• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 446
  • 235
  • 139
  • Tagged with
  • 957
  • 957
  • 792
  • 789
  • 691
  • 691
  • 132
  • 127
  • 117
  • 88
  • 84
  • 76
  • 72
  • 70
  • 69
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Exchange between ordered and disordered segments in CFTR modulates function at the expense of stability: A molecular pathway for misfolding of CFTR

Scholl, Daniel 16 October 2020 (has links) (PDF)
The genetic disease cystic fibrosis is the most common lethal genetic disease in Western countries. People born with cystic fibrosis suffer from many health issues including severe respiratory problems, inflammation and recurrent lung infections that can become fatal. The disease is caused by the loss of function of a protein called the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is an chloride ion channel and, in healthy people, its activity assures correct water and salt transport across the cell membrane. Most cases of cystic fibrosis are caused by a genetic defect that leads to the deletion of phenylalanine 508 (F508del) in the amino acid sequence of the protein. The molecular mechanism by which F508del leads to loss of function of the CFTR channel is still poorly understood. The mutation is found in the first nucleotide binding domain (NBD1) and studies have shown that it causes misfolding of CFTR and subsequent degradation of the protein by the cellular quality control system. It is established that the mutation affects stability and dynamics of NBD1 but does not alter its structure significantly. This destabilizing effect of F508del can be compensated by specific mutations distributed over different regions of NBD1, leading to recovery of membrane expression of a functional channel. A surprising example involves the regulatory insertion (RI), a 32-residue long segment found in all CFTR orthologs but not in related channels or transporters. The RI is not resolved in crystal structures of NBD1 nor cryo-EM structures of CFTR and has been described as intrinsically disordered. Its functional role in CFTR is unknown. Removal of the RI increases the stability of the NBD1 domain and, in the context of F508del-CFTR, this deletion restores maturation, cell surface expression and activity of the mutant channel. We probed the effect of the RI on NBD1 structure, dynamics and allostery using X-ray crystallography, single molecule FRET and hydrogen-deuterium exchange. We discovered that the RI enables an alternative NBD1 fold which departs markedly from the canonical fold previously observed for this domain and the NBDs of other ABC transporters. The conformational equilibrium between these states is regulated by ATP binding and affected by disease-associated conditions. Aside from clear alterations to structure and dynamics of NBD1, the RI also affects allostery, i.e. how NBD1 structure and dynamics respond to perturbations such as ligand binding. Finally, we show that the RI-enabled conformation is adopted in full-length CFTR and associated with increased channel activity in electrophysiological assays. We then identify an allosteric network that links the structural hotspots of the conformational changes to F508 and its surroundings. Lastly, we argue that these conformational changes lead to unfolding of NBD1 in the context of F508del, providing a new model for the molecular mechanism leading to pathogenesis. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
182

Study of trm112, a unique methyltransferase activator at the interface between ribosome synthesis and function / Etude de trm112, un activateur unique de methyltransferases a l'interface entre la synthese du ribosome et sa fonction.

