• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 5
  • 5
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 127
  • 69
  • 68
  • 34
  • 26
  • 25
  • 18
  • 17
  • 16
  • 15
  • 15
  • 15
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Synthesis and Characterization of New Probes for use in Fluorescence and X-ray CT Bioimaging

Tang, Simon 01 January 2015 (has links)
The pursuit of more suitable drugs intended for possible biological applications are a continuously growing topic of research within the scientific community. One of these suitable qualities includes the need for hydrophilicity and or some appropriate delivery system for the drug to enter into biological systems. A system of analyzing and following these compounds would then, however, be necessary to conduct any kind of mechanistic or interaction studies for he said drug within the biological system. Just to name a few, fluorescence and X-ray computed tomography (CT) methods allow for imaging of biological systems but require the need of compounds with specific qualities. Finally, even with a means of entering and following a oaded drug, it would not be complete without a way of targeting its intended location. Herein, the first chapter reports the synthesis and characterization of a fluorene-based pyridil bis-?-diketone compound with suitable one- and two-photon fluorescent properties and its encapsulation into Pluronic F127 micelles for the possible application of tracking lysosomes. Next the synthesis and characterization of a BODIPY-based fluorophore with excellent fluorescence ability is reported. This compound was conjugated to two triphenylphosphine (TPP) groups and is shown as a potential mitochondria probe within HCT-116 cells. Finally, the synthesis and characterization of diatrizoic acid (DA) based derivatives conjugated to silica nanoparticles, as well as unconjugated, are reported as potential CT contrast agents. The derivatives were also functionalized with maleimide moieties facilitating subsequent potential bioconjugation of a targeting protein via a thiol group.
82

Material Differences in Equine Cortical and Trabecular Bone

Allen, Ryan B 01 April 2014 (has links) (PDF)
A greater understanding of bone materials would be beneficial in creating more accurate computer models and in the making of biomedical products involving bone. This study set out to determine whether cortical and trabecular bone are two separate materials, or whether they are the same material with a variance in porosity. To answer this question, samples were taken from different sections of the equine metacarpus, underwent densitometry analysis and were statistically analyzed. The majority of results suggest that the material is the same between varying densities of bone and thus the same between cortical and trabecular bone. These particular results are consistent with current standard practices. However, in several instances specifically regarding high porosity trabecular bone, a variance in density was found likely indicating a combination of differences in both material and architecture. Further studies should be done with specific focus on material variances to high porosity trabecular bone to improve the accuracy of computer models and general knowledge.
83

Protective Effects of Milk Phospholipids Against UV Photodamage in Human Skin Equivalents

Achay, Zyra 01 September 2011 (has links) (PDF)
The ultraviolet (UV) spectrum has been known to cause damage to skin in varying degrees. UVB radiation (290-320 nm) in particular, has been proven to be highly mutagenic and carcinogenic in many animal experiments compared to either UVA or UVC. The alarming rate of increase in skin cancer incidence has prompted many investigators to pursue other alternatives to sunscreens including changes in lifestyle habits and dietary consumption in order to boost our efforts in tackling this widespread disease. Previous studies employing confocal reflectance, MTT assay and histology suggest that milk phospholipids may possess protective properties against UVB-mediated damage but the molecular mechanism for this effect remains unclear. This study aims to evaluate changes in cell morphology, apoptosis and p21 expression in tissue engineered epidermis to increase our understanding of the mechanisms behind the potential protective effects of milk phospholipids against UV-induced photodamage. Human skin tissue equivalents were incubated in either 1% milk phospholipid solution or maintenance media then exposed to 120 mJ/cm2 dose of 300 nm UVB after 24 hours. The upregulation of p21 protein in response to DNA damage was measured with Western blot and immunofluorescence microscopy and markers for apoptosis and hyperplasia were examined 24 hours after irradiation. Results revealed that p21 levels and the amount of apoptotic markers such as fragmented DNA and nuclear condensation were significantly reduced in UV-exposed tissues pre-incubated with milk phospholipids compared to levels seen in both the positive control and UV-exposed skin tissue not incubated with milk phospholipids. This decrease in p21 expression may imply a reduction in DNA damage 24 hours after UV exposure or a decrease in acquired photodamage at the outset. Milk phospholipid incubation however, induced an increase in epidermal thickening with or without UV exposure, which may imply induction of a protective mechanism to enhance the barrier properties of skin.
84

Comparison of Scanning Electron Microscopy and Confocal Laser Microscopy for Tissue Surface Roughness Characterization

