Spelling suggestions: "subject:"bioimagerie"" "subject:"i'imagerie""
1 |
Conception de Quantum dots à base d’oxyde de zinc (ZnO) pour des applications en bio-imagerie de nanosystèmes lipidiques / Zinc oxide (ZnO) based quantum dots for bioimaging applications of lipid nanocarriersBerbel Manaia, Eloísa 25 May 2016 (has links)
Les systèmes théranostiques, consistant en un dispositif unique contenant des agents de diagnostic et des principes actifs, suscitent un interêt accru car ils peuvent améliorer le traitement de maladies telles que le cancer en réduisant les effets secondaires des médicaments et en permettant un suivi du traitement. L’objectif de ce travail était d’insérer des Quantum Dots (QDs) à base de ZnO dans des nanoparticules lipidiques pouvant délivrer un principe actif anti-cancéreux. Nous avons d’abord cherché à synthétiser des QDs présentant une structure coeur-coquille ZnO/ZnS pour améliorer leurs propriétés de luminescence. La spectroscopie d’absorption des rayons X, associée à des techniques usuelles de caractérisation, a permis de déterminer les conditions de synthèse conduisant à la formation d’une structure coeur-coquille. Néanmoins, l’émission dans le visible de ces QDs n’était pas satisfaisante. Des QDs dopés par des ions Mg ont donc été synthétisés. L’intensité de leur luminescence passe par un maximum pour une concentration molaire nominale d’ions Mg dans le milieu de réaction égale à 20%. Les QDs Zn0.8Mg0.2O présentent un rendement quantique (QY) six fois plus grand (QY ~64%) que celui des QDs de ZnO non dopés (QY ~ 10%). Les QDs dont la surface a été modifiée par de l’acide oléique (OA) forment une suspension colloidale stable dans le chloroforme et le toluène. Le rendement quantique des QDs OA-Zn0.8Mg0.2O était environ quatre fois plus élevé (Qy ~40%) que celui des QDs OA-ZnO. Les QDs Zn0.8Mg0.2O et OA-Zn0.8Mg0.2O ont été incorporés dans des nanoparticules lipidiques ayant un diamètre hydrodynamique moyen de l’ordre de 100- 220 nm. Les nanoparticules lipidiques solides (SLN) contenant des QDs sont restées stables dans différents milieux biologiques pendant trois heures à 37°C. Des mesures de fluorescence sur des suspensions de macrophages J774 ont montré une faible augmentation de l’intensité de l’émission visible pour les cellules incubées avec 2 mg/mL de SLNs luminescentes pendant 50 min, suggérant une internalisation partielle des nanoparticules par les macrophages. Malheureusement, ces résultats n’ont pas pu être confirmés par vidéo-microscopie et microscopie de fluorescence sur les cellules parce que les conditions expérimentales ( longueurs d’onde d’excitation et d’émission possibles) ne permettaient pas d’observer un signal supérieur à celui de l'auto-fluorescence des cellules. / Theranostic systems consist of a single device containing therapeutic and diagnosis agents and receive increased attention because these devices can improve the therapy of diseases such as cancer, decreasing the toxic side effects and permitting to monitor the treatment. The aim of this work was to develop theranostic systems consisting of lipid based nanocarriers containing ZnO based quantum dots (QDs) as luminescent probes, and allowing to encapsulate a model drug for cancer therapy. Firstly, the synthesis of ZnO/ZnS QDs was studied, aiming to achieve improved luminescent properties. In this step, X-Rays Absorption Spectroscopy, together with other usual characterization techniques, could identify the synthesis condition in which core-shell structures were formed. Nevertheless, the emission of ZnO/ZnS QDs in the visible range was not promising. Therefore, Mg-doped ZnO QDs were synthesized; their luminescence went through a maximum for a 20 mol% nominal concentration of Mg2+ ions in the reaction medium. Zn0.8Mg0.2O QDs presented quantum yield (QY) six times higher (QY = 64%) than undoped ones (QY = 10%). ZnO and Zn0.8Mg0.2O QDs capped by oleic acid (OA) were synthesized and formed stable colloidal dispersions in chloroform and toluene. The QY of OA-Zn0.8Mg0.2O was about 4 times (around 40%) higher than that of the OA-ZnO QDs. Zn0.8Mg0.2O QDs and OA-Zn0.8Mg0.2O QDs could be incorporated into lipid based nanocarriers of average hydrodynamic diameter around 100 – 220 nm. The luminescent solid lipid nanoparticles (SLN) were stable in different media at 37°C during 3 hours. The fluorescence study showed slightly enhanced emission of the J774 macrophage-like cells treated with 2 mg/mL of luminescent SLN during 50 min, suggesting partial internalization of the nanoparticles into the macrophages. However, the internalization studies using fluorescence video-microscopy and microscopy were not successful, because the equipment (wavelengths of excitation and emission) did not allow overcoming the cell auto-fluorescence phenomena.
