupos funcionais oxidados durante a exposição à radiação ultravioleta. / In this work Polypropylene/Poly(3-hydroxybutyrate) (PP/PHB) blend was studied. In particular the compatibilization and the influence of a previous photodegradation on the biodegradation of the blend were investigated. In order to understand the photodegradation of the blends it was also necessary to study the photodegradation of PHB. The compositions of the PP/PHB blends studied ranged from 90/10 to 60/40 (by weight). These blends were obtained using a twin screw extruder. The compatibilization was evaluated using a PP/PHB blend 80/20 containing or not 10% of the following compatibilizers: maleic anhydride grafted polypropylene (PP-g-MAH), poly(ethylene-co-methyl acrylate) (P(E-co-MA)), poly(ethylene-co-glycidyl methacrylate) (P(E-co-GMA)) and poly(ethylene-co-methyl acrylate-co-glycidyl methacrylate) (P(E-co-MA-co-GMA)). The blends obtained were characterized through their morphological, chemical and mechanical properties (tensile and impact tests). The results obtained enabled the classification of the compatibilizers efficiency in the following order: P(E-co-MA-co-GMA) >> P(E-co-MA) > P(E-co-GMA) PP-g-MAH. PHB photodegradability was investigated through its exposure to artificial UV radiation in a weathering chamber for 3, 6, 9 and 12 weeks. The photodegradation effect was followed by changes of molecular weight, of chemical and crystalline structures, of thermal, morphological, optical and mechanical properties, as well as of biodegradability. UV radiation caused several changes in all the properties evaluated, however, these effects were not very severe. These results could be explained in light of the low UV radiation transmittance of the PHB sample studied, which caused a strong degradation profile for this material. PP/PHB blends in all compositions were exposed to UV radiation for 2 and 4 weeks and had their biodegradability evaluated using the weight loss and the Bartha respirometer tests (CO2 production measurement). The materials before and after the different degradations were characterized by chemical, thermal, morphological and molar mass analysis. First, it was observed that, before any degradation, the biodegradation of the PHB phase was suppressed in the blends, most likely due to the fact that PHB was the dispersed phase within the mixtures studied. Previous photodegradation delayed PHB biodegradation and sped up the biodegradation of PP and all PP/PHB blends. The greater biodegradability of PP and blends was attributed to the chain scission and formation of oxidized functional groups taking place during ultraviolet radiation exposure.
|
386 |
Biodegradation of Textile MaterialsArshad, Khubaib, Mujahid, Muhammad January 2011 (has links)
In this research work different textile materials were buried in soil and their biodegrading pattern will be studied after different specific period of times. / Program: Master Programme in Textile Technology
|
387 |
Avaliação da biodegradação da mistura diesel/biodiesel /Quitério, Gabriela Mercuri. January 2017 (has links)
Título original: Avaliação da degradação da mistura diesel/biodiesel por colorimetria / Orientador: Ederio Dino Bidoia / Banca: Adriano Pinto Mariano / Banca: Regina Teresa Rosim Monteiro / Banca: Sandra Imaculada Maintinguer / Banca: Dejanira de Franceschi de Angelis / Resumo: A projetada escassez de combustíveis fósseis, a alta necessidade energética e as pressões ambientais tornaram necessária uma mudança na matriz energética mundial. Nesse sentido, verifica-se a expansão do mercado de combustíveis derivados de fontes renováveis, predominando o etanol para automóveis e o biodiesel adicionado ao diesel para caminhões, ônibus, tratores e transportes marítimos. Além de diversificar a matriz energética, o biodiesel apresenta algumas vantagens do ponto de vista ambiental em relação ao diesel de petróleo como por exemplo, maior biodegradabilidade. Acidentes ambientais com petróleo e derivados causam danos consideráveis ao meio ambiente, gerando uma preocupação pública enorme, que pressiona para soluções rápidas e econômicas. Dentre as alternativas de tratamento para quando ocorre um derramamento de petróleo, a biorremediação emerge como um processo simples e de baixo custo quando comparado a outras alternativas, além se ser menos agressiva e a mais adequada para manutenção do equilíbrio ecológico. O objetivo deste trabalho foi avaliar a biodegradação de misturas de diesel e biodiesel nas proporções de 3, 5, 7, 10, 25, 50 e 80% em solo e em meio aquoso, verificando se a adição de inóculo da bactéria Bacillus subtilis e a adição do surfactante químico Tween® 80 auxilia na biodegradação de tais misturas. Também foi analisada, para as misturas de 5, 25 e 50% de biodiesel em diesel, a eficiência do processo de biorremediação, a fitotoxicidade e a diversidad... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The shortage of fossil fuels, high energy requirements and environmental pressures have made it necessary to change the world energy matrix. In this sense, there is the expansion of the market of fuels derived from renewable sources, predominating ethanol for automobiles and biodiesel for trucks, buses, tractors and maritime transport. In addition to diversifying the energy matrix, biodiesel has some advantages from an environmental point of view in relation to petroleum diesel, such as higher biodegradability. Environmental accidents with oil and by-products cause considerable damage to the environment, generating a huge public concern, pushing for quick and cost-effective solutions. Among the treatment alternatives for when an oil spill occurs, bioremediation emerges as a simple and low-cost process when compared to other alternatives, as well as being less aggressive and more adequate to maintain the ecological balance. The objective of this work was to evaluate the biodegradation of diesel and biodiesel mixtures in the proportions of 3, 5, 7, 10, 25, 50 and 80% of biodiesel in diesel in soil in aqueous medium, checking if the addition of strains of Bacillus subtilis and the addition of the chemical surfactant Tween® 80 assists in the biodegradation of such mixtures. The efficiency of the bioremediation process regarding microbial metabolism, ecotoxicity and diversity of the microbial community was also analyzed for blends of 5, 25 and 50% biodiesel in diesel. With the res... (Complete abstract click electronic access below) / Doutor
|
388 |
Biodegradação, extração e análise de glifosato em dois tipos de solos. / Biodegradation, extraction and analysis of glyphosate in two different soil types.Araújo, Ademir Sérgio Ferreira de 04 July 2002 (has links)
Este trabalho teve por objetivo avaliar a biodegradação do glifosato em amostras de solos, quantificando o grupo de microrganismos mais ativos durante este período, além de determinar um método de extração e análise para este herbicida. Foram utilizadas amostras de dois tipos de solos, um da Fazenda Experimental da ESALQ-USP, classificado como podzólico vermelho-amarelo (PV), e outro da Estação Experimental do IAPAR/PR, classificado como latossolo vermelho (LV), ambos com e sem histórico de aplicação de glifosato. O trabalho foi realizado no Laboratório de Ecotoxicologia do Centro de Energia Nuclear na Agricultura, da Universidade de São Paulo, utilizando o glifosato em sua fórmula técnica, na dosagem para condições de campo (2,16 mg i.a./kg de solo). A biodegradação do glifosato foi avaliada monitorando a evolução do CO2 pelos microrganismos durante um período de 32 dias. Foram também quantificados durante o período, os resíduos de glifosato e do seu metabólito ácido aminometil fosfônico (AMPA) através de extração seguida de análise por cromatografia liquida de alta eficiência (CLAE). Além disso, foi avaliada a atividade microbiana e o número de microrganismos presentes durante o período. Os resultados mostraram que o glifosato foi degradado pelos microrganismos do solo durante o período avaliado, com a formação do metabólito AMPA. O glifosato favoreceu um aumento na atividade microbiana das amostras dos solos que receberam aplicação do herbicida. Em relação ao número de microrganismos, os fungos e actinomicetos tiveram um aumento em população com a presença do glifosato, enquanto que as bactéria permaneceram em número constante durante o período de incubação. Os resíduos de glifosato e AMPA, extraídos com NH4OH e KH2PO4 e analisados por CLAE, foram detectados nas amostras avaliadas, mostrando que o método de extração utilizado foi eficiente, com recuperação acima de 70%, para estes dois compostos. / The aim of this work was to evaluate the biodegradation of glyphosate in soil samples, quantifying the group of more active microorganisms during this period, and also to establish an extraction and analysis methods for this herbicide. Two soils types were analysed, one from the ESALQ Experimental Station (USP), classified as typic hapludult (PV), and another from the IAPAR Experimental Station, classified as typic hapludox, with and without report of glyphosate application, in total of 4 samples. The work was carried out using the technical glyphosate in the doses for field conditions (2,16 mg a.i./kg of soil). The assessment of degradation was made using the CO2 evolution during a period of 32 days. The residues of glyphosate and metabolite aminomethyl phosphonic acid (AMPA) were quantified during the same period, through extraction and analysis by high-pressure liquid chromatography (HPLC). The soil microbial activity and the enumeration of microorganisms were evaluated during the same period. The results showed that glyphosate was degraded by the soil microorganisms, with the formation of the metabolite AMPA. The application of glyphosate provided an increase in the microbial activity of the soil samples. In relation to enumeration of fungi and actinomycetes had an increase in the population with the glyphosate application, while the number of bacteria remained constant through the whole experiment. The HPLC analyse of glyphosate and AMPA residues, extracted with NH4OH and KH2PO4, resulted in a recovery above 70% showing that the extraction method used was efficient for these two compounds.
