• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 5
  • 5
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 127
  • 69
  • 68
  • 34
  • 26
  • 25
  • 18
  • 17
  • 16
  • 15
  • 15
  • 15
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Development and Validation of a Novel Resonant Energy Transfer (FRET) Biosensor to Measure Tensile Forces at the LINC Complex in Live Cells

Arsenovic, Paul 01 January 2017 (has links)
There is a large body of evidence supporting the theory that cell physiology largely depends on the mechanical properties of its surroundings or micro-environment. More recently studies have shown that changes to intra-cellular mechanical properties can also have a meaningful impact on cell function and in some cases lead to the progression of ailments or disease. For example, small changes to the protein sequence of a structural nuclear envelope protein called lamin-A is known to cause a variety of neurological and musculoskeletal diseases referred to as laminopathies. Currently, there is little incite into how these mutations lead to disease progression due in part to an inability to measure protein-specific mechanical changes and how these alterations may relate to disruptions in intra-cellular signaling or function. \par To improve upon the ability to measure mechanical properties inside living cells, a previously validated, genetically-encoded resonant energy transfer (FRET)-force biosensor was modified to localize to the nuclear envelope. This biosensor integrated into the nuclear envelope protein Nesprin-2G and senses small deformations that are resolved by indirect measurements of spectroscopic fluctuations in the fluorescent emission of the sensor. To accurately measure these changes, a new spectral-imaging technique named SensorFRET was developed which can resolve small changes in the FRET sensor under varying levels of fluorescent intensity and with known absolute precision. Using SensorFRET, the Nesprin-2G biosensor (Nesprin-TS) reported changes in actomyosin contractility, nuclear shape, and nuclear deformation. Using Nesprin-TS, fibroblasts derived from patients with Hutchinson-Gilford progeria syndrome (HGPS) reported less force on Nesprin-2G molecules relative to healthy fibroblasts on average.\par To demonstrate how intra-cellular forces on the nucleus may impact normal cell physiology, bone-marrow derived mesenchymal stem cells (MSCs) were genetically modified such that the cytoskeleton was decoupled from the nucleus by saturating KASH binding proteins with a non-functional truncated protein called DN-KASH. MSCs treated with DN-KASH preferentially differentiated into osteocytes (bone cells) at a higher rate than MSCs exposed to osteogenic growth factors. This osteogenic preference after DN-KASH treatment was independent of the cell substrate topology and did not significantly alter integrin expression. However, this tendency to differentiate into osteocytes was dependent on substrate stiffness. Overall, the data imply that an intra-cellular force-dependent mechanism connected to the cell nucleus strongly influences MSC differentiation.
72

Positron Emission Tomography (PET) for Flow Measurement

Zhang, Bi Yao 01 August 2011 (has links)
Positron Emission Tomography (PET) is frequently used for medical imaging. Maturity and flexibility of PET as an imaging technique has expanded its utility beyond the medical domain. It can be used as a tool for fluid flow studies in opaque fluids and for flow within complex geometry where conventional optical flow measurement approaches fail. This study explores the capabilities of PET as flow measurement tool suited to validation of computational fluid dynamic (CFD) predictions. The MicroPET P4 scanner was used to image the diffusion process in flow around a rod bundle geometry similar to that found in a nuclear reactor fuel assembly. The PET data are compared with results from COMSOL CFD simulation and dye injection images. PET image resolution, acquisition speed and sensitivity are also examined in the context of flow measurement.
73

USE OF HYBRID DIFFUSE OPTICAL SPECTROSCOPIES IN CONTINUOUS MONITORING OF BLOOD FLOW, BLOOD OXYGENATION, AND OXYGEN CONSUMPTION RATE IN EXERCISING SKELETAL MUSCLE

Gurley, Katelyn 01 January 2012 (has links)
This study combines noninvasive hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] with occlusive calibration for continuous measurement of absolute blood flow (BF), tissue blood oxygenation (StO2), and oxygen consumption rate (VO2) in exercising skeletal muscle. Subjects performed rhythmic dynamic handgrip exercise, while an optical probe connected to a hybrid NIRS/DCS flow-oximeter directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and [tHb]), StO2, relative BF (rBF), and relative VO2 (rVO2) in the forearm flexor muscles. Absolute baseline BF and VO2 were obtained through venous and arterial occlusions, respectively, and used to calibrate continuous relative parameters. Previously known problems with muscle fiber motion artifact in optical measurements were mitigated with a novel dynamometer-based gating algorithm. Nine healthy young subjects were measured and results validated against previous literature findings. Ten older subjects with fibromyalgia and thirteen age-matched healthy controls were then successfully measured to observe differences in hemodynamic and metabolic response to exercise. This study demonstrates a novel application of NIRS/DCS technology to simultaneously evaluate quantitative hemodynamic and metabolic parameters in exercising skeletal muscle. This method has broad application to research and clinical assessment of disease (e.g. peripheral vascular disease, fibromyalgia), treatment evaluation, and sports medicine.
74