|
2 |
Octupolar platforms for applications in non linear optics / Plateformes octupolaires pour des applications en optique non linéaireTriadon, Amédée 27 January 2017 (has links)
Au cours de cette thèse nous avons synthétisé et étudié les propriétés d'optique linéaire et non linéaire d'octupôles 2D. Ce type d'assemblage moléculaire est connu pour posséder de bonnes propriétés d'optique non linéaire de troisième ordre, et plus particulièrement de bonnes propriétés d'absorption à deux photons (ADP). Dans ce travail, nous nous sommes plus particulièrement intéressés aux octupôles 2D à cœur isocyanurate et triazine. Les isocyanurates ont été peu étudiés pour leurs propriétés d'optique non linéaire, bien que des premiers résultats les placent comme des structures très prometteuses, tandis que les triazines sont plus reconnues pour leurs bonnes propriétés d'absorption à deux photons. Dans une première partie, une série de composés organiques à cœur isocyanurate a été synthétisé et leurs propriétés d'optique linéaire et non linéaire ont été étudiées. Ayant pu établir des relations structure/propriétés à partir de ces premières séries de molécules nous avons ensuite synthétisé une nouvelle famille d'analogues à cœur triazine possédant les mêmes groupements électro-donneurs que ceux de la série isocyanurate, afin de pouvoir comparer l'effet de cœur entre ces deux familles. Cette étude comparative nous a permis de sélectionner deux chromophores candidats pour une des applications de l'absorption à deux photons, la thérapie photodynamique à deux photons (2PPDT). Dans une deuxième partie, nous nous sommes attachés à la synthèse de dérivés hydrosolubles pour la thérapie photodynamique à deux photons. Les propriétés de photosensibilisation et biocompatibilité de ces composés ont pu être testées in vitro et in vivo grâce à une collaboration avec le groupe de Magali Gary-Bobo et Marcel Garcia (UMR 6247, Montpellier). Enfin, dans une troisième partie, nous avons tiré parti des relations structure/propriétés mises en évidence dans notre étude sur les isocyanurates organiques pour concevoir une série d'octupôles contenant des unités platine cyclométallées. Nous avons ainsi synthétisé et caractérisé une nouvelle série de complexes de platine à cœur isocyanurate, triazine ou triphénylbenzène. / During this Ph.D work, we were able to synthesize a series of 2D octupoles as well as study their linear and nonlinear optical properties. These molecular architectures are known for their good NLO properties, especially their two-photon absorption properties (TPA). In this thesis, we focused most of our work on isocyanurate and triazine cored octupoles. Isocyanurates are quite understudied even though they have recently proven to be promising for TPA applications, whereas triazines were already known for their good TPA properties. In this respect we started out by the synthesis and characterization of a series of organic isocyanurates. These compounds allowed us to derive useful structure/property relationships. We also synthesized a series of analogous triazines possessing the same donor groups than the isocyanurate series, in order to be able to compare the effect of the core in these two series. This study allowed us to select two candidate chromophores for one of the applications of TPA, twophoton photodynamic therapy (2PPDT). We then focused our efforts on making hydrosoluble version of our model compounds for 2PPDT. Thanks to a collaboration with the group of Magali Gary-Bobo and Manuel Garcia (UMR 6247, Montpellier), photosensitization and biocompatibility results have been obtained in vitro and in vivo. In the last part of this work, the structure/property relationships derived on organic molecules have been used to design a new series of cyclometalated platinum complexes arranged on isocyanurate, triazine or triphenylbenzene cores.