|
389 |
Efeito do tempo e do recozimento nas propriedades mecânicas e de biodegradação de materiais baseados em poli(3-hidroxibutirato) (PHB). / Effect of time and annealing on the mechanical properties and biodegradation of poly(3-hydroxybutyrate) (PHB) - based materials.Kurusu, Rafael Salles 03 August 2011 (has links)
O polímero Poli(3-hidroxibutirato) - PHB - é sintetizado e consumido por microorganismos, o que o torna um material muito interessante e adequado aos problemas ambientais atuais. Porém, sua baixa tenacidade e estabilidade térmica são algumas das principais desvantagens em relação aos principais polímeros de engenharia. A mistura com polímeros modificadores de impacto ou a incorporação de aditivos como plastificantes são algumas das possibilidades para melhorar certas características desse polímero. Contudo, uma razão fundamental para a fragilidade marcante desse material é o processo de envelhecimento que ele sofre mesmo durante o armazenamento, caracterizado por mudanças na estrutura cristalina que diminuem a capacidade de dissipação de energia. Esse trabalho investigou esse fenômeno e seu efeito sobre o PHB puro, a blenda com o Poli(etileno-co-acrilato de metila-co-metacrilato de glicidila) - P(EMAGMA) - e o PHB com o plastificante trietilenoglicol bis(2-etil-hexanoato) TEG(EH). A partir desse ponto, condições de recozimento foram definidas como tentativa de corrigir os problemas conseqüentes do envelhecimento. As amostras recozidas foram caracterizadas e comparadas com amostras envelhecidas, por meio de ensaios de calorimetria exploratória diferencial (DSC), espalhamento de raios-x de baixo ângulo (SAXS), propriedades mecânicas, técnicas de microscopia e biodegradação. Os resultados mostraram que as alterações na morfologia lamelar causadas pelo recozimento melhoram significativamente as propriedades mecânicas das composições testadas e ajudam a prevenir um novo envelhecimento. A composição PHB/Plastificante se mostrou menos susceptível a esse processo de fragilização. Alterações na biodegradabilidade dos materiais também foram observadas, considerando mudanças nas morfologias esferulítica e lamelar. / High biodegradability makes Poly(3-hydroxybutyrate) - PHB - interesting from an environmental point of view. However, this material presents some properties below the required for a large-scale use, especially its low toughness. Blending with polymers with higher impact strength or incorporate additives such as plasticizers can be an alternative to enhance these properties. Even so, a fundamental reason for the remarkable brittleness of PHB is the intrinsic ageing phenomenon that this polymer undergoes through time even at room temperature, marked by changes in microstructure that ultimately restrict energy dissipation. In this work, this phenomenon was investigated for pure PHB, a blend PHB/Poly(ethylene-co-methyl acrylate-co- glycidyl methacrylate) PEMAGMA and PHB with plasticizer Tri(ethylene glycol) bis(2- ethylhexanoate) TEG(EH). As an attempt to overcome the drawbacks caused by ageing, annealing conditions were defined and the annealed samples were characterized and compared with aged ones, using differential scanning calorimetry (DSC), small angle x-ray scattering (SAXS), tensile testing, microscopy techniques and biodegradation. The results showed a significant improvement in mechanical properties and prevention of a possible re-aging. The composition PHB/Plasticizer proved to be less susceptible to ageing. Changes in the spherulitic and lamelar morphology have also affected the biodegradability of the samples.