STABILIZATION OF EXTENDED DIFFUSE OPTICAL SPECTROSCOPY MEASUREMENTS ON IN VIVO HUMAN SKELETAL MUSCLE DURING DYNAMIC EXERCISE

Henry, Brad A. 01 January 2014 (has links)
This research investigates various applications of diffuse correlation spectroscopy (DCS) on in-vivo human muscle tissue, both at rest and during dynamic exercise. Previously suspected muscle tissue relative blood flow (rBF) baseline shift during extended measurement with DCS and DCS-Near infrared spectroscopy (NIRS) hybrid optical systems are verified, quantified, and resolved by redesign of optical probe and alteration in optical probe attachment methodology during 40 minute supine bed rest baseline measurements. We then translate previously developed occlusion techniques, whereby rBF and relative oxygen consumption rV̇O2 are calibrated to initial resting absolute values by use of a venous occlusion (VO) and arterial occlusion (AO) protocol, respectively, to the lower leg (gastrocnemius) and these blood flows are cross validated at rest by strain gauge venous plethysmography (SGVP). Methods used to continuously observe 0.5Hz, 30% maximum voluntary isometric contraction (MVIC) plantar flexion exercise via dynamometer are adapted for our hybrid DCS-Imagent diffuse optical flow-oximeter in the medial gastrocnemius. We obtain healthy control muscle tissue hemodynamic profiles for key parameters BF, V̇O2, oxygen saturation (StO2), deoxyhemoglobin, oxyhemoglobin, and total hemoglobin concentrations ([Hb], [HbO2], and THC respectively), as well as systemic mean arterial pressure (MAP) and pulse rate (PR), at rest, during VO/AO, during dynamic exercise and during 15 minute recovery periods. Next, we began investigation of muscle tissue hemodynamic disease states by performing a feasibility pilot study using limited numbers of controls and peripheral arterial disease (PAD) patients using the translated methods/techniques to determine the ability of our technology to assess differences in these populations.
75

Controlled switching of fluorescent organic nanoparticles through energy transfer for bioimaging applications / Contrôle de la fluorescence dans des nanoparticules organiques par transfert d’énergie en vue d’applications en bioimagerie

Trofymchuk, Kateryna 16 December 2016 (has links)
Les performances des techniques de bioimagerie et de biodétection peuvent être améliorées grâce aux nanoparticules fluorescentes (NPs) permettant un transfert d’énergie résonante de type Förster (FRET) efficace. Le but de mon projet de thèse est le développement de NPs polymériques brillantes et ultrastables encapsulant des fluorophores, capables de produire un FRET au-delà du rayon de Förster. Il a été montré que les groupements encombrés sont essentiels pour minimiser l’auto-extinction et le blanchiment des fluorophores encapsulés. Par ailleurs, la matrice polymérique joue un rôle crucial dans le contrôle de l’effet collaboratif entre fluorophores du au transfert d’énergie d’excitation. Puis, en utilisant cet effet collaboratif entre fluorophores, nous avons conçu des NPs présentant une photocommutation efficace, ainsi qu'un phénomène de "light harvesting" très important. Enfin, de très petites NPs avec un FRET efficace à leur surface ont été élaborées et appliquées pour la détection ultra-sensible de protéines. Les résultats obtenus fournissent de nouvelles perspectives dans le développement des nanoparticules brillantes avec un transfert d'énergie efficace, ainsi que des nano-sondes pour la détection de molécules uniques. / Performance of biosensing and bioimaging techniques can be improved by fluorescent nanoparticles (NPs) capable of efficient Förster resonance energy transfer (FRET). The aim of my PhD project is to develop bright and photostable dye-loaded polymer NPs capable to undergo efficient FRET beyond the Förster radius. We showed that bulky groups are essential for minimizing self-quenching and bleaching of encapsulated dyes. Moreover, polymer matrix plays a crucial role in controlling the inter-fluorophore communication by excitation energy transfer. Then, by exploiting communication of dyes, we designed NPs exhibiting efficient photoswitching as well as giant light-harvesting. Finally, very small NPs with efficient FRET to their surface were developed and applied for ultra-sensitive molecule detection of proteins. The obtained results provide new insights in the development of bright nanoparticles with efficient energy transfer as well as nano-probes for single-molecule detection.
76