|
3 |
Design, synthesis and functionalization of ultrasmall nanoparticles for bioimaging / Conception, synthèse et fonctionnalisation de nanoparticules de très petite taille pour des applications en bio-imagerieLicciardello, Nadia 11 September 2015 (has links)
Cette thèse est centrée sur la synthèse, la caractérisation, la fonctionnalisation et les études in vitro et in vivo de différents types de nanoparticules (NPs) de très petite taille (NPs de silicium ; « carbon dots » ; NPs de cobalt couvertes de silice) qui présentent une luminescence ou des propriétés magnétiques et qui peuvent être fonctionnalisées par des liaisons covalentes. Tous les systèmes étudiés sont très intéressants pour l'imagerie multimodale in vivo, ce qui nécessite l'ancrage stable de fonctionnalités multiples sur une seule plate-forme nanométrique. Dans cette perspective, les NPs ont été fonctionnalisées avec des groupements amine et, puis, couplées avec des colorants ou des marqueurs radioactifs afin d'effectuer, in vivo, de l’imagerie optique ou de tomographie d'émission des positrons. Lorsqu’elles sont étudiées in vitro, les NPs ont présenté une cytotoxicité très faible. Les expériences in vivo ont donné des résultats très prometteurs puisque les NPs ont été excrétées par le corps en très peu de temps, principalement par un mécanisme de clairance rénale, avec une faible accumulation dans les organes. / This thesis focuses on the synthesis, characterization, functionalization and in vitro and in vivo investigation of different kinds of ultrasmall nanoparticles (silicon nanoparticles: Si NPs; carbon dots: CQDs; silica-coated cobalt NPs: Co@SiO2 NPs) which exhibit luminescence or magnetic properties and can be functionalized through covalent bonds. All the systems studied are very attractive for in vivo multimodal imaging, which requires the stable anchoring of multiple functionalities on a single nano-sized platform. In this perspective, nanoparticles were functionalized with amine-moieties and, subsequently, coupled with dyes or radiolabels in order to perform in vivo optical or positron emission tomography imaging. When tested in vitro, ultrasmall nanoparticles showed very low cytotoxicity. In vivo experiments gave very promising results since nanoparticles were excreted from the body in short times, mainly through a renal clearance mechanism, with low accumulation in organs.
|
4 |
Metasurfaces for bioimaging / Métasurfaces pour la bioimagerieGortari, Antu Nehuen 15 November 2019 (has links)
Au cours des dernières années, des efforts importants ont été déployés pour développer des métasurfaces (MSs) électromagnétiques avec la possibilité de changer de manière abrupte les propriétés de la lumière. Ces avancées ont ouvert une nouvelle gamme de possibilités pour contrôler la lumière en utilisant des dispositifs optiques ultra-minces. Dans ce contexte, et plus spécifiquement dans le spectre visible, les applications en bio-imagerie s’avèrent particulièrement intéressantes. Une technique qui est particulièrement bien adaptée à l'étude de molécules proches d'une membrane cellulaire est la microscopie à fluorescence par réflexion interne (TIRFM), qui repose sur un champ évanescent d'excitation. Dans ce cas la lumière incidente est totalement réfléchie sur une interphase (typiquement verre/eau) en raison de son angle d'incidence élevé. À ce jour, la TIRFM est généralement mise en œuvre à l'aide d'objectifs volumineux de grande ouverture numérique et de petit champ de vision.Dans ce travail de thèse, nous réalisons de substrats pour la microscopie TIRF à base de métasurfaces constituées de réseaux périodiques de structures asymétriques fabriquées en dioxyde de titane (TiO2) sur du verre borosilicaté. Ces structures, aussi petites que 48 nm, ont été optimisées à l’aide de simulations numériques "Rigorous coupled-wave analysis” (RCWA) dans le but de coupler de 50 à 90% de la lumière incidente dans le premier ordre de diffraction avec des angles élevés (θ > 63deg). Le fait de pouvoir utiliser des objectifs de faible grossissement et d'avoir une grande zone de champ évanescent fournit des conditions TIRF uniques qui ne sont pas accessibles par les méthodes traditionnelles. De plus, ces structures sont compatibles avec la lithographie par nanoimpression UV, ce qui permet d’envisager une fabrication à bas coût et à grande échelle. Outre la conception, et la fabrication, dans cette thèse nous aboutissons à une preuve de principe de la microscopie TIRF basée sur des métasurfaces en milieu biologique en imageant notamment des membranes fluorescentes de cellules souches. Ces métasurfaces permettent ainsi l’implémentation TIRFM à contraste élevé et à faible photo-blanchissement compatible avec des microscopes à champ large peu coûteux. / In recent years there has been a significant effort to push electromagnetic metasurfaces with the ability to abruptly change light properties into visible wavelengths. These advancements have opened a new range of possibilities to reshape light using ultra-thin optical devices and there is one field that is starting to gather attention: bioimaging. One technique particularly well suited for the study of molecules near a cell membrane is Total Internal Reflection Fluorescence (TIRF) microscopy, which relies on an evanescence field created by light being totally internally reflected within a glass substrate due to its high incidence angle. As of today, TIRF is generally implemented using bulky high-NA, small field of view oil objectives.In this project we present the realization of metasurface-based TIRF microscopy substrates consisting of periodic 2D arrays of asymmetric structures fabricated in titanium dioxide on borosilicate glass. These patterns, as small as 48nm, were optimized through rigorous coupled-wave analysis to couple 50-90% of the incoming normally incident light into the first diffraction order, which outputs at an angle that suffices total internal reflection in water and eliminates the requirement for high NA objectives or prisms to achieve TIRF. Being able to utilize lower-magnification air objectives and having a large evanescence field area provide unique TIRF conditions not accessible by traditional methods. Additionally, these structures are compatible with soft UV nanoimprint lithography, for cost-effective scale production, to give TIRF’s high contrast, low photodamage and low photobleaching capabilities to inexpensive wide-field microscopes.