|
390 |
Treatment of triazine-azo dye by integrating photocatalytic oxidation and bioremediation.January 2005 (has links)
by Cheung Kit Hing. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 175-199). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstracts --- p.ii / Table of Contents --- p.vi / List of Figures --- p.xviii / List of Plates --- p.xxii / List of Tables --- p.xxiii / Abbreviations --- p.xxv / Equations --- p.xxviii / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- The chemistry of azo dyes --- p.1 / Chapter 1.2 --- Azo dyes classification --- p.2 / Chapter 1.3 --- Environmental concerns and toxicity --- p.4 / Chapter 1.3.1 --- Toxicity of azo dyes --- p.5 / Chapter 1.3.2 --- Carcinogenicity --- p.5 / Chapter 1.3.3 --- Ecotoxicity --- p.11 / Chapter 1.3.3.1 --- Toxicity to microorganisms --- p.12 / Chapter 1.3.3.2 --- Toxicity towards vertebrates --- p.13 / Chapter 1.4 --- Treatment of azo dyes --- p.13 / Chapter 1.4.1 --- Physical treatment --- p.14 / Chapter 1.4.1.1 --- Adsorption --- p.14 / Chapter 1.4.1.2 --- Membrane technology --- p.15 / Chapter 1.4.2 --- Chemical treatments --- p.15 / Chapter 1.4.2.1 --- Chlorination --- p.16 / Chapter 1.4.2.2 --- Fenton's reaction --- p.16 / Chapter 1.4.2.3 --- Ozonation --- p.16 / Chapter 1.4.2.4 --- Coagulation --- p.17 / Chapter 1.4.3 --- Biological treatments --- p.17 / Chapter 1.4.3.1 --- Activated sludge process --- p.18 / Chapter 1.4.3.2 --- Biodegradation --- p.18 / Chapter 1.4.3.3 --- Biosorption --- p.21 / Chapter 1.4.3.3.1 --- Modeling of sorption --- p.24 / Chapter 1.4.3.3.1.1 --- Langmuir sorption model --- p.24 / Chapter 1.4.3.3.1.2 --- Freundlich sorption model --- p.25 / Chapter 1.4.4 --- Advanced oxidation processes --- p.25 / Chapter 1.4.4.1 --- Photocatalytic oxidation --- p.26 / Chapter 1.4.4.2 --- Titanium dioxide (TiO2) --- p.26 / Chapter 1.4.4.3 --- Mechanism of photocatalytic oxidation using photocatalyst TiO2 --- p.28 / Chapter 1.4.4.4 --- Photocatalytic oxidation of s-triazine containing compounds --- p.30 / Chapter 1.4.4.5 --- Photocatalytic oxidation of Procion Red MX-5B --- p.31 / Chapter 1.4.4.6 --- Cyanuric acid --- p.32 / Chapter 1.4.4.6.1 --- Application --- p.32 / Chapter 1.4.4.6.2 --- Toxicity --- p.32 / Chapter 1.4.4.6.3 --- Photocatalytic oxidation resistance --- p.34 / Chapter 1.4.4.6.4 --- Biodegradation --- p.35 / Chapter 1.4.4.7 --- Enhancement of photocatalytic oxidation by using sorbent immobilized with TiO2 --- p.35 / Chapter 1.4.4.7.1 --- Sorption --- p.35 / Chapter 1.4.4.7.2 --- Immobilization of TiO2 --- p.37 / Chapter 1.4.8 --- Integration of treatment methods --- p.39 / Chapter 2. --- Objectives --- p.41 / Chapter 3. --- Materials and methods --- p.42 / Chapter 3.1. --- Sorption --- p.42 / Chapter 3.1.1 --- Chemical reagents --- p.42 / Chapter 3.1.2 --- Determination of Procion Red MX-5B --- p.42 / Chapter 3.1.3 --- Sampling --- p.44 / Chapter 3.1.4 --- Isolation of Procion Red MX-5B-sorbing bacteria --- p.44 / Chapter 