Soft hybrid materials for cell growth and proliferation / Matériaux souples hybrides pour la croissance et la prolifération cellulaire

Fiorini, Federica 28 September 2016 (has links)
Le travail de recherche consiste à développer des hydrogels pour la prolifération et la migration cellulaires in vitro et in vivo en trois dimensions (3D). Des hydrogels à base de polyamidoamines avec d'intéressantes propriétés physicochimiques et une remarquable biocompatibilité ont été développés pour différentes applications biomédicales. Un hydrogel avec des sondes luminescentes d’iridium(III) incorporés de manière covalente, a été conçue comme plate-forme 3D de culture cellulaire, pour la visualisation directe des cellules vivantes en temps réel, et a démontré être un puissant outil de bioimagerie in vitro. En outre, un hydrogel nanocomposite, capable d'induire la chimiotaxie des cellules souches, a été développé et testé in vivo, en confirmant son potentiel en tant qu’implant pour l’ingénierie tissulaire. Finalement, un hydrogel injectable et biodégradable a été réalisé comme un nouvel agent pour la dissection sous-muqueuse endoscopique des lésions néoplasiques digestives. / The research work focuses on the development of hydrogels to investigate three-dimensional (3D) cell proliferation and migration in vitro and in vivo. Polyamidoamines-based hydrogels with interesting physicochemical properties and high biocompatibility have been developed for different biomedical applications. An hydrogel with covalently incorporated iridium(III) fluorescent probes, has been conceived as a 3D cell culture platform for the direct visualization of living cells in real-time, demonstrating to be a powerful tool for in vitro bio-imaging. Moreover, a nanocomposite hydrogel, able to induce chemotaxis of stem cells, was developed andtested in vivo, confirming its potential as a tissue engineering implant. Finally, an injectable biodegradable nanocomposite hydrogel was realized as a novel agent for endoscopic submucosal dissection of large neoplastic lesions of the gastro-intestinal tract.
77

Evaluation of Human Umbilical Vein Endothelial Cells in Blood Vessel Mimics Through Changes in Gene Expression and Caspase Activity

Hedigan, Conor Charles 01 June 2019 (has links)
Blood vessel mimics (BVMs) are simple tissue engineered blood vessel constructs intended for preclinical testing of vascular devices. This thesis developed and implemented methods to characterize two of these components. The first aim of this thesis investigated the effect of cell culture duration and flow conditions on endothelial cell gene expression, especially regarding endothelial-to-mesenchymal transition (EndMT). A trend of decreased endothelial marker gene expression and increased mesenchymal marker gene expression would indicate EndMT. qPCR analysis revealed that increased cell culture duration did not result in EndMT, and in fact increased endothelial marker expression as cell culture duration increased. Disturbed flow conditions decreased endothelial marker and increased mesenchymal marker expression relative to static culture. The second aim of this thesis developed methods to determine cytotoxicity of, and endothelial cell adhesion to, novel BTEAC salt scaffolds. Immunostaining was used to visualize these scaffold effects. The cytotoxicity elution assay showed that BTEAC salt scaffolds were not more cytotoxic than the standard PLGA scaffold. Direct contact assays spanning several timepoints also found that BTEAC salt scaffolds were not more cytotoxic than standard scaffolds but had higher endothelial cell adhesion and coverage than standard scaffolds. Overall, this thesis developed and implemented methods to characterize the endothelial cells used in the BVM model.
78

Développement de la microscopie par auto-interférences pour l'imagerie super-résolue tridimensionnelle au sein de tissus biologiques épais. / Self-interferences microscopy for 3D super-resolution microscopy in thick biological samples