|
5 |
Controlled switching of fluorescent organic nanoparticles through energy transfer for bioimaging applications / Contrôle de la fluorescence dans des nanoparticules organiques par transfert d’énergie en vue d’applications en bioimagerieTrofymchuk, Kateryna 16 December 2016 (has links)
Les performances des techniques de bioimagerie et de biodétection peuvent être améliorées grâce aux nanoparticules fluorescentes (NPs) permettant un transfert d’énergie résonante de type Förster (FRET) efficace. Le but de mon projet de thèse est le développement de NPs polymériques brillantes et ultrastables encapsulant des fluorophores, capables de produire un FRET au-delà du rayon de Förster. Il a été montré que les groupements encombrés sont essentiels pour minimiser l’auto-extinction et le blanchiment des fluorophores encapsulés. Par ailleurs, la matrice polymérique joue un rôle crucial dans le contrôle de l’effet collaboratif entre fluorophores du au transfert d’énergie d’excitation. Puis, en utilisant cet effet collaboratif entre fluorophores, nous avons conçu des NPs présentant une photocommutation efficace, ainsi qu'un phénomène de "light harvesting" très important. Enfin, de très petites NPs avec un FRET efficace à leur surface ont été élaborées et appliquées pour la détection ultra-sensible de protéines. Les résultats obtenus fournissent de nouvelles perspectives dans le développement des nanoparticules brillantes avec un transfert d'énergie efficace, ainsi que des nano-sondes pour la détection de molécules uniques. / Performance of biosensing and bioimaging techniques can be improved by fluorescent nanoparticles (NPs) capable of efficient Förster resonance energy transfer (FRET). The aim of my PhD project is to develop bright and photostable dye-loaded polymer NPs capable to undergo efficient FRET beyond the Förster radius. We showed that bulky groups are essential for minimizing self-quenching and bleaching of encapsulated dyes. Moreover, polymer matrix plays a crucial role in controlling the inter-fluorophore communication by excitation energy transfer. Then, by exploiting communication of dyes, we designed NPs exhibiting efficient photoswitching as well as giant light-harvesting. Finally, very small NPs with efficient FRET to their surface were developed and applied for ultra-sensitive molecule detection of proteins. The obtained results provide new insights in the development of bright nanoparticles with efficient energy transfer as well as nano-probes for single-molecule detection.
|
6 |
Soft hybrid materials for cell growth and proliferation / Matériaux souples hybrides pour la croissance et la prolifération cellulaireFiorini, Federica 28 September 2016 (has links)
Le travail de recherche consiste à développer des hydrogels pour la prolifération et la migration cellulaires in vitro et in vivo en trois dimensions (3D). Des hydrogels à base de polyamidoamines avec d'intéressantes propriétés physicochimiques et une remarquable biocompatibilité ont été développés pour différentes applications biomédicales. Un hydrogel avec des sondes luminescentes d’iridium(III) incorporés de manière covalente, a été conçue comme plate-forme 3D de culture cellulaire, pour la visualisation directe des cellules vivantes en temps réel, et a démontré être un puissant outil de bioimagerie in vitro. En outre, un hydrogel nanocomposite, capable d'induire la chimiotaxie des cellules souches, a été développé et testé in vivo, en confirmant son potentiel en tant qu’implant pour l’ingénierie tissulaire. Finalement, un hydrogel injectable et biodégradable a été réalisé comme un nouvel agent pour la dissection sous-muqueuse endoscopique des lésions néoplasiques digestives. / The research work focuses on the development of hydrogels to investigate three-dimensional (3D) cell proliferation and migration in vitro and in vivo. Polyamidoamines-based hydrogels with interesting physicochemical properties and high biocompatibility have been developed for different biomedical applications. An hydrogel with covalently incorporated iridium(III) fluorescent probes, has been conceived as a 3D cell culture platform for the direct visualization of living cells in real-time, demonstrating to be a powerful tool for in vitro bio-imaging. Moreover, a nanocomposite hydrogel, able to induce chemotaxis of stem cells, was developed andtested in vivo, confirming its potential as a tissue engineering implant. Finally, an injectable biodegradable nanocomposite hydrogel was realized as a novel agent for endoscopic submucosal dissection of large neoplastic lesions of the gastro-intestinal tract.
