• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 5
  • 5
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 127
  • 69
  • 68
  • 34
  • 26
  • 25
  • 18
  • 17
  • 16
  • 15
  • 15
  • 15
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Funtional Near Infrared Spectroscopy Study of Language, Joint Attention and Motor Skills

Chaudhary, Ujwal 27 June 2013 (has links)
Near infrared spectroscopy (NIRS) is an emerging non-invasive optical neuro imaging technique that monitors the hemodynamic response to brain activation with ms-scale temporal resolution and sub-cm spatial resolution. The overall goal of my dissertation was to develop and apply NIRS towards investigation of neurological response to language, joint attention and planning and execution of motor skills in healthy adults. Language studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal and fronto-temporal cortex of healthy adults in response to language reception and expression. The mathematical model developed based on granger causality explicated the directional flow of information during the processing of language stimuli by the fronto-temporal cortex. Joint attention and planning/ execution of motor skill studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal cortex of healthy adults and in children (5-8 years old) with autism (for joint attention studies) and individuals with cerebral palsy (for planning/execution of motor skills studies). The joint attention studies on healthy adults showed differences in activation as well as intensity and phase dependent connectivity in the frontal cortex during joint attention in comparison to rest. The joint attention studies on typically developing children showed differences in frontal cortical activation in comparison to that in children with autism. The planning and execution of motor skills studies on healthy adults and individuals with cerebral palsy (CP) showed difference in the frontal cortical dominance, that is, bilateral and ipsilateral dominance, respectively. The planning and execution of motor skills studies also demonstrated the plastic and learning behavior of brain wherein correlation was found between the relative change in total hemoglobin in the frontal cortex and the kinematics of the activity performed by the participants. Thus, during my dissertation the NIRS neuroimaging technique was successfully implemented to investigate the neurological response of language, joint attention and planning and execution of motor skills in healthy adults as well as preliminarily on children with autism and individuals with cerebral palsy. These NIRS studies have long-term potential for the design of early stage interventions in children with autism and customized rehabilitation in individuals with cerebral palsy.
102

Effects of Malformed or Absent Valves to Lymphatic Fluid Transport and Lymphedema in Vivo in Mice

Pujari, Akshay S. 27 October 2017 (has links)
Lymph is primarily composed of fluid and proteins from the blood circulatory system that drain into the space surrounding cells, interstitial space. From the interstitial space, the fluid enters and circulates in the lymphatic system until it is delivered into the venous system. In contrast to the blood circulatory system, the lymphatic system lacks a central pumping organ dictating the predominant driving pressure and velocity of lymph. Transport of lymph via capillaries, pre-collecting and collecting lymphatic vessels relies on the synergy between pressure gradients, local tissue motion, valves and lymphatic vessel contractility. The direction of lymph transport is regulated by bicuspid valves distributed throughout pre-collecting and collecting lymphatic vessels. Effective transport of lymph into the venous system is of prime importance. Disruption of lymph transport, because of impaired lymphatic function, reduced numbers of vessels or valvular insufficiencies can have severe health consequences, including lymphedema for which current clinical therapies are not curative. The lymphatic valves are usually bicuspid, however, congenital malformations in the valve such as single leaflet valve formation and arrested lymphatic valve development are observed and can cause lymphedema. Here we employ 4-week-old mice to study the effects of valves and malformed valves on lymph transport shedding light into some of the potentially underlying consequences of lymphedema. Polyethylene glycol (PEG) coated latex particles were injected into the inguinal lymph node of anesthetized mice. Particle displacement measurements through efferent lymphatic vessels yielded velocity, wall shear stress, vorticity and strain of the efferent lymph flow field carrying lymph from subdermal inguinal lymph nodes. Lymphatic vessel endothelial Prox1 green fluorescent protein (GFP) marker enabled the detection of lymphatic vessel walls and valves. Flow field, flow velocity, flow rate, velocity profiles, wall shear stress, vorticity and strain values were compared in regions downstream of normal and malformed valves in two wild type mice. A Clec2-deficient mouse, which experiences lymphatic development defects and is used as a lymphedema model, was employed to further elucidate the lymphatic valves on transport. The absence of centralized pumping yields highly variable lymphatic flow cycles varying from one to fifteen seconds. The presence of lymphatic valves introduces boundary conditions that yield spatial and temporal flow gradients increasing the degree of complexity of lymph transport. The valves dictate the trajectory of the particles and promote the formation of recirculation zones. Even in the presence of valves, lymph flow commonly reverses. Congenital defects like a single leaflet valve lowers the lymph flow efficiency and promotes higher wall shear stress regions. Furthermore, the absence of functional valves in the Clec2-deficient mouse not displaying lymphedema yielded lymph flow lacking the pulsatility that characterizes normal lymphatic flow.
103

Dobijanje nanofosfora na bazi fluorapatita dopirani Pr3+ jonima za bio-medicinske primene / Preparation of fluorapatite-based nanophosphorus doped with Pr3+ ions for bio-medical applications

