Spelling suggestions: "subject:"biologically active molecules"" "subject:"etiologically active molecules""
11 |
EXPLORING ANTIBIOTIC CONJUGATION TO CATIONIC AMPHIPHILIC POLYPROLINE HELICESSamantha Mae Zeiders (10010291) 26 April 2021 (has links)
<p>Pathogenic bacteria present a
critical threat to modern medicine. Therapeutic strategies to target and
eliminate resilient bacteria are not advancing at the same rate as the
emergence of bacterial resistance. An associated urgent concern regarding antibiotic resistance is
the existence and proliferation of intracellular bacteria, which find refuge
from bactericidal mechanisms by hiding within mammalian cells. Therefore, many once-successful
antibiotics become ineffective through the development of resistance, or through
failure to reach intracellular locations in therapeutic concentration. To
overcome these challenges, the covalent combination of a conventional
antibiotic with an antibiotic, cell-penetrating peptide was explored to develop
dual-action antibiotic conjugates. </p>
<p>Herein, we utilized a strategy in conjugating the antibiotics
by a cleavable linkage to cationic amphiphilic polyproline helices (CAPHs) to
improve vancomycin and linezolid antibiotics. This approach enables the
conjugate to penetrate cells and deliver two potent monomeric antimicrobial
drugs. The vancomycin-CAPH conjugate, <b>VanP14S</b>, showed enhanced mammalian
cell uptake compared to vancomycin, a poor mammalian cell-penetrating agent; and
<b>VanP14S</b> was capable of cleaving and releasing two antibiotics under mimicked
physiological conditions. Enhanced antibacterial activity was observed against
a spectrum of Gram-positive and Gram-negative pathogens, including drug-resistant
strains. Further investigation revealed that this conjugate’s bactericidal
activity was not entirely the result of significant membrane perturbation such
as a lytic mode of action. Mammalian cell toxicity and red blood cell lysis were
insignificant at relevant bactericidal concentrations below 20 µM. The current results suggest an
enhanced binding to the peptidoglycan of bacteria, the target of vancomycin,
although more work is needed to justify this claim. Preliminary results on <b>VanP14GAPS</b>,
a conjugate with a more rigid CAPH, convey similar activity to <b>VanP14S; </b>however,<b>
</b>moderate increases in red blood cell lysis and cytotoxicity were observed. </p>
<p>Regarding the <b>LnzP14</b> conjugate, preliminary data reveal
that the conjugate has Gram-negative activity against <i>Escherichia coli</i>,
whereas linezolid is ineffective in killing Gram-negative bacteria. This
conjugate showed significant enhancement in cellular uptake compared to the CAPH,
and the release of linezolid and CAPH in physiological conditions was confirmed.
Overall, arming a conventional antibiotic with an antimicrobial,
cell-penetrating peptide appears to be a powerful strategy in providing novel
antibiotic conjugates with the propensity to overcome the limitations in treating
challenging pathogens.</p>
|
12 |
<b>COVALENT FRAGMENT SCREENING AND OPTIMIZATION IDENTIFIES NOVEL SCAFFOLDS FOR THE DEVELOPMENT OF INHIBITORS FOR DEUBIQUITINATING ENZYMES</b>Ryan Dean Imhoff (18436656) 25 April 2024 (has links)
<p dir="ltr">Humans encode approximately 100 deubiquitinating enzymes (DUBs) which are categorized into seven distinct subfamilies. Each family and representative has a unique expression, function and binding topology to ubiquitin. In addition to human DUBs, parasites, bacteria, and viruses contain DUBs with unique structures and functions. One subfamily of DUBs, the ubiquitin C-terminal hydrolases (UCH), has four structurally similar human members and two known members within the <i>Plasmodium falciparum</i> genome. Human UCHL1 and UCHL3 are genetically validated targets in oncology and <i>Plasmodium falciparum</i><i> </i>UCHL3 (PfUCHL3) is a prospective target for antimalarial drug development. Though these three UCH enzymes have potential as therapeutic targets, there is a significant lack of quality small molecule chemical probes to understand the underlying biology and function of the enzymes, pharmacologically validate the targets, and serve as leads for drug development in oncology and malaria.