3.1.5 --- Screening of Procion Red MX-5B sorption ability --- p.44 / Chapter 3.1.6 --- Identification of isolated bacterium --- p.46 / Chapter 3.1.7 --- Optimization of cell yield and sorption capacity --- p.47 / Chapter 3.1.7.1 --- Preparation of cell culture of Vibrio sp. --- p.47 / Chapter 3.1.7.2 --- Growth phase --- p.47 / Chapter 3.1.7.2.1 --- Growth curve --- p.47 / Chapter 3.1.7.2.2 --- Dye sorption capacity --- p.47 / Chapter 3.1.7.3 --- Initial pH --- p.48 / Chapter 3.1.7.3.1 --- Growth curve --- p.48 / Chapter 3.1.7.3.2 --- Dye sorption capacity --- p.48 / Chapter 3.1.7.4 --- Temperature --- p.49 / Chapter 3.1.7.4.1 --- Growth curve --- p.49 / Chapter 3.1.7.4.2 --- Dye sorption capacity --- p.49 / Chapter 3.1.7.5 --- Glucose concentrations --- p.49 / Chapter 3.1.7.5.1 --- Growth curve --- p.49 / Chapter 3.1.7.5.2 --- Dye sorption capacity --- p.50 / Chapter 3.1.8 --- Optimization of sorption process --- p.50 / Chapter 3.1.8.1 --- Preparation of sorbent --- p.50 / Chapter 3.1.8.2 --- Dry weight of sorbent --- p.50 / Chapter 3.1.8.3 --- Temperature --- p.50 / Chapter 3.1.8.4 --- Agitation rate --- p.50 / Chapter 3.1.8.5 --- Salinity --- p.51 / Chapter 3.1.8.6 --- Initial pH --- p.51 / Chapter 3.1.8.7 --- Concentration of Procion Red MX-5B --- p.51 / Chapter 3.1.8.8 --- Combination study of salinity and initial pH --- p.51 / Chapter 3.2. --- Photocatalytic oxidation reaction --- p.52 / Chapter 3.2.1 --- Chemical reagents --- p.52 / Chapter 3.2.2 --- Photocatalytic reactor --- p.52 / Chapter 3.2.3 --- Optimization of sorption and photocatalytic oxidation reactions using biomass of Vibrio sp.immobilized in calcium alginate beads --- p.54 / Chapter 3.2.3.1 --- Effect of dry weight of immobilized cells of Vibrio sp. --- p.54 / Chapter 3.2.3.1.1 --- Sorption --- p.55 / Chapter 3.2.3.1.2 --- Photocatalytic oxidation --- p.56 / Chapter 3.2.3.2 --- Effect of UV intensities --- p.57 / Chapter 3.2.3.3 --- Effect of TiO2 concentrations --- p.57 / Chapter 3.2.3.3.1 --- Sorption --- p.57 / Chapter 3.2.3.3.2 --- Photocatalytic oxidation --- p.57 / Chapter 3.2.3.4 --- Effect of H202 concentrations --- p.57 / Chapter 3.2.3.5 --- Effect of the number of beads --- p.58 / Chapter 3.2.3.5.1 --- Sorption --- p.58 / Chapter 3.2.3.5.2 --- Photocatalytic oxidation --- p.58 / Chapter 3.2.3.6 --- Effect of initial pH with and without the addition of H2O2 --- p.58 / Chapter 3.2.3.7 --- Control experiments for photocatalytic oxidation of Procion Red MX-5B --- p.59 / Chapter 3.2.3.8 --- Combinational study of UV intensities and H2O2 concentrations --- p.59 / Chapter 3.2.3.9 --- Photocatalytic oxidation of Procion Red MX-5B under optimal conditions --- p.59 / Chapter 3.2.3.10 --- "Sorption isotherms of calcium alginate beads immobilized with 70 mg Vibrio sp. and 5,000 mg/L TiO2" --- p.59 / Chapter 3.3 --- Biodegradation --- p.60 / Chapter 3.3.1 --- Chemical reagents --- p.60 / Chapter 3.3.2 --- Sampling --- p.60 / Chapter 3.3.3 --- Enrichment --- p.60 / Chapter 3.3.4 --- Isolation of cyanuric acid-utilizing bacteria --- p.61 / Chapter 3.3.5 --- Determination of cyanuric acid --- p.61 / Chapter 3.3.6 --- Screening of Procion Red MX-5B sorption ability --- p.61 / Chapter 3.3.7 --- Screening of cyanuric acid-utilizing ability --- p.61 / Chapter 3.3.8 --- Bacterial identification --- p.63 / Chapter 3.3.9 --- Growth and cyanuric acid removal efficiency of the selected bacterium --- p.63 / Chapter 3.3.10 --- Optimization of reaction conditions --- p.64 / Chapter 3.3.10.1 --- Effect of salinity --- p.64 / Chapter 3.3.10.2 --- Effect of cyanuric acid concentrations --- p.65 / Chapter 3.3.10.3 --- Effect of temperature --- p.65 / Chapter 3.3.10.4 --- Effect of agitation rate --- p.65 / Chapter 3.3.10.5 --- Effect of initial pH --- p.66 / Chapter 3.3.10.6 --- Effect of initial glucose concentration --- p.66 / Chapter 3.3.10.7 --- Combinational study of glucose and cyanuric acid concentrations --- p.66 / Chapter 3.4 --- Detection of cyanuric acid formed in photocatalytic oxidation reaction --- p.66 / Chapter 3.5 --- "Integration of sorption, photocatalytic oxidation and biodegradation" --- p.67 / Chapter 4. --- Results --- p.68 / Chapter 4.1. --- Sorption --- p.68 / Chapter 4.1.1 --- Determination of Procion Red MX-5B --- p.68 / Chapter 4.1.2 --- Isolation of Procion Red MX-5B-sorbing bacteria --- p.68 / Chapter 4.1.3 --- Screening of Procion Red MX-5B sorption ability --- p.68 / Chapter 4.1.4 --- Identification of isolated bacterium --- p.72 / Chapter 4.1.5 --- Optimization of cell yield and sorption capacity --- p.72 / Chapter 4.1.5.1 --- Growth phase --- p.72 / Chapter 4.1.5.1.1 --- Growth curve --- p.72 / Chapter 4.1.5.1.2 --- Dye sorption capacity --- p.72 / Chapter 4.1.5.2 --- Initial pH --- p.75 / Chapter 4.1.5.2.1 --- Growth curve --- p.75 / Chapter 4.1.5.2.2 --- Dye sorption capacity --- p.75 / Chapter 4.1.5.3 --- Temperature --- p.75 / Chapter 4.1.5.3.1 --- Growth curve --- p.75 / Chapter 4.1.5.3.2 --- Dye sorption capacity --- p.79 / Chapter 4.1.5.4 --- Glucose concentrations --- p.79 / Chapter 4.1.5.4.1 --- Growth curve --- p.79 / Chapter 4.1.5.4.2 --- Dye sorption capacity --- p.79 / Chapter 4.1.6 --- Optimization of sorption process --- p.82 / Chapter 4.1.6.1 --- Dry weight of sorbent --- p.82 / Chapter 4.1.6.2 --- Temperature --- p.82 / Chapter 4.1.6.3 --- Agitation rate --- p.86 / Chapter 4.1.6.4 --- Salinity --- p.86 / Chapter 4.1.6.5 --- Initial pH --- p.86 / Chapter 4.1.6.6 --- Concentration of Procion Red MX-5B --- p.90 / Chapter 4.1.6.7 --- Combination study of salinity and initial pH --- p.90 / Chapter 4.2. --- Photocatalytic oxidation reaction --- p.94 / Chapter 4.2.1 --- Effect of dry weight of immobilized cells of Vibrio sp. --- p.94 / Chapter 4.2.1.1 --- Sorption --- p.94 / Chapter 4.2.1.2 --- Photocatalytic oxidation --- p.96 / Chapter 4.2.2 --- Effect of UV intensities --- p.96 / Chapter 4.2.3 --- Effect of TiO2 concentrations --- p.96 / Chapter 4.2.3.1 --- Sorption --- p.96 / Chapter 4.2.3.2 --- Photocatalytic oxidation --- p.101 / Chapter 4.2.4 --- Effect of H2O2 concentrations --- p.101 / Chapter 4.2.5 --- Effect of the number of beads --- p.101 / Chapter 4.2.5.1 --- Sorption --- p.105 / Chapter 4.2.5.2 --- Photocatalytic oxidation --- p.105 / Chapter 4.2.6 --- Effect of initial pH with and without the addition of --- p.105 / Chapter 4.2.7 --- Control experiments for photocatalytic oxidation of Procion Red MX-5B --- p.109 / Chapter 4.2.8 --- Combinational study of UV intensities and H202 concentrations --- p.112 / Chapter 4.2.9 --- Photocatalytic oxidation of Procion Red MX-5B under optimal conditions --- p.112 / Chapter 4.2.10 --- "Sorption isotherms of calcium alginate beads immobilized with 70 mg Vibrio sp. and 5,000 mg/L Ti02" --- p.112 / Chapter 4.3 --- Biodegradation --- p.116 / Chapter 4.3.1 --- Isolation of cyanuric acid-utilizing bacteria --- p.116 / Chapter 4.3.2 --- Determination of cyanuric acid --- p.116 / Chapter 4.3.3 --- Screening of Procion Red MX-5B sorption ability --- p.116 / Chapter 4.3.4 --- Screening of cyanuric acid-utilizing ability --- p.116 / Chapter 4.3.5 --- Bacterial identification --- p.118 / Chapter 4.3.6 --- Growth and cyanuric acid removal efficiency of the selected bacterium --- p.118 / Chapter 4.3.7 --- Optimization of reaction conditions --- p.122 / Chapter 4.3.7.1 --- Effect of salinity --- p.122 / Chapter 4.3.7.2 --- Effect of cyanuric acid concentrations --- p.122 / Chapter 4.3.7.3 --- Effect of temperature --- p.126 / Chapter 4.3.7.4 --- Effect of agitation rate --- p.126 / Chapter 4.3.7.5 --- Effect of initial pH --- p.132 / Chapter 4.3.7.6 --- Effect of initial glucose concentration --- p.132 / Chapter 4.3.7.7 --- Combinational study of glucose and cyanuric acid concentrations --- p.132 / Chapter 4.4 --- Detection of cyanuric acid formed in photocatalytic oxidation reaction --- p.137 / Chapter 4.5 --- "Integration of sorption, photocatalytic oxidation and biodegradation" --- p.137 / Chapter 5. --- Discussion --- p.141 / Chapter 5.1 --- Sorption --- p.141 / Chapter 5.1.1 --- Isolation of Procion Red MX-5B-sorbing bacteria --- p.141 / Chapter 5.1.2 --- Screening of Procion Red MX-5B sorption ability --- p.141 / Chapter 5.1.3 --- Identification of isolated bacterium --- p.141 / Chapter 5.1.4 --- Optimization of cell yield and sorption capacity --- p.142 / Chapter 5.1.4.1 --- Growth phase --- p.142 / Chapter 5.1.4.1.1 --- Growth curve --- p.142 / Chapter 5.1.4.1.2 --- Dye sorption capacity --- p.143 / Chapter 5.1.4.2 --- Initial pH --- p.146 / Chapter 5.1.4.2.1 --- Growth curve --- p.146 / Chapter 5.1.4.2.2 --- Dye sorption capacity --- p.146 / Chapter 5.1.4.3 --- Temperature --- p.146 / Chapter 5.1.4.3.1 --- Growth curve --- p.146 / Chapter 5.1.4.3.2 --- Dye sorption capacity --- p.147 / Chapter 5.1.4.4 --- Glucose concentrations --- p.147 / Chapter 5.1.4.4.1 --- Growth curve --- p.147 / Chapter 5.1.4.4.2 --- Dye sorption capacity --- p.147 / Chapter 