Milojkov Dušan 08 October 2020 (has links)
<p><!--[if gte mso 9]><xml> <o:OfficeDocumentSettings> <o:AllowPNG/> </o:OfficeDocumentSettings></xml><![endif]--></p><p><!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:TrackMoves/> <w:TrackFormatting/> <w:DoNotShowRevisions/> <w:DoNotPrintRevisions/> <w:DoNotShowMarkup/> <w:DoNotShowComments/> <w:DoNotShowInsertionsAndDeletions/> <w:DoNotShowPropertyChanges/> <w:HyphenationZone>21</w:HyphenationZone> <w:PunctuationKerning/> <w:ValidateAgainstSchemas/> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:DoNotPromoteQF/> <w:LidThemeOther>EN-US</w:LidThemeOther> <w:LidThemeAsian>X-NONE</w:LidThemeAsian> <w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript> <w:Compatibility> <w:BreakWrappedTables/> <w:SnapToGridInCell/> <w:WrapTextWithPunct/> <w:UseAsianBreakRules/> <w:DontGrowAutofit/> <w:SplitPgBreakAndParaMark/> <w:EnableOpenTypeKerning/> <w:DontFlipMirrorIndents/> <w:OverrideTableStyleHps/> </w:Compatibility> <m:mathPr> <m:mathFont m:val="Cambria Math"/> <m:brkBin m:val="before"/> <m:brkBinSub m:val="&#45;-"/> <m:smallFrac m:val="off"/> <m:dispDef/> <m:lMargin m:val="0"/> <m:rMargin m:val="0"/> <m:defJc m:val="centerGroup"/> <m:wrapIndent m:val="1440"/> <m:intLim m:val="subSup"/> <m:naryLim m:val="undOvr"/> </m:mathPr></w:WordDocument></xml><![endif]--></p><p><span id="cke_bm_202S" style="display: none;">&nbsp;</span><span id="cke_bm_207S" style="display: none;">&nbsp;</span><span lang="EN-GB" style="font-size:12.0pt;font-family:&quot;Times New Roman&quot;,&quot;serif&quot;;mso-fareast-font-family:&quot;Droid Sans Fallback&quot;;color:black;mso-font-kerning:.5pt;mso-ansi-language:EN-GB;mso-fareast-language:ZH-CN;mso-bidi-language:HI"><span id="cke_bm_207E" style="display: none;">&nbsp;</span><span id="cke_bm_202E" style="display: none;"> </span></span><!--[if gte mso 10]><style> /* Style Definitions */ table.MsoNormalTable{mso-style-name:"Table Normal";mso-tstyle-rowband-size:0;mso-tstyle-colband-size:0;mso-style-noshow:yes;mso-style-priority:99;mso-style-parent:"";mso-padding-alt:0cm 5.4pt 0cm 5.4pt;mso-para-margin-top:0cm;mso-para-margin-right:0cm;mso-para-margin-bottom:8.0pt;mso-para-margin-left:0cm;line-height:107%;mso-pagination:widow-orphan;font-size:11.0pt;font-family:"Calibri","sans-serif";mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin;mso-ansi-language:EN-US;mso-fareast-language:EN-US;}</style><![endif]--></p><p><!--[if gte mso 9]><xml> <o:OfficeDocumentSettings> <o:AllowPNG/> </o:OfficeDocumentSettings></xml><![endif]--><!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:TrackMoves/> <w:TrackFormatting/> <w:DoNotShowRevisions/> <w:DoNotPrintRevisions/> <w:DoNotShowMarkup/> <w:DoNotShowComments/> <w:DoNotShowInsertionsAndDeletions/> <w:DoNotShowPropertyChanges/> <w:HyphenationZone>21</w:HyphenationZone> <w:PunctuationKerning/> <w:ValidateAgainstSchemas/> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:DoNotPromoteQF/> <w:LidThemeOther>EN-US</w:LidThemeOther> <w:LidThemeAsian>X-NONE</w:LidThemeAsian> <w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript> <w:Compatibility> <w:BreakWrappedTables/> <w:SnapToGridInCell/> <w:WrapTextWithPunct/> <w:UseAsianBreakRules/> <w:DontGrowAutofit/> <w:SplitPgBreakAndParaMark/> <w:EnableOpenTypeKerning/> <w:DontFlipMirrorIndents/> <w:OverrideTableStyleHps/> </w:Compatibility> <m:mathPr> <m:mathFont m:val="Cambria Math"/> <m:brkBin m:val="before"/> <m:brkBinSub m:val="&#45;-"/> <m:smallFrac m:val="off"/> <m:dispDef/> <m:lMargin m:val="0"/> <m:rMargin m:val="0"/> <m:defJc m:val="centerGroup"/> <m:wrapIndent m:val="1440"/> <m:intLim m:val="subSup"/> <m:naryLim m:val="undOvr"/> </m:mathPr></w:WordDocument></xml><![endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true" DefSemiHidden="true" DefQFormat="false" DefPriority="99" LatentStyleCount="267"> <w:LsdException Locked="false" Priority="0" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Normal"/> <w:LsdException Locked="false" Priority="9" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="heading 1"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 2"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 3"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 4"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 5"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 6"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 7"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 8"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 9"/> <w:LsdException Locked="false" Priority="39" Name="toc 1"/> <w:LsdException Locked="false" Priority="39" Name="toc 2"/> <w:LsdException Locked="false" Priority="39" Name="toc 3"/> <w:LsdException Locked="false" Priority="39" Name="toc 4"/> <w:LsdException Locked="false" Priority="39" Name="toc 5"/> <w:LsdException Locked="false" Priority="39" Name="toc 6"/> <w:LsdException Locked="false" Priority="39" Name="toc 7"/> <w:LsdException Locked="false" Priority="39" Name="toc 8"/> <w:LsdException Locked="false" Priority="39" Name="toc 9"/> <w:LsdException Locked="false" Priority="35" QFormat="true" Name="caption"/> <w:LsdException Locked="false" Priority="10" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Title"/> <w:LsdException Locked="false" Priority="1" Name="Default Paragraph Font"/> <w:LsdException Locked="false" Priority="11" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtitle"/> <w:LsdException Locked="false" Priority="22" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Strong"/> <w:LsdException Locked="false" Priority="20" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Emphasis"/> <w:LsdException Locked="false" Priority="59" SemiHidden="false" UnhideWhenUsed="false" Name="Table Grid"/> <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Placeholder Text"/> <w:LsdException Locked="false" Priority="1" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="No Spacing"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 1"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 1"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 1"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 1"/> <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Revision"/> <w:LsdException Locked="false" Priority="34" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="List Paragraph"/> <w:LsdException Locked="false" Priority="29" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Quote"/> <w:LsdException Locked="false" Priority="30" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Quote"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 1"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 1"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 1"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 1"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 1"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 2"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 2"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 2"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 2"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 2"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 2"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 2"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 2"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 2"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 3"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 3"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 3"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 3"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 3"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 3"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 3"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 3"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 3"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 4"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 4"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 4"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 4"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 4"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 4"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 4"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 4"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 4"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 5"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 5"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 5"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 5"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 5"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 5"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 5"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 5"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 5"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 6"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 6"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 6"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 6"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 6"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 6"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 6"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 6"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 6"/> <w:LsdException Locked="false" Priority="19" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis"/> <w:LsdException Locked="false" Priority="21" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis"/> <w:LsdException Locked="false" Priority="31" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/> <w:LsdException Locked="false" Priority="32" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Reference"/> <w:LsdException Locked="false" Priority="33" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Book Title"/> <w:LsdException Locked="false" Priority="37" Name="Bibliography"/> <w:LsdException Locked="false" Priority="39" QFormat="true" Name="TOC Heading"/> </w:LatentStyles></xml><![endif]--><!