</p><p dir="ltr">The UCH enzymes are cysteine proteases, which our lab has leveraged to identify novel covalent small molecule inhibitors of each enzyme. The workflow for each hit identification and optimization campaign is similar. Covalent fragment screening of electrophilic small molecule libraries against the respective recombinant enzyme was performed to identify chemical space around each enzyme. Subsequent medicinal chemistry hit-to-lead optimization was undertaken to improve upon the moderately potent hit molecules to provide improved small molecule inhibitors for each enzyme. Inhibitor identification and optimization for UCHL1 is described in Chapter 2, revealing a novel scaffold and a cocrystal structure reveals a unique binding pose for UCHL1 inhibitors. These molecules were also characterized in breast cancer cells to validate UCHL1 as a therapeutic target in breast cancer. First-in-class covalent inhibitors of UCHL3 are described in Chapter 3. Medicinal chemistry optimization along with a cocrystal structure of the initial hit has revealed the molecular interactions of this novel inhibitory scaffold. PfUCHL3 inhibitor identification is described in Chapter 4. Characterization of these molecules against Plasmodium falciparum is described along with a comparison to a recently identified reversible PfUCHL3 inhibitor. Finally, conclusions and future directions toward the development of potent, drug-like inhibitors of each UCH enzyme is presented in Chapter 5.</p>
|
13 |
<b>BIFUNCTIONAL CHEMICAL CONJUGATION STRATEGIES FOR IMMUNOMODULATION</b>Ahad Hossain (18424803) 23 April 2024 (has links)
<p dir="ltr">Immunotherapy has revolutionized the field of oncology. While a lot of antibodies and small molecule inhibitors have been developed for this, a lot of targets remain undruggable in humans.</p><p dir="ltr">Targeted protein degradation has opened a new horizon in drug discovery where we can target these undruggable proteins. Proteolysis targeting chimeras using the ubiquitin-proteasomal system is one of the most popular TPD strategies that complement lysosomal degradation strategies to degrade intracellular proteins, typically using bifunctional small molecule degraders. Recently, large biomolecular and antibody conjugates have been developed for degrading membrane and extracellular proteins in cells, such as lysosomal targeting chimeras (LYTACs) and genetically encoded LYTACS, among several others. However, larger molecules have limitations in penetrating solid tumors. This dissertation work focused on the development of bifunctional small molecule degraders for programmed death-ligand 1 (PD-L1), a transmembrane protein ligand for the immune checkpoint programmed cell death 1 (PD-1). PD-L1 is highly expressed on several tumors, such as triple-negative breast cancer (TNBC), non-small cell lung carcinoma, and renal cancer, and is known to suppress cancer-killing immune cells via interaction with PD-1 on T-cells. In addition, PD-L1 is also present on macrophages in the tumor microenvironments leading to further immune suppression and acquired resistance to anti-PD-1 therapy is associated with the upregulation of alternative immune checkpoints, thereby reducing anti-tumor efficacy. We have designed and synthesized bifunctional small molecules as PD-L1 degraders with different recruiters and linkers guided by computational studies with known PD-1/PD-L1 structures to show both cell surface and total protein degradation in human TNBC cells. In a separate project, we also developed small molecule conjugates to degrade an intracellular integral membrane protein of the endoplasmic reticulum with an unknown 3D structure, namely Diglyceride acyltransferase 2 (DGAT2). Recently, our lab identified DGAT2 as a new target for combating Alzheimer’s disease. Specifically, DGAT2 catalyzes triacylglycerol (TAG) synthesis using diacylglycerol and fatty acyl CoA as substrates. The accumulation of TAGs, mechanistically linked to DGAT2, results in “fat” or lipid droplets (LDs) inside the cells. Our lab showed that microglial cells (resident immune cells in the brain) accumulate LDs in the postmortem brains of human patients and mouse models (5xFAD) of Alzheimer’s disease and that the LD accumulation is driven by amyloid-beta (Ab) – a hallmark of Alzheimer’s disease – via DGAT2 pathway. Further, these LD-laden microglia have phagocytic defects and are spared Aβ thereby affecting plaque accumulation and clearance. Inhibiting DGAT2 reduces the amount of TAG in the brain, which in turn reduces LDs and restores microglial ability to phagocytose Ab. However, commercially available DGAT2 inhibitors were unable to reduce LD load in older 5xFAD mice. Using AlphaFold’s models of DGAT2, we designed and identified sites to synthesize bifunctional DGAT2 degraders that resulted in reduced LDs in mouse primary microglial cells and enhanced phagocytosis of Aβ plaques in vivo in aged 5xFAD mice. Our approach shows a framework to develop bifunctional small molecule degraders for membrane proteins to potentially combat immune dysregulation in chronic diseases.</p>
|
14 |
Hardware / Algorithm Integration for Pharmaceutical AnalysisCasey J Smith (8755572) 29 April 2020 (has links)