5.1.5 --- Optimization of sorption process --- p.148 / Chapter 5.1.5.1 --- Dry weight of sorbent --- p.148 / Chapter 5.1.5.2 --- Temperature --- p.148 / Chapter 5.1.5.3 --- Agitation rate --- p.149 / Chapter 5.1.5.4 --- Salinity --- p.149 / Chapter 5.1.5.5 --- Initial pH --- p.150 / Chapter 5.1.5.6 --- Concentration of Procion Red MX-5B (MX-5B) --- p.152 / Chapter 5.1.5.7 --- Combination study of salinity and initial pH --- p.153 / Chapter 5.2. --- Photocatalytic oxidation reaction --- p.153 / Chapter 5.2.1 --- Effect of immobilized cells of Vibrio sp. --- p.153 / Chapter 5.2.1.1 --- Sorption --- p.153 / Chapter 5.2.1.2 --- Photocatalytic oxidation --- p.154 / Chapter 5.2.2 --- Effect of UV intensities --- p.155 / Chapter 5.2.3 --- Effect of TiO2 concentrations --- p.155 / Chapter 5.2.3.1 --- Sorption --- p.155 / Chapter 5.2.3.2 --- Photocatalytic oxidation --- p.156 / Chapter 5.2.4 --- Effect of H2O2 concentrations --- p.156 / Chapter 5.2.5 --- Effect of the number of beads --- p.157 / Chapter 5.2.5.1 --- Sorption --- p.157 / Chapter 5.2.5.2 --- Photocatalytic oxidation --- p.158 / Chapter 5.2.6 --- Effect of initial pH with and without the addition of --- p.158 / Chapter 5.2.7 --- Control experiments for photocatalytic oxidation of Procion Red MX-5B --- p.160 / Chapter 5.2.8 --- Combinational study of UV intensities and H202 concentrations --- p.161 / Chapter 5.2.9 --- Photocatalytic oxidation of Procion Red MX-5B under optimal conditions --- p.161 / Chapter 5.2.10 --- "Sorption isotherms of calcium alginate beads immobilized with 70 mg Vibrio sp. and 5,000 mg/L Ti02" --- p.161 / Chapter 5.3 --- Biodegradation --- p.162 / Chapter 5.3.1 --- Isolation of cyanuric acid-utilizing bacteria --- p.162 / Chapter 5.3.2 --- Determination of cyanuric acid --- p.163 / Chapter 5.3.3 --- Screening of Procion Red MX-5B sorption ability --- p.163 / Chapter 5.3.4 --- Screening of cyanuric acid-utilizing ability --- p.163 / Chapter 5.3.5 --- Bacterial identification --- p.163 / Chapter 5.3.6 --- Growth and cyanuric acid removal efficiency of the selected bacterium --- p.164 / Chapter 5.3.7 --- Optimization of reaction conditions --- p.165 / Chapter 5.3.7.1 --- Effect of salinity --- p.165 / Chapter 5.3.7.2 --- Effect of cyanuric acid concentration --- p.165 / Chapter 5.3.7.3 --- Effect of temperature --- p.166 / Chapter 5.3.7.4 --- Effect of agitation rate --- p.167 / Chapter 5.3.7.5 --- Effect of initial pH --- p.167 / Chapter 5.3.7.6 --- Effect of initial glucose concentration --- p.167 / Chapter 5.3.7.7 --- Combinational study of glucose and cyanuric acid concentrations --- p.168 / Chapter 5.4 --- Detection of cyanuric acid formed in photocatalytic oxidation reaction --- p.170 / Chapter 5.5 --- "Integration of sorption, photocatalytic oxidation and biodegradation" --- p.171 / Chapter 5.6 --- Recommendations --- p.171 / Chapter 6. --- Conclusions --- p.173 / Chapter 7. --- References --- p.175 / Appendix --- p.200
|
Page generated in 0.0993 seconds