--[if gte mso 10]><style> /* Style Definitions */ table.MsoNormalTable{mso-style-name:"Table Normal";mso-tstyle-rowband-size:0;mso-tstyle-colband-size:0;mso-style-noshow:yes;mso-style-priority:99;mso-style-parent:"";mso-padding-alt:0cm 5.4pt 0cm 5.4pt;mso-para-margin-top:0cm;mso-para-margin-right:0cm;mso-para-margin-bottom:8.0pt;mso-para-margin-left:0cm;line-height:107%;mso-pagination:widow-orphan;font-size:11.0pt;font-family:"Calibri","sans-serif";mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin;mso-ansi-language:EN-US;mso-fareast-language:EN-US;}</style><![endif]--></p><p>Luminescentni nanokristali (nanofosfori) na bazi fluorapatita (FAP-a) dopirani elementima retkih zemalja idealni su kontrastni agenti za bio-medicinske primene, kao &scaron;to su detekcije, snimanja, praćenja i terapije ćelija kancera. Kancer je jedna od najče&scaron;ćih bolesti modernog doba čiji uspeh lečenja zavisi od rane dijagnostike i neinvazivnog tretmana. Luminescentne nanočestice mogu uneti inovativnu paradigmu u lečenje kancera kombinovanjem biosnimanja, dijagnostike i tretmana. Za studije fluorescentnih biosnimanja nanokristali fluorapatita dopirani retkim zemljama kao kontrastni agenti pružaju značajne prednosti u vidu velikih kontrasta i dugotrajnosti luminescencije, i &scaron;to je jo&scaron; važnije visoke biokompatibilnosti, netoksičnosti i bioaktivnosti. Glavni ciljevi ove doktorske disertacije su sinteza novih luminescentnih multifotonskih bionanomaterijala na bazi fluorapatita dopiranih jonima prazeodimijuma (Pr<sup>3+</sup>), njihova karakterizacija i evaluacija&nbsp; primene za fluorescentna biosnimanja kancera. Sintezom nanoprahova u umerenim uslovima metodom ko-precipitacije, a potom su&scaron;enjem na 110 <sup>o</sup>C i kalcinacijom na temperaturama od 700 i 1000 <sup>o</sup>C očekuje se pronalaženje najboljih uslova za dobijanje novih nanofosfora koji bi na&scaron;li i različite bio-medicinske primene u oblasti fluorescentnih biosnimanja. Proučavane su tri vrste PrFAP nanokristala, sa 0,1%, 0,5% i 1% atomskih procenta Pr<sup>3+</sup>, zajedno sa nedopiranim FAP kontrolnim uzorkom. Nivoi energije aktivator jona Pr<sup>3+</sup> sadrže metastabilna multipletna stanja koja nude mogućnosti efikasnih emisionih linija u vi&scaron;e boja u FAP nanokristalima, kao i u infracrvenoj i ultravioletnoj oblasti spektra. Metodom ko-precipitacije na sobnoj temperaturi (25 <sup>o</sup>C), a potom su&scaron;enjem na 110 <sup>o</sup>C, sintetisani su monofazni heksagonalni nanokristali PrFAPs nepravilnog sfernog oblika. Termičkom analizom sintetisanih uzoraka, na&nbsp;osnovu detektovanih temperaturnih opsega procesa dekarbonacije i dehidroksilacije, utvrđene su temperature kalcinacije od 700 i 1000 oC. Termička analiza i karakterizacija uzoraka su pokazale da Pr<sup>3+</sup> joni dovode do stabilizacije FAP strukture na vi&scaron;im temperaturama, &scaron;to je pripisano unosu lantanoidnih jona sa specifičnim magnetnim osobinama u sistem i stvaranju jačih privlačnih sila sa O<sup>2- </sup>anjonima. Nanokristali su&scaron;eni na 100 <sup>o</sup>C i kalcinisani na 1000 <sup>o</sup>C, zbog prisustva defekata kristalne re&scaron;etke koji zadržavaju emisiju Pr<sup>3+</sup> jona, nisu pokazali luminescentne karakteristike od značaja za primene u medicinskim fluorescentnim biosnimanjima. Kalcinacijom uzoraka na 700 <sup>o</sup>C izrađen je novi tip aktiviranih fluorapatitnih nanokristala dopira / <p>Luminescent nanocrystals (nanophosphorus) based on fluorapatite (FAP) doped with rare earth elements are ideal contrast agents for biomedical applications such as cancer cell detection, imaging, tracking and therapy. Cancer is one of the most common diseases of the modern times whose success of the cure depends on early diagnosis and non-invasive treatment. Luminescent nanoparticles can bring an innovative paradigm into the treatment of cancer by combining bioimaging, diagnostics and treatment. Rare earth doped fluorapatite nanocrystals as contrast agents for studies of fluorescence bioimaging, offer significant advantages in terms of high contrasts and long-term luminescence, and more importantly high biocompatibility, non-toxicity and bioactivity. The main objectives of this doctoral dissertation are the synthesis of novel luminescent multiphoton bionanomaterials based on fluorapatites doped with praseodymium ions (Pr<sup>3+</sup>), their characterization and evaluation of their application for cancer fluorescence bioimaging. Synthesis of nanopowders under moderate conditions by the co-precipitation method, followed by dried at 110 &deg;C and calcination at 700 and 1000 &deg;C, is expected to find the best conditions for obtaining new nanophosphors that would find different bio-<br />medical applications in the field of fluorescence bioimaging. Three types of PrFAP nanocrystals were studied, with 0,1%, 0,5%, and 1% atomic percentages of Pr<sup>3+</sup>, together with an undoped FAP control sample. Energy levels of the Pr<sup>3+</sup> ion activator contain metastable multiplet states that offer the possibility of efficient multi-color emission lines in FAP nanocrystals as well as in the infrared and ultraviolet regions of the spectrum. Single-phase hexagonal nanocrystals PrFAPs of irregular spherical shape were synthesized by the method of co-precipitation at room temperature (25 <sup>o</sup>C) and then drying at 110 <sup>o</sup>C. Thermal analysis of the synthesized samples, based on the detected temperature ranges of the decarbonation and dehydroxylation processes, determined calcination temperatures of 700 and 1000 <sup>o</sup>C. Thermal analysis with characterization showed that Pr<sup>3+</sup> ions lead to stabilization of the FAP structure at higher temperatures,&nbsp;which was attributed to the entry of lanthanoid ions with specific magnetic properties into the system and the creation of stronger attractive forces with O<sup>2-</sup> anions. Nanocrystals dried at 100 <sup>o</sup>C and calcined at 1000 <sup>o</sup>C, due to the presence of crystal lattice defects that quench the emission of Pr<sup>3+</sup> ions, did not show luminescent characteristics of significance for applications in medical fluorescence imaging. Calcination of the samples at 700 <sup>o</sup>C produced a new type of activated praseodymium doped fluorapatite nanocrystals (PrFAPa) with excitation-emission profiles in the visible part of the spectrum. Physicochemical characterization confirmed spherical crystals of hexagonal structure up to a nanometer size of about 20 nm. Quantum-chemical calculations predicted that Pr<sup>3+</sup> ions would be embedded in the crystal lattice of FAP nanocrystals at the Ca2 position (6h), which was followed by deformations of the F<sup>-</sup> ion position. The assumed substitution mechanism is one Pr3+ ion for one Ca<sup>2+</sup>, with partial substitution of F<sup>&ndash; </sup>anions with O<sup>2&ndash;</sup> and OH<sup>&ndash;</sup> and creation of vacancies due to achieving system neutrality. The results of in vitro biocompatibility and hemocompatibility showed that PrFAP nanocrystals were not toxic to living cells. In addition, the internalization of PrFAPa nanocrystals by skin (A431) and lung (A549) cancer cells was studied using fluorescence-based confocal microscopy and wide-field microscopy. The nanocrystals show characteristic green emission at 545 nm (<sup>3</sup>P<sub>0</sub>&rarr;<sup>3</sup>H<sub>5</sub> transition of Pr<sup>3+</sup> ion) and orange emission at 600 nm (<sup>1</sup>D<sub>2</sub>&rarr;<sup>3</sup>H<sub>4</sub>), which we use to discriminate from cell autofluorescence. Studies of the images obtained by confocal microscopy in the blue, green, and red channels revealed that nanocrystals could recognize the cell surface and adhere to it, but they did not confirm the entry of nanocrystals into the cells. The wide-field microscopy detected emission transitions in green and orange color, and confirmed that the luminescent signal was coming from inside the cells. Using resonant excitation of PrFAP nanocrystals at 488 nm and emission of 600 nm, confocal microscopy extracted the fluorescence signal from inside the cancer cells. Orthogonal projections across 3D confocal stacks show that the nanocrystals are able to enter the cells positioning themselves within the cytoplasm. Overall, the obtained PrFAPa nanocrystals are biocompatible and of the tested types, the 0,5% Pr<sup>3+</sup> doped nanocrystals show the highest promise as a tracking nanoparticle probe for bioimaging applications.</p>
104