New experimental strategies and algorithmic approaches were devised and tested to improve the analysis of pharmaceutically relevant materials. These new methods were developed to address key bottlenecks in the design of amorphous solid dispersions for the delivery of low-solubility active pharmaceutical ingredients in the final dosage forms exhibiting high bioavailability. <br>
|
15 |
<b>Targeting Protein Tyrosine Phosphatases with Small Molecules as a Novel Cancer Immunotherapy</b>Zihan Qu (18990101) 09 July 2024 (has links)
<p dir="ltr">In this study, we presented the discovery of the first-in-class covalent inhibitor specific to Src homology 2 domain containing phosphatase 1 (SHP1), an overlooked cancer immunotherapy target. Through high-throughput screening, we identified a chloroacetamide fragment highly selective for SHP1. This fragment was subsequently refined to yield M029, a covalent inhibitor characterized by low-micromolar potency, heightened selectivity, enhanced stability, and improved bioavailability. Notably, M029 targets a cryptic, non-conserved cysteine residue on SHP1, thereby illuminating novel avenues for future drug development focused on SHP1. This presented study also marked the first characterization of SHP1 pharmacology inhibition <i>in vivo</i> using M029 as a tool compound. Consistent to previous genetic studies, SHP1 inhibition was observed to markedly bolster anti-tumor efficacy, primarily through the activation of CD8+ T cells and NK cells, coupled with a reduction in T cell exhaustion. While no synergistic effects were noted in conjunction with anti-PD-1 treatment, M029 as a standalone therapy showcased more favorable responses compared to anti-PD-1 therapy alone, underscoring its potential for clinical application.</p><p dir="ltr">Meanwhile, we also demonstrated the effects of targeting both protein tyrosine phosphatase 1B (PTP1B), and T cell protein tyrosine phosphatase (TC-PTP) using proteolysis targeting chimeras (PROTACs). PROTACs are heterobifunctional small molecules comprising a targeted protein ligand, an E3 ligase ligand, and a linker. By recruiting an E3 ligase to the targeted proteins, PROTACs leverages the cell's ubiquitin-proteasome machinery to achieve selective target protein degradation. In contrast to traditional occupancy-based inhibitors, event-driven PROTACs show improved efficacy by promoting target protein degradation in a catalytic mode of action and greater selectivity through the obligatory formation of the target-PROTAC-E3 ternary complex, which is essential for efficient target degradation. Through optimizing the previously reported PROTAC DU-14, we acquired a cereblon (CRBN)-based PTP1B/TC-PTP dual targeting PROTAC X1 of higher bioavailability than DU-14. X1 showed enhanced efficacy than DU-14 in multiple cell lines and manifested anti-cancer efficacy <i>in vivo</i>. Additionally, employing X1 as a tool compound, we validated the anti-cancer potential of PTP1B/TC-PTP degradation in STAT3 dependent malignancies, such as non-Hodgkin’s lymphomas. Treatments with X1 or DU-14 effectively induced tumor cell apoptosis, whereas the dual inhibitor ABBV-CLS-484 failed to produce comparable outcomes.</p>
|
16 |
DEVELOPMENT OF ARYL ISONITRILES AS ANTIMICROBIAL AGENTS, AND TOTAL SYNTHESIS OF 17-NOR-EXCELSINIDINEKwaku Kyei-Baffour (6616715) 15 May 2019 (has links)
<p> </p>
<p>Infectious diseases caused by bacteria, fungi, and
plasmodium parasites are a huge global health problem which ultimately leads to
millions of deaths annually. The emergence of
strains that exhibit resistance to nearly every class of antimicrobial agents,
and the inability to keep up with these resistance trends has brought to the
fore the need for new therapeutic agents (antibacterial, antifungal, and
antimalarial) with novel scaffolds and functionalities capable of targeting microbial
resistance. A novel class of compounds featuring an aryl isonitrile moiety has
been discovered that exhibits potent inhibitory activity against several
clinically relevant strains of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA). Synthesis, structure-activity relationship (SAR) studies, and
biological investigations have led to lead molecules that exhibit anti-MRSA inhibitory
activity as low as 1 – 2
µM. The most potent compounds have
also been shown to have low toxicity against mammalian cells and exhibit <i>in
vivo</i> efficacy in MRSA skin and thigh infection mouse models.</p>
<p>The
novel aryl isonitriles have also been evaluated for antifungal activity. This study
examines the SAR of aryl isonitrile compounds and showed the isonitriles as
compounds that exhibit broad spectrum antifungal activity against species of <i>Candida</i>
and <i>Cryptococcus</i>. The most potent derivatives are capable of inhibiting