|
7 |
Développement de la microscopie par auto-interférences pour l'imagerie super-résolue tridimensionnelle au sein de tissus biologiques épais. / Self-interferences microscopy for 3D super-resolution microscopy in thick biological samplesLinarès-Loyez, Jeanne 01 October 2019 (has links)
Le travail de cette thèse a été consacré au développement d’un nouvelle technique SELFI (pour self-interferences, auto-interférences en anglais). Cette méthode permet d’obtenir une localisation tridimensionnelle d’émetteurs fluorescents individuels. Nous avons démontré que cela permet l'imagerie super-résolue en 3D et le suivie 3D de molécules uniques en profondeur dans des échantillons biologiques denses et complexes. La technique SELFI se base sur l'utilisation des interférences auto-référencées (également appelées « auto-interférences ») pour remonter à la localisation 3D d’un émetteur en une seule mesure. Ces interférences sont générées via l’utilisation d'un réseau de diffraction placé en sortie du microscope de fluorescence : le signal de fluorescence diffracte sur le réseau et les ordres interfèrent, après une courte propagation, sur le détecteur. Les interférences ainsi formées sont décodées numériquement pour remonter à la localisation 3D d'une molécule fluorescente au sein de l'échantillon. Une molécule unique peut ainsi être localisée avec une précision d'une dizaine de nanomètre, et cela jusqu'à une profondeur d'au moins 50µm au sein d'un échantillon biologique vivant épais (par exemple un tissu biologique).En combinant la méthode SELFI à différentes techniques de super-résolution (PALM, dSTORM et uPAINT), nous montrons que cette méthode de localisation tridimensionnelle permet de retrouver la hiérarchie et l'organisation de protéines dans des objets biologiques. En effectuant du SELFI-PALM, nous avons pu observer différentes protéines des points focaux d’adhésion (talin-C terminale et paxiline) et retrouver les différences de hauteur attendues, et ceux sur des échantillons de cellules vivantes. Ces résultats confirment la résolution accessible avec la technique SELFI (environ 25nm) même pour un faible nombre de photons collectés (environ 500 photons par molécule).Nous mettons en évidence la robustesse de la technique SELFI en reconstruisant des images de super-résolution 3D de structures denses en profondeur dans des échantillons tissulaires complexes. En effectuant du SELFI-dSTORM, nous avons observé le réseau d’actine sur des cellules cultivées en surface de la lamelle dans un premier temps, et à différentes profondeurs (25 et 50 microns) au sein de tissus artificiels dans un second temps.Du suivi 3D de particule unique a aussi été effectué sein de tissus biologiques vivants. Nous avons observé la diffusion libre de quantum dots à différentes profondeurs (jusqu’à 50 microns, limité par l’objectif utilisé) dans des tranches vivantes de cerveau.Nous avons appliqué la technique SELFI à la détection de récepteurs postsynaptiques NMDA. Cela nous a permis d'observer, sur des échantillons de neurones en culture primaire mais aussi au sein de tranches de cerveaux de rats, une différence d'organisation entre les deux sous-unités GluN2A et GluN2B de ce récepteur au glutamate.Enfin, nous avons démontré l'importance de suivre l'évolution de l'environnement des échantillons biologiques vivants lors des acquisitions permettant la détection de molécules individuelles. Grâce à l'utilisation additionnelle et simultanée de l'imagerie de phase quantitative, nous avons pu étudier la dynamique de la membrane cellulaire durant l’activation par un facteur de croissance. L'analyse corrélative entre les images de phase quantitative en lumière blanche et les détections de molécules fluorescentes uniques permet d'obtenir de nouvelles informations pertinentes sur l'échantillon étudié. / The work of this thesis was devoted to the development of a new technique SELFI (for self-interferences). This method unlocks the three-dimensional localization of individual fluorescent emitters. We have demonstrated that this allows 3D super-resolved imaging and 3D tracking of single molecules deep into dense and complex biological samples. The SELFI technique is based on the use of self-referenced interference to go back to the 3D location of a emitter in a single measurement. These interferences are generated using a diffraction grating placed at the exit of the fluorescence microscope: the fluorescence signal diffracts on the grating and, after a short propagation, the orders interfere on the detector. The formed interferences are digitally decoded to extract the 3D location of a fluorescent molecule within the sample. A single molecule can thus be localized with a precision of approximatively ten nanometers up to a depth of at least 50 µm in a thick living biological sample (for