Graphene Quantum Dots as Fluorescent and Passivation Agents for Multimodal Bioimaging / Grafen-Kvantprickar som Fluorescerande Passiveringsmedel för Multimodal Bioavbildning

Kilic, Nüzhet Inci January 2021 (has links)
Zero-dimensional graphene (carbon) quantum dots have been drawing attention in bio-related applications since their discovery, especially for their optical properties, chemical stability, and easily modifiable surface.  This thesis focuses on the green synthesis of nitrogen-doped graphene quantum dots (GQDs) for dual-mode bioimaging with X-ray fluorescence (XRF) and optical fluorescence. Both conventional and microwave- (MW-)assisted solvothermal methods were followed to investigate the precursors’ effect on the synthesized GQDs. The MW-assisted method permitted the synthesis of uniform GQDs with an excitation-independent behavior, due to highly controllable reaction conditions. It was demonstrated that the molecular structure of the precursors influenced the optical fluorescence properties of the GQDs. Thus, both blue- (BQDs) and red-emitting (RQDs) GQDs were obtained by selecting specific precursors, leading to emission maxima at 438 and 605 nm under the excitation wavelengths of 390 and 585 nm, respectively.  Amine-functionalized Rh nanoparticles (NPs) were chosen as the X-ray fluorescence (XRF) active core, synthesized via MW-assisted hydrothermal method with a custom designed sugar ligand as the reducing agent. These NPs were conjugated with BQDs using EDC-NHS treatment. The hybrid Rh-GQDs NPs exhibited green emission (520 nm) under 490 nm excitation and led to a reduced cytotoxicity with respect to bare Rh NPs, highlighting the passivation role of the GQDs via the real-time cell analysis (RTCA) assay. The hybrid complex constituted a multimodal bioimaging contrastagent, tested with confocal microscopy (in vitro) and XRF phantom experiments. / Sedan deras upptäckt har nolldimensionella kvantprickar av grafen (kol) uppmärksammats inom biorelaterade applikationer, särskilt för deras optiska egenskaper, kemiska stabilitet och enkelt modifierbara yta. Denna avhandling fokuserar på en grön syntesmetod av kvävedopade grafen-kvantprickar för bimodal bioavbildning med röntgenfluorescens och optisk fluorescens. Både konventionella och mikrovågs-assisterade solvotermiska syntesmetoder användes för att undersöka metodernas effekt på de syntetiserade kvantprickarna. Den mikrovågs-assisterade metoden möjliggjorde syntes av uniforma kvantprickar med exciteringsoberoende egenskaper på grund av mycket kontrollerbara reaktionsförhållanden. Det demonstrerades att den molekylära strukturen hos prekursorerna påverkade de optiska fluorescensegenskaperna hos grafen-kvantprickarna. Genom att välja specifika prekursorer erhölls kvantprickar som emitterar i både blått och rött ljus, motsvarande emissionsmaxima vid 438 respektive 605 nm under excitering vid 390 respektive 585 nm. Amin-funktionaliserade Rh-nanopartiklar valdes som en aktiv kärna för röntgenfluorescens, syntetiserad genom en mikrovågs-assisterad hydrotermisk metod med en specialdesignad sockerligand som reduktionsmedel. Dessa nanopartiklar konjugerades med blåemitterande kvantprickar genom EDC-NHS-behandling. De hybrida nanopartiklarna uppvisade grön emission (520 nm) under 490 nm excitation och ledde till en minskad cytotoxicitet uppmätt genom cellanalys i realtid (RTCA) jämfört med endast Rh-nanopartiklar, vilket framhävde passiveringsrollen som kvantprickarna spelar. Hybridkomplexet utgjorde ett multimodalt kontrastmedel för bioavbildning, vilket demonstrerades med konfokalmikroskopi (in vitro) och fantomexperiment med röntgenfluorescens.
105