growth of these pathogens at concentrations as low as 0.5 µM. Notably, the most active compounds exhibit
excellent safety profile and are non-toxic to mammalian cells up to 256 µM.</p>
<p>Beyond the antibacterial and antifungal
activities, structure-antimalarial relationship analysis of over 40 novel aryl
isonitrile compounds has established the importance of the isonitrile
functionality as an important moiety for antimalarial activity. Of the many
isonitrile compounds exhibiting potent antimalarial activity, two have emerged
as leads with activity comparable to that of Artemisinin. The SAR details
presented in this study will prove essential for the development new aryl
isonitrile analogues to advance them to the next step in the antimalarial drug
discovery process.</p>
<p>17-nor-Excelsinidine,
a zwitterion monoterpene indole alkaloid isolated from <i>Alstonia scholaris</i> is a subject of synthetic scrutiny. This is
primarily due to its intriguing chemical structure which includes a bridged
bicyclic ammonium moiety, and its anti-adenovirus and anti-HSV activity. Herein
we describe a six-step total synthesis of (±)-17-nor-Excelsinidine
from tryptamine. Key to the
success of this synthesis is the use of palladium-catalyzed carbonylative heck
lactamization methodology which built the 6, 7-membered ring lactam in one
step. The resulting pentacyclic product, beyond facilitating the easy access to
(±)-17-nor-Excelsinidine,
could also serve as a precursor to other related indole alkaloids.</p>
<br>
<p> </p>
<p></p>
|
17 |
AMBIENT IONIZATION MASS SPECTROMETRY FOR HIGH THROUGHPUT BIOANALYSISNicolas Mauricio Morato Gutierrez (16635960) 25 July 2023 (has links)
<p>The rapid analysis of complex samples using mass spectrometry (MS) provides valuable information in both point-of-care (e.g. drug testing) and laboratory-based applications, including the generation of spectral libraries for classification of biosamples, the identification of biomarkers through large-scale studies, as well as the synthesis and bioactivity assessments of large compound sets necessary for drug discovery. In all these cases, the inherent speed of MS is attractive, but rarely fully utilized due to the widespread use of sample purification techniques prior to analysis. Ambient ionization methodologies can help circumvent this drawback by facilitating high-throughput qualitative and quantitative analysis directly from the complex samples without any need for work-up. For instance, the use of swabs or paper substrates allows for rapid identification, quantification, and confirmation, of drugs of abuse from biofluids or surfaces of forensic interest in a matter of minutes, as described in the first two chapters of this dissertation. Faster analysis can be achieved using an automated desorption electrospray ionization (DESI) platform which allows for the rapid and direct screening of complex-sample microarrays with throughputs better than 1 sample per second, giving access to rich spectral information from tens of thousands of samples per day. The development of the bioanalytical capabilities of this platform, particularly within the context of drug discovery (e.g. bioactivity assays, biosample analysis), is described across most other chapters of this dissertation. The use of DESI, a contactless ambient ionization method developed in our laboratory and whose 20 years of history are overviewed in the introduction of this document, provides an additional advantage as the secondary microdroplets generated through the DESI process act as reaction vessels that can accelerate organic reactions by up to six orders of magnitude, facilitating on-the-fly synthesis of new compounds from arrays of starting materials. Unique implications of this microdroplet chemistry in the prebiotic synthesis of peptides and spontaneous redox chemistry at air-solution interfaces, together with its practical applications to the synthesis of new drug molecules, are also overviewed. The success obtained with the first automated DESI-MS system, developed within the DARPA Make It program, led to increased interest in a new-generation platform which was designed over the past year, as overviewed in the last section of this dissertation, and which is currently being installed for validation prior to the transfer of the technology to NCATS, where we anticipate it will make a significant impact through the consolidation and acceleration of the early drug discovery workflow.</p>
|
18 |
TYROSINE PHOSPHORYLATION MEDIATED REMODELING OF THE ERYTHROCYTE MEMBRANE IN SICKLE CELL DISEASEJohn M Hausman (14043162) 04 November 2022 (has links)