example a biological tissue).By combining the SELFI method with different super-resolution techniques (PALM, dSTORM and uPAINT), we show that this three-dimensional localization method grants the access to the hierarchy and organization of proteins in biological objects. By performing SELFI-PALM, we observed different proteins of the adhesion focal points (talin C-terminal and paxilin) and found the expected elevation differences, and those within living cell samples. These results confirm the resolution capability of the SELFI technique (about 25 nm) even for a small number of photons collected (about 500photons per molecule).We highlight the robustness of the SELFI technique by reconstructing 3D super-resolution images of dense structures at depth in complex tissue samples. By performing SELFI-dSTORM, we observed the actin network in cells grown on the surface of the coverslip at first, and at different depths (25 and 50 microns) within artificial tissues in a second time.3D single particle tracking has also been performed in living biological tissues. We observed the free diffusion of quantum dots at different depths (up to 50 microns) in living brain slices.We applied the SELFI technique to the detection of NMDA postsynaptic receptors. We observed, in primary culture of neurons but also within slices of rat brains, a difference in organization between the two subunits GluN2A and GluN2B of this glutamate receptor.Finally, we show the importance of following the evolution of the living biological sample environment during the acquisition of images leading to detections of single molecules. Thanks to the additional and simultaneous use of quantitative phase imaging, we were able to study cell membrane dynamics during the activation by a growth factor. The correlative analysis between white light quantitative phase images and single fluorescent molecule detections provides new relevant information on the sample under study.
|
8 |
Optical imaging and drug delivery using soft- and hard- nanomaterials / Imagerie optique et drug delivery utilisant des nanomatériaux soft et hardSeptiadi, Dedy 16 October 2015 (has links)
Le travail décrit dans cette thèse se concentre sur le développement de matériaux « durs et mous » ainsi que leur interaction avec les cellules biologiques pour une application finale dans le domaine de la théranostique couvrant l'imagerie, la détection, la thérapie génique et la thérapie du cancer. Dans ce contexte, nous avons tout d'abord étudié l'utilisation de complexes (II) de platine phosphorescents auto-assemblés comme sonde cellulaire. Nous avons étendu l'idée de bio-imagerie en introduisant un concept d’imagerie basée sur l’émission stimulée où nous étions en mesure de générer un laser provenant d'une cellule biologique unique sans utiliser de cavité optique conventionnelle. En outre, des nano-transporteurs multifonctionnels à base de matières poreuses dures à savoir des zéolithes L et des nanoparticules de silice mésoporeuse pour de la « drug delivery » (relargage de médicaments et d’oligonucléotides) in vitro ide ont été développés avec succès et testés pour le traitement du glioblastome. Un autre nano-vecteur, qui est construit à partir de silice biodégradable, a également été synthétisé et sa capacité d'encapsuler des protéines et de les libérer dans les cellules vivantes lors de la dégradation de la structure dans un environnement réducteur a été démontrée. Enfin, l'utilisation de nouveaux matériaux plasmonique sur la base de nanoparticules d'argent enrobées de silice cassable pour la détection d'agents réducteurs a été mise en valeur. / The work described in this thesis focuses on the development of soft- and hard-materials as well as their interaction with biological cells for applications in the field of theranostics covering imaging, sensing, and gene, and cancer therapy. In this context, we first investigated the use of phosphorescent self-assembled platinum(II) complexes as cellular probes. We extended the concept stimulated emission-based bioimaging by generating a laser-like emission coming from a single biological cell without using any conventional optical cavity. In addition, we successfully developed multifunctional nanocarriers based on porous hard materials, namely zeolites-L and mesoporous silica nanoparticles for drug and oligonucleotide delivery in vitro and they were tested to treat glioblastoma. Another nanovector, which is constructed from biodegradable silica, was also synthesized and its ability to encapsulate proteins and release them in living cells upon degradation of the structure in reductive environment was demonstrated. Finally, the use of novel plasmonic structures based on breakable silica-coated silver nanoparticles for detection of reducing agents was successfully investigated.