Terahertz Imaging for Cancer Detection

St. Peter, Benjamin A 01 January 2012 (has links) (PDF)
This project evaluates the ability of terahertz (THz) radiation to differentiate cancerous from non-cancerous human breast lumpectomy and mastectomy tissue. This is done by aiming a narrow-band THz beam at medical samples and measuring reflected power. THz images of specimens from Breast Conservation Surgery (BCS) were created using a gas laser source and mechanical scanning. The design and characterization of this system is discussed in detail. The images were correlated with optical histological micrographs of the same specimens and discrimination values of more than 70% were found for five of the six samples using Receiver Operating Characteristic (ROC) analysis.
106

Investigating New Guaiazulenes and Diketopyrropyrroles for Photonic Applications

Ghazvini Zadeh, Ebrahim 01 January 2015 (has links)
?-Conjugated systems have been the focus of study in recent years in order to understand their charge transport and optical properties for use in organic electronic devices, fluorescence bioimaging, sensors, and 3D optical data storage (ODS), among others. As a result, several molecular building blocks have been designed, allowing new frontiers to be realized. While various successful building blocks have been fine-tuned at both the electronic and molecular structure level to provide advanced photophysical and optoelectronic characteristics, the azulene framework has been under-appreciated despite its unique electronic and optical properties. Among several attributes, azulenes are vibrant blue naturally occurring hydrocarbons that exhibit large dipolar character, coupled with stimuli-responsive behavior in acidic environments. Additionally, the non-toxic nature and the accompanying eco-friendly feature of some azulenes, namely guaiazulene, may set the stage to further explore a more "green" route towards photonic and conductive materials. The first part of this dissertation focuses on exploiting guaiazulene as a natural building block for the synthesis of chromophores with varying stimuli-responsiveness. Results described in Chapter 1 show that extending the conjugation of guaiazulene through its seven-membered ring methyl group with aromatic substituents dramatically impacts the optical properties of the guaiazulenium carbocation. Study of these ?–stabilized tropilium ions enabled establishing photophysical structure-property trends for guaiazulene-terminated ?-conjugated analogs under acidic conditions, including absorption, emission, quantum yield, and optical band gap patterns. These results were exploited in the design of a photosensitive polymeric system with potential application in the field of three dimensional (3D) optical data storage (ODS). Chapter 2 describes the use of guaiazulene reactive sites (C-3 and C-4 methyl group) to generate a series of cyclopenta[ef]heptalenes that exhibit strong stimuli-responsive behavior. The approach presents a versatile route that allows for various substrates to be incorporated into the resulting cyclopenta[ef]heptalenes, especially after optimization that led to devising a one-pot reaction toward such tricyclic systems. Examining the UV-vis absorption profiles in neutral and acidic media showed that the extension of conjugation at C(4) of the cyclopenta[ef]heptalene skeleton results in longer absorption maxima and smaller optical energy gaps. Additionally, it was concluded that these systems act as sensitizers of a UV-activated (< 300 nm) photoacid generator (PAG), via intermolecular photoinduced electron transfer (PeT), upon which the PAG undergoes photodecomposition resulting in the generation of acid. In a related study, the guaiazulene methyl group at C-4 was employed to study the linear and nonlinear optical properties of 4-styrylguaiazulenes, having the same ?–donor with varying ?-spacer. It was realized that the conjugation length correlates with the extent of bathochromic shift of the protonated species. On the other hand, a trend of decreasing quantum yield was established for this set of 4-styrylguaiazulenes, which can be explained by the increasingly higher degree of flexibility. The second part of this dissertation presents a comprehensive investigation of the linear photophysical, photochemical, and nonlinear optical properties of diketopyrrolopyrrole (DPP)-based derivatives, including two-photon absorption (2PA), femtosecond transient absorption, stimulated emission spectroscopy, and superfluorescence phenomena. The synthetic feasibility, ease of modification, outstanding robustness, and attractive spectroscopic properties of DPPs have motivated their study for fluorescence microscopy applications, concluding that the prepared DPP's are potentially suitable chromophores for high resolution stimulated emission depletion (STED) microscopy.
107