Dhaliwal, Tarnvir 01 March 2024 (has links) (PDF)
It was found that the measurements captured by confocal microscopy and scanning electron microscopy had a statistically significant difference for bovine tissue. There was not a statistically significant for porcine and poultry tissue. The intent of the study is to perform a comparative study to examine efficacy of two distinct technologies for a singular purpose: tissue surface roughness characterization. The two technologies compared are a confocal reflectance microscope and a scanning electron microscope. The comparison was made by comparing two surface roughness parameters [Ra and Rq] within ImageJ. The study examined three different animal species [porcine, bovine, and poultry] to highlight if different tissues presented alternative conclusions for the efficiency of either technology. Additional analysis was produced comparing two cutting methods [Kleen Kut versus conventional], as well as six different poultry processing technique combinations.
85

Development of an In Vitro 3-Dimensional Co-Culture Human Colorectal Cancer Model in Microfluidic Devices

Jens, Abby 01 March 2024 (has links) (PDF)
Colorectal cancer is the second most common cause of cancer-related deaths in the United States, with the relative 5-year survival rate for distant stage cancer being only 14%. The most common treatment for colorectal cancer is with chemotherapeutic drugs; however, the discovery of these drugs is costly, time-consuming, and often requires the use of animal models that do not yield results that translate to clinical trials. Due to these shortcomings, researchers seek to develop physiologically relevant in vitro tumor models that more accurately mimic the tumor microenvironment for cheaper and faster high-throughput drug screening. The aim of this research was to develop a colorectal cancer tumor model co-cultured with endothelial and stromal cells, followed by validation with clinically relevant chemotherapeutic agents within microfluidic devices. The first experiment consisted of a lipofection of fibroblasts to yield fluorescently tagged cells that could be later imaged using a fluorescence microscope. The next experiment consisted of a co-culture of tumor, endothelial, and fibroblast cells at varying densities in a twodimensional (2D) culture to determine the optimal plating densities that would yield quantifiable tumor and endothelial network formation. The following experiment used these optimal densities to test the effects of the chemotherapeutic agents oxaliplatin and SN38 on the tumor and endothelial cells in 2D. After the various densities and drug concentrations were tested in 2D, the model was introduced into microfluidic devices. The first experiment in the devices was similar to the first experiment plated in 2D, as it involved the establishment of optimal plating densities of all three cell types within the devices. Similarly, the goal of this experiment was to yield quantifiable tumor and endothelial network formation within the devices. The final experiment performed in this research was the introduction of oxaliplatin and SN38 to the optimized densities v of cells determined from the previous experiment, with the aim of evaluating the effects of these chemotherapeutic agents on the tumor and endothelial cells within microfluidic devices. The two experiments plated in 2D established plating densities to be tested in the devices. These experiments also showed that increasing drug concentrations resulted in reduced tumor count and size and revealed no disruption in the endothelial networks when exposed to oxaliplatin concentrations as high as 50 µM. The final two experiments in microfluidic devices revealed that endothelial network formation is not yet possible within the devices with the current protocols, but that tumor cells still showed dose-dependent responses to drug exposure as they did in 2D. Due to the lack of network formation in this device model, future work is required to allow for endothelial cell organization into networks, to further increase the physiological relevancy of this model to in vivo tumor conditions.
86

BIVENTRICULAR FINITE ELEMENT MODELING AND QUANTIFICATION OF 3D LANGRAGIAN STRAINS AND TORSION USING DENSE MRI

Liu, Zhanqiu 01 January 2016 (has links)
Statistical data suggests that increased use of evidence-based medical therapies has largely contributed to the decrease in American death rate caused by heart disease. And my studies are about two applications of magnetic resonance imaging (MRI) as a non-invasive approach in evidence-based health care research. In my first study, the achievement of a pulmonary valve replacement surgery was assessed on a patient with tetralogy of Fallot (TOF). In order to evaluate the remodeling of right ventricle, two biventricular finite element models were built up for pre-surgical images and post-surgical images. In my second study, 3D Lagrangian strains and torsion in the left ventricle of ten rats were investigated using Displacement ENcoding with Stimulated Echoes (DENSE) cardiac magnetic resonance (CMR) images. Tools written in MATLAB were developed for 2D contouring, 3D modeling, strain and torsion computations, and statistical comparison across subjects.
87