|
9 |
Nanotubes de carbonne ultracourts pour la bioimagerie / Ultrashort carbon nanotubes for bioimaging applicationsFaes, Romain 18 February 2014 (has links)
Les travaux de recherche effectués lors de cette thèse portent sur l’obtention de nanotubes de carbone ultracourts et leur biofonctionnalisation pour une utilisation comme biomarqueur proche infrarouge. Des dispersions de nanotubes de carbone en milieux aqueux ont été formulées à l’aide de différents tensioactifs. Un traitement chimique oxydant préalable et/ou l’application d’ultrasons aux nanotubes ont permis de réduire leur longueur de façon significative, la sélection des plus courts étant effectuée par ultracentrifugation en gradient de densité. Les différentes fractions sélectionnées à l’issu de ce processus ont été caractérisées par spectroscopie Raman et spectroscopie d’absorption ainsi que par microscopie à force atomique. Il est ainsi montré la sélection de nanotubes d’une longueur inférieure à 20 nm. Nous montrons également leur fonctionnalisation à l’aide d’anticorps monoclonaux et leur visualisation par imagerie photothermique hétérodyne. Des résultats prometteurs ont été obtenus avec la fixation spécifique de nanotubes de carbone ultracourts sur des cellules. Ces travaux ouvrent de nombreuses perspectives en bioimagerie et en particulier l’étude de la plasticité synaptique au sein de neurones vivants. / This thesis reports the achievement of ultrashort carbon nanotubes and their biofunctionalization for applications as near-infrared biomarker. Dispersions of carbon nanotubes in aqueous media have been formulated with various surfactants. Oxidizing chemical treatments combined with the application of ultrasounds allowed significant shortening of the carbon nanotubes. Sorting and selection of the shortest nanotubes was done by density gradient ultracentrifugation. The different fractions selected at the end of this process have been characterized by Raman spectroscopy, UV-vis absorption spectroscopy and atomic force microscopy. Selection of nanotubes of a length below 20 nm is demonstrated. We also show functionalization by antibodies and the visualization of ultrashort functionalized nanotubes by photothermal heterodyne imaging. Promising results were obtained with the specific binding of ultrashort carbon nanotubes to cells. This work open route towards bioimaging applications and in particular towards the study of the synapsis plasticity within alive neurons.
|
10 |
Organic-inorganic composite materials for specific recognition and optical detection of environmental, food and biomedical analytes / Matériaux composites organiques-inorganiques pour la reconnaissance spécifique et la détection optique des analytes environnementaux, alimentaires et biomédicauxPanagiotopoulou, Maria 09 December 2016 (has links)
Cette thèse décrit l'état de l'art des sondes et nanoparticules fluorescents traditionnels utilisés en imagerie de fluorescence ainsi que le développement de nouveaux nanomatériaux à base de polymère à empreinte moléculaire, aussi dénommé ‘anticorps plastique’, pour le ciblage et la bioimagerie. En biologie et en médecine, il y a un besoin constant de diagnostiquer diverses maladies pour leur éventuel traitement et prévention. Une distribution anormale et un taux élévé de glycosylation (e.g. acides hyaluronique et sialique) à la surface ou dans les cellules sont indicateurs d’une infection ou d’un cancer. Généralement, l’imagerie par fluorescence permet de visualiser, localiser et quantifier les biomarqueurs de pathologie mais à l’heure actuelle, il n’existe pas d’outil analytique fiable pour cibler spécifiquement les molécules de glycosylation car les anticorps et les lectines vendus dans le commerce ont une faible affinité et sélectivité vis-à-vis de ces cibles. Dans ce contexte, les polymères à empreintes moléculaires (MIPs) pourraient apporter une solution. Les MIPs sont des récepteurs synthétiques possédant des affinités et sélectivités comparables à ceux des anticorps, mais exhibant une stabilité physique, thermique et chimique bien plus accrue. De plus, leur fabrication est peu coûteuse et ne nécessite pas de tuer des animaux comme pour l’obtention des anticorps biologiques. Dans cette thèse, nous avons optimisé et synthétisé des MIPs biocompatibles pour leur utilisation en bioimagerie afin de détecter et quantifier l’acide hyaluronique et l’acide sialique sur les cellules et les tissus de peau humaine. L’acide glucuronique, une composante de l’acide hyaluronique et l’acide N-acétylneuraminique, l’acide sialique le plus commun, ont été utilisés comme molécules ‘patron’, générant des MIPs très sélectifs envers leur cible en milieu aqueux. Deux types de nanoparticules de MIPs fluorescents ont été synthétisés: (1) en incorporant un colorant rhodamine polymérisable dans la solution de pré-polymérisation et (2) en encapsulant des boîtes quantiques InP/ZnS générant ainsi des MIPs de type cœur-coquille. Pour cela, nous avons adopté une stratégie innovante qui consiste à synthétiser les coquilles de MIPs directement autour des boîtes quantiques en utilisant l’énergie de l’onde fluorescente émise par