Linarès-Loyez, Jeanne 01 October 2019 (has links)
Le travail de cette thèse a été consacré au développement d’un nouvelle technique SELFI (pour self-interferences, auto-interférences en anglais). Cette méthode permet d’obtenir une localisation tridimensionnelle d’émetteurs fluorescents individuels. Nous avons démontré que cela permet l'imagerie super-résolue en 3D et le suivie 3D de molécules uniques en profondeur dans des échantillons biologiques denses et complexes. La technique SELFI se base sur l'utilisation des interférences auto-référencées (également appelées « auto-interférences ») pour remonter à la localisation 3D d’un émetteur en une seule mesure. Ces interférences sont générées via l’utilisation d'un réseau de diffraction placé en sortie du microscope de fluorescence : le signal de fluorescence diffracte sur le réseau et les ordres interfèrent, après une courte propagation, sur le détecteur. Les interférences ainsi formées sont décodées numériquement pour remonter à la localisation 3D d'une molécule fluorescente au sein de l'échantillon. Une molécule unique peut ainsi être localisée avec une précision d'une dizaine de nanomètre, et cela jusqu'à une profondeur d'au moins 50µm au sein d'un échantillon biologique vivant épais (par exemple un tissu biologique).En combinant la méthode SELFI à différentes techniques de super-résolution (PALM, dSTORM et uPAINT), nous montrons que cette méthode de localisation tridimensionnelle permet de retrouver la hiérarchie et l'organisation de protéines dans des objets biologiques. En effectuant du SELFI-PALM, nous avons pu observer différentes protéines des points focaux d’adhésion (talin-C terminale et paxiline) et retrouver les différences de hauteur attendues, et ceux sur des échantillons de cellules vivantes. Ces résultats confirment la résolution accessible avec la technique SELFI (environ 25nm) même pour un faible nombre de photons collectés (environ 500 photons par molécule).Nous mettons en évidence la robustesse de la technique SELFI en reconstruisant des images de super-résolution 3D de structures denses en profondeur dans des échantillons tissulaires complexes. En effectuant du SELFI-dSTORM, nous avons observé le réseau d’actine sur des cellules cultivées en surface de la lamelle dans un premier temps, et à différentes profondeurs (25 et 50 microns) au sein de tissus artificiels dans un second temps.Du suivi 3D de particule unique a aussi été effectué sein de tissus biologiques vivants. Nous avons observé la diffusion libre de quantum dots à différentes profondeurs (jusqu’à 50 microns, limité par l’objectif utilisé) dans des tranches vivantes de cerveau.Nous avons appliqué la technique SELFI à la détection de récepteurs postsynaptiques NMDA. Cela nous a permis d'observer, sur des échantillons de neurones en culture primaire mais aussi au sein de tranches de cerveaux de rats, une différence d'organisation entre les deux sous-unités GluN2A et GluN2B de ce récepteur au glutamate.Enfin, nous avons démontré l'importance de suivre l'évolution de l'environnement des échantillons biologiques vivants lors des acquisitions permettant la détection de molécules individuelles. Grâce à l'utilisation additionnelle et simultanée de l'imagerie de phase quantitative, nous avons pu étudier la dynamique de la membrane cellulaire durant l’activation par un facteur de croissance. L'analyse corrélative entre les images de phase quantitative en lumière blanche et les détections de molécules fluorescentes uniques permet d'obtenir de nouvelles informations pertinentes sur l'échantillon étudié. / The work of this thesis was devoted to the development of a new technique SELFI (for self-interferences). This method unlocks the three-dimensional localization of individual fluorescent emitters. We have demonstrated that this allows 3D super-resolved imaging and 3D tracking of single molecules deep into dense and complex biological samples. The SELFI technique is based on the use of self-referenced interference to go back to the 3D location of a emitter in a single measurement. These interferences are generated using a diffraction grating placed at the exit of the fluorescence microscope: the fluorescence signal diffracts on the grating and, after a short propagation, the orders interfere on the detector. The formed interferences are digitally decoded to extract the 3D location of a fluorescent molecule within the sample. A single molecule can thus be localized with a precision of approximatively ten nanometers up to a depth of at least 50 µm in a thick living biological sample (for example a biological tissue).By combining the SELFI method with different super-resolution techniques (PALM, dSTORM and uPAINT), we show that this three-dimensional localization method grants the access to the hierarchy and organization of proteins in biological objects. By performing SELFI-PALM, we observed different proteins of the adhesion focal points (talin C-terminal and paxilin) and found the expected elevation differences, and those within living cell samples. These results confirm the resolution capability of the SELFI technique (about 25 nm) even for a small number of photons collected (about 500photons per molecule).We highlight the robustness of the SELFI technique by reconstructing 3D super-resolution images of dense structures at depth in complex tissue samples. By performing SELFI-dSTORM, we observed the actin network in cells grown on the surface of the coverslip at first, and at different depths (25 and 50 microns) within artificial tissues in a second time.3D single particle tracking has also been performed in living biological tissues. We observed the free diffusion of quantum dots at different depths (up to 50 microns) in living brain slices.We applied the SELFI technique to the detection of NMDA postsynaptic receptors. We observed, in primary culture of neurons but also within slices of rat brains, a difference in organization between the two subunits GluN2A and GluN2B of this glutamate receptor.Finally, we show the importance of following the evolution of the living biological sample environment during the acquisition of images leading to detections of single molecules. Thanks to the additional and simultaneous use of quantitative phase imaging, we were able to study cell membrane dynamics during the activation by a growth factor. The correlative analysis between white light quantitative phase images and single fluorescent molecule detections provides new relevant information on the sample under study.
79