NONINVASIVE NEAR-INFRARED DIFFUSE OPTICAL MONITORING OF CEREBRAL HEMODYNAMICS AND AUTOREGULATION

Cheng, Ran 01 January 2013 (has links)
Many cerebral diseases are associated with abnormal cerebral hemodynamics and impaired cerebral autoregulation (CA). CA is a mechanism to maintain cerebral blood flow (CBF) stable when mean arterial pressure (MAP) fluctuates. Evaluating these abnormalities requires direct measurements of cerebral hemodynamics and MAP. Several near-infrared diffuse optical instruments have been developed in our laboratory for hemodynamic measurements including near-infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS), hybrid NIRS/DCS, and dual-wavelength DCS flow-oximeter. We utilized these noninvasive technologies to quantify CBF and cerebral oxygenation in different populations under different physiological conditions/manipulations. A commercial finger plethysmograph was used to continuously monitor MAP. For investigating the impact of obstructive sleep apnea (OSA) on cerebral hemodynamics and CA, a portable DCS device was used to monitor relative changes of CBF (rCBF) during bilateral thigh cuff occlusion. Compared to healthy controls, smaller reductions in rCBF and MAP following cuff deflation were observed in patients with OSA, which might result from the impaired vasodilation. However, dynamic CAs quantified in time-domain (defined by rCBF drop/MAP drop) were not significantly different between the two groups. We also evaluated dynamic CA in frequency-domain, i.e., to quantify the phase shifts of low frequency oscillations (LFOs) at 0.1 Hz between cerebral hemodynamics and MAP under 3 different physiological conditions (i.e., supine resting, head-up tilt (HUT), paced breathing). To capture dynamic LFOs, a hybrid NIRS/DCS device was upgraded to achieve faster sampling rate and better signal-to-noise. We determined the best hemodynamic parameters (i.e., CBF, oxygenated and total hemoglobin concentrations) among the measured variables and optimal physiological condition (HUT) for detecting LFOs in healthy subjects. Finally, a novel dual-wavelength DCS flow-oximeter was developed to monitor cerebral hemodynamics during HUT-induced vasovagal presyncope (VVS) in healthy subjects. rCBF was found to have the best sensitivity for the assessment of VVS among the measured variables and was likely the final trigger of VVS. A threshold of ~50% rCBF decline was observed which can completely separate subjects with or without presyncope, suggesting its potential role for predicting VVS. With further development and applications, NIRS/DCS techniques are expected to have significant impacts on the evaluation of cerebral hemodynamics and autoregulation.
88

MULTIMODAL NONCONTACT DIFFUSE OPTICAL REFLECTANCE IMAGING OF BLOOD FLOW AND FLUORESCENCE CONTRASTS

Irwin, Daniel 01 January 2018 (has links)
In this study we design a succession of three increasingly adept diffuse optical devices towards the simultaneous 3D imaging of blood flow and fluorescence contrasts in relatively deep tissues. These metrics together can provide future insights into the relationship between blood flow distributions and fluorescent or fluorescently tagged agents. A noncontact diffuse correlation tomography (ncDCT) device was firstly developed to recover flow by mechanically scanning a lens-based apparatus across the sample. The novel flow reconstruction technique and measuring boundary curvature were advanced in tandem. The establishment of CCD camera detection with a high sampling density and flow recovery by speckle contrast followed with the next instrument, termed speckle contrast diffuse correlation tomography (scDCT). In scDCT, an optical switch sequenced coherent near-infrared light into contact-based source fibers around the sample surface. A fully noncontact reflectance mode device finalized improvements by combining noncontact scDCT (nc_scDCT) and diffuse fluorescence tomography (DFT) techniques. In the combined device, a galvo-mirror directed polarized light to the sample surface. Filters and a cross polarizer in stackable tubes promoted extracting flow indices, absorption coefficients, and fluorescence concentrations (indocyanine green, ICG). The scDCT instrumentation was validated through detection of a cubical solid tissue-like phantom heterogeneity beneath a liquid phantom (background) surface where recovery of its center and dimensions agreed with the known values. The combined nc_scDCT/DFT identified both a cubical solid phantom and a tube of stepwise varying ICG concentration (absorption and fluorescence contrast). The tube imaged by nc_scDCT/DFT exhibited expected trends in absorption and fluorescence. The tube shape, orientation, and localization were recovered in general agreement with actuality. The flow heterogeneity localization was successfully extracted and its average relative flow values in agreement with previous studies. Increasing ICG concentrations induced notable disturbances in the tube region (≥ 0.25 μM/1 μM for 785 nm/830 nm) suggesting the graduating absorption (320% increase at 785 nm) introduced errors. We observe that 830 nm is lower in the ICG absorption spectrum and the correspondingly measured flow encountered less influence than 785 nm. From these results we anticipate the best practice in future studies to be utilization of a laser source with wavelength in a low region of the ICG absorption spectrum (e.g., 830 nm) or to only monitor flow prior to ICG injection or post-clearance. In addition, ncDCT was initially tested in a mouse tumor model to examine tumor size and averaged flow changes over a four-day interval. The next steps in forwarding the combined device development include the straightforward automation of data acquisition and filter rotation and applying it to in vivo tumor studies. These animal/clinical models may seek information such as simultaneous detection of tumor flow, fluorescence, and absorption contrasts or analyzing the relationship between variably sized fluorescently tagged nanoparticles and their tumor deposition relationship to flow distributions.
89