<p>The pathological hallmarks of sickle cell disease originate from a single mutation of the beta hemoglobin gene resulting in a valine at position 6 instead of the canonical glutamic acid. This small change perpetuates many factors, manifesting into chronic embolic processes in the microvasculature, causing painful vaso-occlusive episodes and eventual organ failure. There have been numerous therapies developed to reduce the mortality of sickle cell ranging from agents to induce production of fetal hemoglobin to chronic blood transfusions. Although each of these options are effective at improving the quality of life for sickle cell patients, they only treat one aspect of the disease and, for some, become ineffective over time. In the hope of producing a better therapy, a better understanding of the pathogenesis of vaso-occlusive episodes is needed. While many models have been offered to account for these vaso-occlusive events, one recently proposed mechanism stems from the elevated tyrosine phosphorylation of the cytoplasmic domain of the major erythrocyte membrane protein, Band 3. Band 3 serves as a hub for many critical proteins in the red cell. It binds ankyrin, which associates the spectrin cortical cytoskeleton to the red cell membrane, deoxygenated hemoglobin, the kinases Wnk1 and OSR1, which regulate cation transport, and a glycolytic enzyme metabolon that regulates the production of ATP and glutathione. When Band 3 is tyrosine phosphorylated, each of these proteins dissociate, causing significant changes to red cell homeostasis. These changes include an accumulation of reactive oxygen species, vesiculation and release of prothrombotic microvesicles, leakage of cell free hemoglobin, and a decrease in cell volume. Normally, Band 3 exists in a predominantly unphosphorylated state, however, in sickle cell disease, Band 3 is abundantly tyrosine phosphorylated. Reduction in the tyrosine phosphorylation of Band 3 has been documented to prevent the release of microvesicles and hemoglobin from sickle cell red blood cells. Because these microvesicles and cell free hemoglobin contribute to the vaso-occlusive episodes in sickle cell patients, inhibiting the mechanism for their release offers a potential therapeutic option. But to accomplish this, the molecular cause for the elevated tyrosine phosphorylation in sickle cell disease must be identified. Since tyrosine phosphorylation is performed by a tyrosine kinase and removed by a tyrosine phosphatase, the elevation in phosphorylation must be due to changes in both of these processes. Unfortunately, the identity and nature of these kinases and phosphatases are poorly understood. In this dissertation, I identified the tyrosine kinases Syk, Lyn, and Src attributed to Band 3</p>
<p>15</p>
<p>phosphorylation that facilitates the release of microvesicles and hemoglobin in sickle cell red blood cells. Inhibition of Syk or one of the two Src family kinases is sufficient to prevent the destabilization of the red blood cell membrane. These kinases function in a hierarchy, where one of the three Src family kinase, Lyn phosphorylates Syk, activating it, and promoting the phosphorylation of Band 3 at tyrosines 8 and 21. Prevention of either phosphorylation event prevents the release of microvesicles and cell free hemoglobin. I also report the identification of PTP1B as the tyrosine phosphatase responsible for maintaining Band 3 in an unphosphorylated state. Interestingly, in sickle cell disease, this tyrosine phosphatase is proteolytically cleaved, resulting in a reduction in dephosphorylating potential. It has been reported previously that PTP1B is a substrate of the calcium dependent protease, calpain and that calpain inhibitors improve the cell morphology of sickle erythrocytes. Inhibition of this proteolytic process may offer an additional therapeutic option for the treatment of sickle cell disease.</p>
|
19 |
Characterizing Microglial Response to Amyloid: From New Tools to New MoleculesPriya Prakash (10725291) 29 April 2021 (has links)
<p>Microglia are a population of specialized,
tissue-resident immune cells that make up around 10% of total cells in our
brain. They actively prune neuronal synapses, engulf cellular debris, and
misfolded protein aggregates such as the Alzheimer’s Disease (AD)-associated amyloid-beta
(Aβ) by the process of phagocytosis. During AD, microglia are unable to
phagocytose Aβ, perhaps due to the several disease-associated changes affecting
their normal function. Functional molecules such as lipids and metabolites also
influence microglial behavior but have primarily remained uncharacterized to
date. The overarching question of this work is, <i>How do microglia become
dysfunctional in chronic inflammation</i>? To this end, we developed new
chemical tools to better understand and investigate the microglial response to
Aβ <i>in vitro</i> and <i>in vivo</i>. Specifically, we introduce three new