Design, Synthesis, And Characterization Of Novel Hydrophilic Fluorene-based Derivatives For Bioimaging Applications

Nguyen, Dao 01 January 2009 (has links)
In this work, hydrophilic fluorene-based derivatives that contain ethylene oxide substituents, have been synthesized and characterized for potential use as new fluorophores for bioimaging applications and for fluorescence sensing of heavy metals. Symmetrical and unsymmetrical fluorene derivatives based on structural types of acceptor-pi-acceptor, acceptor-pi-donor, and donor-pi-donor were characterized by TGA, UV-vis absorption, fluorescence emission, lifetime, anisotropy, and two-photon absorption (2PA) cross section. They were found to possess high thermal stability, high photostability, high fluorescence quantum yields, and generally large two-photon absorption cross sections, making them quite suitable for new probes in single-photon absorption and two-photon absorption fluorescence microscopy imaging. Novel hydrophilic fluorene derivatives were synthesized from fluorene in multiple steps employing the metal-catalyzed Heck coupling reaction, the Stille reaction, the Sonogashira reaction, the Ullmann condensation reaction, and "click" chemistry. To increase the hydrophilicity of the new compounds, ethylene oxide substituents were utilized for to impart water solubility. An alternative alkylation methodology using ethyleneoxy tosylates was introduced for the synthesis of ethylene oxide-containing fluorene derivatives. Several of these hydrophilic derivatives were incubated into various cell lines as new probes for both conventional and two-photon absorption fluorescence bioimaging. These compounds were biocompatible, exhibiting low cytotoxicity as determined by cell viability studies, and displayed colocalization for selected cellular organelles. In addition, hydrophilic bis(1,2,3-triazolyl)fluorene derivatives were found to exhibit sensitive fluorescence responses in the presence of certain heavy metal, and were selective for sensing zinc and mercury over other a number of other metal ions relevant to living cells or other biological environments. The UV-vis absorption and fluorescence emission spectra of the complexes exhibited a blue-shifted absorption and emission for selective metal chelation upon binding to zinc and mercury(II) ions, resulting in an approximately two-fold enhanced fluorescence response. Fluorescence titration studies revealed that the complexes of 1:2 and 1:3 ligand to metal formed with binding constant values of 108 and 1014 for zinc and mercury ions, respectively. Finally, preliminary experiments were performed to explore the possibility of employing select hydrophilic fluorene-based derivatives in the synthesis of hydrophilic fluorescent gold nanoparticles. Although results are very preliminary, the aim is to use such materials for other biomedical applications, such as surface enhanced scattering resonance and noninvasive photothermal therapy to diagnose and to treat cancers. Thus, this research had led to the discovery of alternative methodologies for synthesis of hydrophilic fluorene derivatives by alkylation with alkyl tosylates and synthesis of hydrophilic fluorescent molecule capped gold nanoparticles. Furthermore, several novel hydrophilic fluorene-based derivatives were synthesized and characterized for their linear and nonlinear photophysical properties, and are now available for further examination of their bioimaging and sensing applications.
108

The Electrical Properties of Human Tissue for the Diagnosis and Treatment of Melanoma Skin Cancer

Stante, Glenn Cameron 01 December 2009 (has links) (PDF)
This thesis discusses the research, experimental methods, and data gathered for the investigation of a novel method for the diagnosis of melanoma skin cancer. First, a background about human skin tissue is presented. Then, a detailed description of melanoma along with current diagnosis techniques and treatment options are presented. In the experimental methods, the electrical properties of several types of tissue were analyzed, the purpose of which was to discover if a tissue type can be distinguished by its electrical properties alone. This would allow for the diagnosis of melanoma to be done by examining the electrical properties of the suspected tumor and comparing the results to known values of healthy and cancerous skin. After analyzing the data, it was concluded that tissue types can be identified by their electrical properties and it may be possible to diagnose melanoma through this method. Finally, the possibility of using a similar technology and radiofrequency tissue ablation to treat melanoma is presented.
109

Characterization of Two Vernier-Tuned Distributed Bragg Reflector (VT-DBR) Lasers Used in Swept Source Optical Coherence Tomography (SS-OCT)