QUANTIFICATION OF MYOCARDIAL MECHANICS IN LEFT VENTRICLES UNDER INOTROPIC STIMULATION AND IN HEALTHY RIGHT VENTRICLES USING 3D DENSE CMR

Liu, Zhan-Qiu 01 January 2019 (has links)
Statistical data from clinical studies indicate that the death rate caused by heart disease has decreased due to an increased use of evidence-based medical therapies. This includes the use of magnetic resonance imaging (MRI), which is one of the most common non-invasive approaches in evidence-based health care research. In the current work, I present 3D Lagrangian strains and torsion in the left ventricle of healthy and isoproterenol-stimulated rats, which were investigated using Displacement ENcoding with Stimulated Echoes (DENSE) cardiac magnetic resonance (CMR) imaging. With the implementation of the 12-segment model, a detailed profile of regional cardiac mechanics was reconstructed for each subject. Statistical analysis revealed that isoproterenol induced a significant change in the strains and torsion in certain regions at the mid-ventricle level. In addition, I investigated right ventricular cardiac mechanics with the methodologies developed for the left ventricle. This included a comparison of different regions within the basal and mid-ventricular regions. Despite no regional variation found in the peak circumferential strain, the peak longitudinal strain exhibited regional variation at the anterior side of the RV due to the differences in biventricular torsion, mechanism of RV free wall contraction, and fiber architecture at RV insertions. Future applications of the experimental work presented here include the construction and validation of biventricular finite element models. Specifically, the strains predicted by the models will be statistically compared with experimental strains. In addition, the results of the present study provide an essential reference of RV baseline evaluated with DENSE MRI, a highly objective technique.
90

NONINVASIVE MULTIMODAL DIFFUSE OPTICAL IMAGING OF VULNERABLE TISSUE HEMODYNAMICS

Zhao, Mingjun 01 January 2019 (has links)
Measurement of tissue hemodynamics provides vital information for the assessment of tissue viability. This thesis reports three noninvasive near-infrared diffuse optical systems for spectroscopic measurements and tomographic imaging of tissue hemodynamics in vulnerable tissues with the goal of disease diagnosis and treatment monitoring. A hybrid near-infrared spectroscopy/diffuse correlation spectroscopy (NIRS/DCS) instrument with a contact fiber-optic probe was developed and utilized for simultaneous and continuous monitoring of blood flow (BF), blood oxygenation, and oxidative metabolism in exercising gastrocnemius. Results measured by the hybrid NIRS/DCS instrument in 37 subjects (mean age: 67 ± 6) indicated that vitamin D supplement plus aerobic training improved muscle metabolic function in older population. To reduce the interference and potential infection risk on vulnerable tissues caused by the contact measurement, a noncontact diffuse correlation spectroscopy/tomography (ncDCS/ncDCT) system was then developed. The ncDCS/ncDCT system employed optical lenses to project limited numbers of sources and detectors on the tissue surface. A motor-driven noncontact probe scanned over a region of interest to collect boundary data for three dimensional (3D) tomographic imaging of blood flow distribution. The ncDCS was tested for BF measurements in mastectomy skin flaps. Nineteen (19) patients underwent mastectomy and implant-based breast reconstruction were measured before and immediately after mastectomy. The BF index after mastectomy in each patient was normalized to its baseline value before surgery to get relative BF (rBF). Since rBF values in the patients with necrosis (n = 4) were significantly lower than those without necrosis (n = 15), rBF levels can be used to predict mastectomy skin flap necrosis. The ncDCT was tested for 3D imaging of BF distributions in chronic wounds of 5 patients. Spatial variations in BF contrasts over the wounded tissues were observed, indicating the capability of ncDCT in detecting tissue hemodynamic heterogeneities. To improve temporal/spatial resolution and avoid motion artifacts due to a long mechanical scanning of ncDCT, an electron-multiplying charge-coupled device based noncontact speckle contrast diffuse correlation tomography (scDCT) was developed. Validation of scDCT was done by imaging both high and low BF contrasts in tissue-like phantoms and human forearms. In a wound imaging study using scDCT, significant lower BF values were observed in the burned areas/volumes compared to surrounding normal tissues in two patients with burn. One limitation in this study was the potential influence of other unknown tissue optical properties such as tissue absorption coefficient (µa) on BF measurements. A new algorithm was then developed to extract both µa and BF using light intensities and speckle contrasts measured by scDCT at multiple source-detector distances. The new algorithm was validated using tissue-like liquid phantoms with varied values of µa and BF index. In-vivo validation and application of the innovative scDCT technique with the new algorithm is the subject of future work.

Page generated in 0.0975 seconds