l’excitation des points quantiques, pour initier la polymérisation. Un protocole d'immunocoloration standard a ensuite été optimisé afin d’imager des kératinocytes humains fixés et vivants ainsi que des tissus de peau, par microscopie à épifluorescence et confocale. Les résultats étaient similaires à ceux obtenus par la méthode de référence utilisant une protéine biotinylée reconnaissant l'acide hyaluronique. L'imagerie multiplex en combinant deux MIPs couplés à deux couleurs de boîtes quantiques et l’imagerie des cellules cancéreuses ont également été démontrées. Bien que les MIPs n’étaient pas cytotoxiques aux concentrations utilisées pour la bioimagerie, la toxicité des différentes composantes du MIP pourrait être un frein à leur utilisation dans le domaine biomédical. Afin de rendre ces MIPs plus ‘inoffensifs’, nous avons supprimé l’amorceur de polymérisation, une molécule considérée comme toxique. Les MIPs ont été synthétisés en employant des monomères qui s’auto-initient sous l’effet de l’UV ou de la chaleur. La spécificité et la sélectivité des MIPs obtenus étaient similaires à ceux préparés avec des amorceurs. En conclusion, cette thèse décrit la première utilisation des MIPs comme anticorps synthétique pour la bioimagerie de fluorescence. Ce travail ouvre la voie à de nouvelles applications en détection, diagnostique et thérapie par des MIPs. / This thesis describes the state of the art in nanomaterials-based targeted bioimaging and introduces molecularly imprinted polymers, also termed ‘plastic antibodies’ as novel biorecognition agents for labeling and imaging of cells and tissues. In fundamental biology and medical diagnostics, there is a constant need to localize and quantify specific molecular targets. Abnormal glycosylation levels or distributions of hyaluronan or sialic acids on cells are indicators of infection or malignancy. In general, bioimaging with fluorescent probes enables the localization and qualitative or quantitative determination of these pathological biomarkers. However, no reliable tools for the recognition of glycosylation sites on proteins exist, because the commercially available antibodies or lectins have poor affinity and selectivity for these targets. In this context, tailor-made molecularly imprinted polymers (MIPs) are promising synthetic receptor materials since they present a series of advantages over their natural counterparts such as the ease and low cost of preparation and their physical and chemical stability. Thus, MIPs could provide a robust and specific imaging tool for revealing the location/distribution, time of appearance and structure of glycosylation sites on/in cells, which would lead to a better insight of the tremendously diverse biological processes in which these molecules are involved. Herein, we describe the synthesis of water-compatible MIPs for the molecular imaging of hyaluronan and sialylation sites on cells and tissues. Since molecular imprinting of entire biomacromolecules like oligosaccharides is challenging, we opted for what is commonly called the ‘epitope approach’, which was inspired by nature. The monosaccharides, glucuronic acid and N-acetylneuraminic acid were imprinted, and the resulting MIPs were able to bind these molecules when present and accessible on the terminal unit of hyaluronan and sialylation sites. Fluorescent MIPs were synthesized as rhodamine-labeled nanoparticles and as MIP-coated InP/ZnS core-shell quantum dot (QD) particles. For the coating of the QDs, a novel versatile solubilization and functionalization strategy was proposed, which consists of creating polymer shells directly on QDs by photopolymerization using the particles as individual internal light sources. A standard immunostaining protocol was then successfully adapted for the application of the fluorescently labeled MIPs to image fixed and living human keratinocytes and skin tissues, by epifluorescence and confocal fluorescence microscopy. The results were comparable to those obtained with a reference method where staining was done with a biotinylated hyaluronic acid binding protein. Multiplexed and cancer cell imaging were also performed, demonstrating the potential of molecularly imprinted polymers as a versatile biolabeling and bioimaging tool. Although the MIPs were not cytotoxic at the concentrations used for bioimaging, in order to render them generally applicable in biomedicine, where toxicity of the polymerization precursors is a matter of concern, we suppressed the initiator, a toxic chemical. Initiator-free MIPs were thus synthesized by using monomers that can self-initiate under UV irradiation or heat. The specificity and selectivity of the obtained MIPs were as good as the ones prepared with initiators. In conclusion, we have demonstrated for the first time the great potential of MIPs as synthetic antibody mimics for bioimaging. The possibility to associate other functionalities such as QDs and additionally attach drugs to the same material appears rather straightforward due to the synthetic polymeric nature of MIPs, which paves the way to new potential applications in theranostics.
|
Page generated in 0.0345 seconds