Bergdoll, Greg M 01 June 2015 (has links) (PDF)
Insight Photonic Solutions Inc. has continued to develop their patented VT-DBR laser design; these wavelength tunable lasers promise marked image-quality and acquisition time improvements in SS-OCT applications. To be well suited for SS-OCT, tunable lasers must be capable of producing a highly linear wavelength sweep across a tuning range well-matched to the medium being imaged; many different tunable lasers used in SS-OCT are compared to identify the optimal solution. This work electrically and spectrally characterizes two completely new all-semiconductor VT-DBR designs to compare, as well. The Neptune VT-DBR, an O-band laser, operates around the 1310 nm range and is a robust solution for many OCT applications. The VTL-2 is the first 1060 nm VT-DBR laser to be demonstrated. It offers improved penetration through water over earlier designs which operate at longer wavelengths (e.g. - 1550 nm and 1310 nm), making it an optimal solution for the relatively deep imaging requirements of the human eye; the non-invasive nature of OCT makes it the ideal imaging technology for ophthalmology. Each laser has five semiconductor P-N junction segments that collectively enable precise akinetic wavelength-tuning (i.e. - the tuning mechanism has no moving parts). In an SS-OCT system utilizing one of these laser packages, the segments are synchronously driven with high speed current signals that achieve the desired wavelength, power, and sweep pattern of the optical output. To validate the laser’s fast tuning response time necessary for its use in SS-OCT, a circuit model of each tuning section is created; each laser section is modeled as a diode with a significant lead inductance. The dynamic resistance, effective capacitance, and lead inductance of this model are measured as a function of bias current and the response time corresponding to each bias condition is determined. Tuning maps, spectral linewidths, and side-mode suppression ratio (SMSR) measurements important to SS-OCT performance are also collected. Measured response times vary from 700 ps to 2 ns for the Neptune and 1.2 to 2.3 ns for the VTL-2. Linewidth measurements range from 9 MHz to 124 MHz for the Neptune and 300 kHz to 2 MHz for the VTL-2. SMSR measurements greater than 38 dB and 40 dB were observed for the Neptune and VTL-2, respectively. Collectively, these results implicate the VT-DBR lasers as ideal tunable sources for use in SS-OCT applications.
110

Síntesis, estabilización y funcionalización de nanocristales de perovskita de haluros metálicos para su empleo como reveladores y marcadores en histoquímica, cultivos celulares y biosensado