tools. (1) Recombinant human Aβ was developed via a rapid, refined, and robust
method for expressing, purifying, and characterizing the protein. (2) A
pH-sensitive fluorophore conjugate of Aβ (called Aβ<sup>pH</sup>) was developed
to identify and separate Aβ-specific phagocytic and non-phagocytic glial cells <i>ex
vivo</i> and <i>in vivo</i>. (3) New lysosomal, mitochondrial, and nuclei-targeting
pH-activable fluorescent probes (called LysoShine, MitoShine, and NucShine,
respectively) to visualize subcellular organelles in live microglia. Next, we asked,
<i>What changes occur to the global lipid and metabolite profiles of microglia in
the presence of Aβ in vitro and in vivo</i>? We screened 1500 lipids comprising
10 lipid classes and 700 metabolites in microglia exposed to Aβ. We found significant
changes in specific lipid classes with acute and prolonged Aβ exposure. We also
identified a lipid-related protein that was differentially regulated due to Aβ <i>in
vivo</i>. This new lipid reprogramming mechanism “turned on” in the presence of
cellular stress was also present in microglia in the brains of the 5xFAD mouse
model, suggesting a generic response to inflammation and toxicity. It is well
known that activated microglia induce reactive astrocytes during inflammation. Therefore,
we asked, <i>What changes in proteins, lipids, and metabolites occur in astrocytes
due to their reactive state? </i>We provide a comprehensive characterization of
reactive astrocytes comprising 3660 proteins, 1500 lipids, and 700 metabolites.
These microglia and astrocytes datasets will be available to the scientific community
as a web application. We propose a final model wherein the molecules secreted
by reactive astrocytes may also induce lipid-related changes to the microglial
cell state in inflammation. In conclusion, this thesis highlights chemical
neuroimmunology as the new frontier of neuroscience propelled by the
development of new chemical tools and techniques to characterize glial cell
states and function in neurodegeneration.</p>
|
20 |
ACCELERATING DRUG DISCOVERY AND DEVELOPMENT USING ARTIFICIAL INTELLIGENCE AND PHYSICAL MODELSGodakande Kankanamge P Wijewardhane (15350731) 25 April 2023 (has links)
<p>Drug discovery and development has experienced a tremendous growth in the recent</p>
<p>years, and methods to accelerate the process are necessary as the demand for effective drugs</p>
<p>to treat a wide range of diseases continue to increase. Nevertheless, the majority of conventional</p>
<p>techniques are labor-intensive or have relatively low yields. As a result, academia</p>
<p>and the pharmaceutical industry are continuously seeking for rapid and efficient methods to</p>
<p>accelerate the drug discovery pipeline. Therefore, in order to expedite the drug discovery</p>
<p>process, recent developments in physical and artificial intelligence models have been utilized</p>
<p>extensively. However, the overarching problem is how to use these cutting-edge advancements</p>
<p>in artificial intelligence to enhance drug discovery? Therefore, this dissertation work</p>
<p>focused on developing and applying artificial intelligence and physical models to accelerate</p>
<p>the drug discovery pipeline at different stages. As the first study reported in the dissertation,</p>
<p>the potential to apply graph neural network-based machine learning architectures</p>
<p>with the assistance of molecular modeling features to identify plausible drug leads out of</p>
<p>structurally similar chemical databases is assessed. Then, the capability of applying molecular</p>
<p>modeling methods including molecular docking and molecular dynamics simulations to</p>
<p>identify prospective targets and biological pathways for small molecular drugs is discussed</p>
<p>and evaluated in the following chapter. Further, the capability of applying state-of-the-art</p>
<p>deep learning architectures such as multi-layer perceptron and recurrent neural networks</p>
<p>to optimize the formulation development stage has been assessed. Moreover, this dissertation</p>
<p>has contributed to assist functionality identification of unknown compounds using</p>
<p>simple machine learning based computational frameworks. The developed omics data analysis</p>
<p>pipeline is then discussed in order to comprehend the effects of a particular treatment</p>
<p>on the proteome and lipidome levels of cells. In conclusion, the potential for developing and</p>
<p>utilizing various artificial intelligence-based approaches to accelerate the drug discovery and</p>
<p>development process is explored in this research. Thus, these collaborative studies intend</p>
<p>to contribute to ongoing acceleration efforts and advancements in the drug discovery and</p>
<p>development field.</p>
|
Page generated in 0.0686 seconds