A Modular and Open-Source Framework for Virtual Reality Visualisation and Interaction in Bioimaging

Günther, Ulrik 27 November 2020 (has links)
Life science today involves computational analysis of a large amount and variety of data, such as volumetric data acquired by state-of-the-art microscopes, or mesh data from analysis of such data or simulations. The advent of new imaging technologies, such as lightsheet microscopy, has resulted in the users being confronted with an ever-growing amount of data, with even terabytes of imaging data created within a day. With the possibility of gentler and more high-performance imaging, the spatiotemporal complexity of the model systems or processes of interest is increasing as well. Visualisation is often the first step in making sense of this data, and a crucial part of building and debugging analysis pipelines. It is therefore important that visualisations can be quickly prototyped, as well as developed or embedded into full applications. In order to better judge spatiotemporal relationships, immersive hardware, such as Virtual or Augmented Reality (VR/AR) headsets and associated controllers are becoming invaluable tools. In this work we present scenery, a modular and extensible visualisation framework for the Java VM that can handle mesh and large volumetric data, containing multiple views, timepoints, and color channels. scenery is free and open-source software, works on all major platforms, and uses the Vulkan or OpenGL rendering APIs. We introduce scenery's main features, and discuss its use with VR/AR hardware and in distributed rendering. In addition to the visualisation framework, we present a series of case studies, where scenery can provide tangible benefit in developmental and systems biology: With Bionic Tracking, we demonstrate a new technique for tracking cells in 4D volumetric datasets via tracking eye gaze in a virtual reality headset, with the potential to speed up manual tracking tasks by an order of magnitude. We further introduce ideas to move towards virtual reality-based laser ablation and perform a user study in order to gain insight into performance, acceptance and issues when performing ablation tasks with virtual reality hardware in fast developing specimen. To tame the amount of data originating from state-of-the-art volumetric microscopes, we present ideas how to render the highly-efficient Adaptive Particle Representation, and finally, we present sciview, an ImageJ2/Fiji plugin making the features of scenery available to a wider audience.:Abstract Foreword and Acknowledgements Overview and Contributions Part 1 - Introduction 1 Fluorescence Microscopy 2 Introduction to Visual Processing 3 A Short Introduction to Cross Reality 4 Eye Tracking and Gaze-based Interaction Part 2 - VR and AR for System Biology 5 scenery — VR/AR for Systems Biology 6 Rendering 7 Input Handling and Integration of External Hardware 8 Distributed Rendering 9 Miscellaneous Subsystems 10 Future Development Directions Part III - Case Studies C A S E S T U D I E S 11 Bionic Tracking: Using Eye Tracking for Cell Tracking 12 Towards Interactive Virtual Reality Laser Ablation 13 Rendering the Adaptive Particle Representation 14 sciview — Integrating scenery into ImageJ2 & Fiji Part IV - Conclusion 15 Conclusions and Outlook Backmatter & Appendices A Questionnaire for VR Ablation User Study B Full Correlations in VR Ablation Questionnaire C Questionnaire for Bionic Tracking User Study List of Tables List of Figures Bibliography Selbstständigkeitserklärung
80

Investigation of Experimental Variation of Bovine Sphingomyelin as a Novel Ingredient for Ultraviolet Protection

Chen, Esther 01 June 2020 (has links) (PDF)
Skin cancer is a prevalent disease that globally affects 2-3 million people per year [1]. This number is expected to grow tenfold as depletion of the ozone layer contributes to harsher rays reaching Earth’s surface [2]. A common way to protect against those ultraviolet waves is to apply sunscreen, however, recent reports call into question the safety of some active ingredients as they can enter through the skin into the bloodstream [3]. This thesis aims to investigate an alternative solution that uses bovine sphingomyelin (BSM) as photoprotective solution against UV irradiation. In order to evaluate the effectiveness of BSM against UV radiation, p21 intensity was measured on a monolayer of keratinocytes, as the intensity directly correlates to cell damage. Additionally, fluorescent sphingomyelin (FSM) was added as a treatment because it was created to be an analog to BSM and allowed for visualization of sphingomyelin within the cell. Differences in p21 intensities were observed with BSM and FSM showing a reduced p21 intensity compared to the no sphingomyelin case. FSM helped locate sphingomyelin within the cell and a mechanism was proposed for how it reduces cell damage. Lastly, high variation was seen between experimental designs. Further measures were needed to reduce this intra-subject standard deviation, so additional experimental parameters were tested such as min/max intensity values, cell count, and nucleus circularity to explain this variation.

Page generated in 0.0422 seconds