Collantes Pablo, Cynthia 12 February 2024 (has links)
[ES] Los nanocristales de perovskita de haluros metálicos, cuya fórmula general es ABX3 (A = Cs+, CH3NH3+, CH(NH2)2+; B = Pb+2, Sn+2; y X = Cl-, Br-, I-) son una clase de nanomateriales semiconductores que han tenido un gran impacto en fotovoltaica y en la fabricación de dispositivos emisores de luz debido a sus excelentes propiedades optoelectrónicas, entre ellas, la capacidad para transportar cargas, generar electricidad y producir luz. Aunque se trata de un área menos explorada, tienen potencial para convertirse en marcadores luminiscentes en aplicaciones biológicas por sus dimensiones nanométricas (4-15 nm) y por exhibir propiedades ópticas únicas, entre ellas: alto rendimiento cuántico de fluorescencia, espectro de emisión estrecho y posibilidad de modular su emisión en función de su tamaño y composición para obtener una amplia gama de colores en la región visible (410-700 nm), lo que los convierte en candidatos prometedores en multiplexado. Además, presentan absorción multifotónica en el cercano infrarrojo y emisión upconversion, siendo una ventaja en diagnóstico por imagen, ya que se emplea una radiación que es inocua para los tejidos, tiene mayor penetración, reduce la autofluorescencia celular y mejora la relación señal-ruido. A pesar de las excelentes propiedades ópticas de estos materiales, tienden a degradarse frente a la humedad, oxígeno, luz y alta temperatura, lo que supone una clara limitación para el desarrollo de sus aplicaciones en biosensado y diagnóstico por imagen. Durante los últimos años, los avances en los métodos de encapsulación han permitido mejorar su estabilidad frente a agentes externos, generando estructuras core-shell o integrándose en matrices de una gran variedad de materiales, entre los que se incluyen óxidos inorgánicos, polímeros u otros semiconductores. Esta tesis se ha centrado en el desarrollo de diferentes nanopartículas de perovskita estables en medio acuoso para su utilización como marcadores luminiscentes en biosensado o bioimagen in vitro. En todas las metodologías propuestas se ha pretendido que las partículas resultantes cumplan con una serie de requisitos, principalmente: tamaño nanométrico (< 200 nm), elevado rendimiento cuántico de fluorescencia, estabilidad química y estructural en tampón salino o medios de cultivo, y fácil conjugación a biorreceptores específicos. Esta tesis contribuye al avance en el desarrollo de nanomateriales luminiscentes basados en perovskitas de haluros metálicos, abordando el desafío que supone su estabilización en medio acuoso y demostrando su viabilidad en medios biológicos. Se prevé que, en un futuro, sea posible su implantación en el desarrollo de plataformas analíticas de alto rendimiento que permitan la detección y/o cuantificación óptica de analitos de interés clínico, medioambiental o alimentario en el punto de atención, cumpliendo con los criterios de rapidez, fiabilidad, facilidad de manejo y bajo coste, superando en sensibilidad y capacidad de multiplexado a los sistemas actuales, la mayoría de ellos basados en nanopartículas de oro, colorantes orgánicos o sistemas quimioluminiscentes. / [CA] Els nanocristals de perovskita d'halurs metàl·lics, amb fórmula general ABX3 (A = Cs+, CH3NH3+, CH(NH2)2+; B = Pb+2, Sn+2; y X = Cl-, Br-, I-), són una classe de nanomaterials semiconductors que han tingut un gran impacte en fotovoltaica i en la fabricació de dispositius emissors de llum a causa de les seues excel·lents propietats optoelectròniques, entre elles, la capacitat per a transportar càrregues, generar electricitat i produir llum. Encara que es tracta d'una àrea menys explorada, tenen potencial per a convertir-se en marcadors luminescents en aplicacions biològiques per les seues dimensions nanomètriques (4-15 nm) i per exhibir propietats òptiques úniques, entre elles: alt rendiment quàntic de fluorescència, espectre d'emissió estret i possibilitat de modular la seua emissió en funció de les seues dimensions i composición, de manera que es pot obtindre una àmplia gamma de colors a la regió visible (410-700 nm), la qual cosa els converteix en candidats prometedors en multiplexatge. A més, presenten absorció multifotònica en el pròxim infraroig i emissió upconversion, sent un avantatge en diagnòstic per imatge, ja que s'empra una radiació que és innòcua per als teixits, té major penetració, redueix l'autofluorescència cel·lular i millora la relació senyal-soroll. Malgrat les excel·lents propietats òptiques d'aquests materials, tendeixen a degradar-se enfront de la humitat, oxigen, llum i alta temperatura, la qual cosa suposa una clara limitació per al desenvolupament de les seues aplicacions en biosensat i diagnòstic per imatge. Durant els últims anys, els avanços en els mètodes d'encapsulació han permés millorar la seua estabilitat enfront d'agents externs, generant estructures core-shell o integrant-se en matrius d'una gran varietat de materials, entre els quals s'inclouen òxids inorgànics, polímers o altres semiconductors. Aquesta tesi s'ha centrat en el desenvolupament de diferents nanopartícules de perovskita estables al mig aquós per a la seua utilització com a marcadors luminescents en biosensat o bioimatge in vitro. En totes les metodologies proposades s'ha pretés que les partícules resultants complisquen amb una sèrie de requisits, principalment: grandària nanomètric (< 200 nm), elevat rendiment quàntic de fluorescència, estabilitat química i estructural en tampó salí o medis de cultiu, i fàcil conjugació a biorreceptors específics. Aquesta tesi contribueix a l'avanç en el desenvolupament de nanomaterials luminescents basats en perovskitas d'halurs metàl·lics, abordant el desafiament que suposa la seua estabilització al mig aquós i demostrant la seua viabilitat en mitjans biològics. Es preveu que, en un futur, siga possible la seua implantació en el desenvolupament de plataformes analítiques d'alt rendiment que permeten la detecció i/o quantificació òptica d'anàlits d'interés clínic, mediambiental o alimentari en el punt d'atenció, complint amb els criteris de rapidesa, fiabilitat, facilitat de maneig i baix cost, superant en sensibilitat i capacitat de multiplexatge als sistemes actuals, la majoria d'ells basats en nanopartícules d'or, colorants orgànics o sistemes quimioluminescents. / [EN] Metal halide perovskite nanocrystals, with the general formula ABX3 (A = Cs+, CH3NH3+, CH(NH2)2+; B = Pb+2, Sn+2; y X = Cl-, Br-, I-), constitute a new class of semiconductor nanomaterials with a significant impact on photovoltaic industry and fabrication of light-emitting devices due to their excellent optoelectronic properties, including the ability to transport charges, generate electricity and produce light. While it has not been deeply explored yet, they have the potential to become luminescent labels in biological applications, given their nanometric size (4-15 nm) and unique optical properties, such as high photoluminescence quantum yield, narrow emission spectra, and the possibility to tune their emission based on size and composition. This enables a wide color gamut in the visible region (410-700 nm), making them promising candidates in multiplexing. Moreover, perovskite nanocrystals exhibit strong multi-photon absorption properties in the near-infrared region and upconversion emission, which are an advantage for bioimaging applications since near-infrared radiation is less hazardous to living organisms, has deeper tissue penetration, reduces cellular autofluorescence and enhances signal-to-noise ratio. Despite the exceptional optical properties of perovskite nanocrystals, their potential in biosensing and bioimaging applications is hindered by their poor stability against moisture, oxygen, light and heat. To overcome these issues, in the last years, several strategies have been developed to improve their stability through the encapsulation of perovskite nanocrystals in a wide variety of protective materials, such as inorganic oxides, polymers, or semiconductors, in the form of core-shell nanoparticles or embedded in a matrix. This thesis focuses on the synthesis and stabilization of perovskite nanocrystals in aqueous environments with the aim of using them as luminescent labels in biosensing or in vitro bioimaging. Different methodologies have been employed to yield particles that meet specific requirements: nanometric size (< 200 nm), high photoluminescence quantum yield, robust chemical and structural stability in saline buffers or culture media, and facile conjugation with bioreceptors. This thesis contributes to the development of luminescent nanomaterials based on metal halide perovskite nanocrystals, facing the challenge of stabilizing them in aqueous media and testing their viability in biologic media. We envision that, in the near future, it will be possible to incorporate perovskite nanoparticles in the development of high-throughput analytical platforms for the optical detection and/or quantification of clinically, environmentally or food-related analytes at the point of care, meeting the criteria of speed, reliability, ease of use, and low cost, surpassing current systems in sensitivity and multiplexing, most of them based on gold nanoparticles, organic dyes or chemiluminescent systems. / Quiero expresar mi gratitud a Mª José Bañuls y Ángel Maquieira, por concederme la beca de formación predoctoral FPI (BES-2017-080242), asociada al proyecto de Biosensores holográficos. Prueba de concepto y demostración en aplicaciones clínicas (CTQ2016-75749-R), financiado por el Ministerio de Economía y Competitividad / Collantes Pablo, C. (2024). Síntesis, estabilización y funcionalización de nanocristales de perovskita de haluros metálicos para su empleo como reveladores y marcadores en histoquímica, cultivos celulares y biosensado [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202615

Page generated in 0.0853 seconds