Tran van, Nhan 21 September 2017 (has links)
La traduction des ARNm est un processus très complexe qui en plus des nombreux facteurs impliqués, nécessite également des étapes de maturation des protéines et ARN pour la production fidèle des protéines. Parmi ces évènements, des modifications post-transcriptionnelles et post-traductionnelles, dont la méthylation est la plus fréquente, sont trouvées dans tous les composants et principalement chez les eucaryotes. Le rôle des méthylations dans la traduction est parfaitement illustré par la protéine Trm112, qui est un activateur essentiel pour la fonction de 4 méthyltransférases (MTase) (Trm9, Trm11, Bud23 et Mtq2) qui modifient des facteurs impliqués dans la synthèse des protéines. Chez la levure, les complexes Trm9-Trm112 et Trm11-Trm112 catalysent la formation de mcm5U34 et m2G10, respectivement sur certains ARNts. Le complexe Bud23-Trm112 modifie l’ARNr 18S pour former la m7G1575 tandis que le complexe Mtq2-Trm112 modifie le facteur de terminaison de classe I eRF1sur la chaine latérale de la glutamine du motif GGQ. Jusqu’à présent, des études structurales et fonctionnelles du réseau d’interaction de la protéine Trm112 se sont uniquement focalisées chez les eucaryotes alors que cette protéine est trouvée dans les 3 domaines du vivant. Dans cette étude, des expériences de co-immunoprécipitations couplées à de la LC-MS/MS ont permis d’étudier le réseau d’interaction de la protéine Trm112 chez l’archée H. volcanii. Celui-ci s’avère être composé de plus de MTase que chez les eucaryotes. Pour la première fois, la structure cristallographique d’un complexe Trm112-MTase d’archée a été déterminée, révélant un mode d’interaction conservé par rapport aux complexes eucaryotes malgré une très faible identité de séquence. De façon très intéressante, un des partenaires de Trm112 chez H. volcanii est orthologue d’une protéine humaine dont nous avons pu démontré qu’elle est une nouveau partenaire de la protéine TRMT112 humaine / Methylation is a widely distributed modification found in a variety of substrates involved in different steps of eukaryotic protein translation. Methylation reactions are catalyzed by enzymes called methyltransferases (MTases) generally using S-adenosyl-L- methionine (SAM or AdoMet) as the methyl donor. The effects of methylation on translation are perfectly illustrated by the Trm112 protein, which is an activating platform, essential for the function of four SAM-dependent MTases (Trm9, Trm11, Bud23 and Mtq2) modifying factors participated in protein synthesis. The Trm9-Trm112 and Trm11-Trm112 complexes methylate some tRNAs to form mcm5U34 and m2G10 respectively. The Bud23-Trm112 complex modifies 18S rRNA to form m7G1715 while the Mtq2-Trm112 complex methylates class I translation termination factor eRF1 at glutamine side chain of GGQ motif. Until now, the study of Trm112 network in eukaryotes has been quite clear structurally and functionally, however, little is known for corresponding proteins in Archaea.My PhD project aims to characterize the Trm112 network in archaea using Haloferax volcanii as a model organism and to decipher the mechanisms of substrate modification by Trm112-MTase complexes. This will help understanding the roles of these enzymes in protein synthesis from an evolutionary point of view.Towards this goal, I have generated several H. volcanii strains (Δtrm112, Δtrm112 Trm112-Flag, …). Co-immunoprecipitation of Trm112-Flag coupled to mass spectrometry allowed me identifying a significant number of methyltransferases (MTases), including putative orthologues of eukaryotic Trm112 partners, as potential interactors. I have next validated these new partners by biochemical approaches (co-purification, enzymatic assays, …) and determined the crystal structure for one Trm112-MTase complex. I have then convincing evidences that H. volcanii Trm12 has more MTase partners than the eukaryotic one. My work opens new routes towards the characterization of the role of Trm112 in archaea but has also led to the identification of a new MTase partner of the eukaryotic Trm112.
183

Regulation of the RNA/DNA helicase Sen1 by proteasome-mediated degradation

Aleman Alvarado, Marjorie Andrea 04 1900 (has links)
Sen1 est une hélicase ARN/ADN impliquée dans la protection du génome de la levure en résolvant les hybrides ARN/ADN et dans la terminaison de la transcription de courts ARN non codants. Malgré la demande cellulaire généralisée pour l'action Sen1, son abondance cellulaire est très faible, ce qui suggère que des mécanismes régulent les niveaux de protéine Sen1 dans la cellule. Nous avons confirmé que Sen1 est dégradé via une voie dépendante du protéasome. Ce mécanisme dépend de l’activité catalytique de Glc7, une protéine phosphatase dont il a été précédemment démontré qu’elle déphosphoryle Sen1 in vitro et qu’elle interagit avec Sen1 via un motif RVxF selon des expériences à deux hybrides. Notre hypothèse de travail est que Glc7 contrôle les niveaux de protéine Sen1 via la déphosphorylation d'un phospho-dégron. Fait intéressant, un site potentiel dans la région N-terminale de Sen1 (sérine 863) qui peut fonctionner comme un phospho-dégron a été identifié dans une analyse à l'échelle du protéome de la co-occurrence de phosphorylation et d'ubiquitylation. Afin d'identifier les sites de phosphorylation Sen1 qui sont enrichis en l'absence de Glc7, nous avons réalisé une immunoprécipitation de Sen1 suivie d'une spectrométrie de masse. Cette analyse a identifié un site de phosphorylation dans Sen1 à la sérine 1505 qui pourrait agir comme un site de dégron potentiel. A noter que ce site, a également été signalé dans les études antérieures phosphoprotéomiques sur la levure. De plus, l'interaction entre Sen1 et Glc7 et l’importance du motif RVxF (par la mutation du résidu F2003) pour cette interaction ont été confirmée par co-immunoprécipitation. De manière surprenante, la prévention de cette interaction n'affecte pas la stabilité de Sen1 ou la croissance cellulaire. Dans l'ensemble, nous avons identifié un petit groupe de sites de phosphorylation Sen1 avec une pertinence biologique potentielle. Nos résultats confirment également que la mutation du motif RVxF de Sen1 altère l'interaction avec Glc7 in vivo. Ces données approfondissent notre compréhension de la régulation de la protéine Sen1 par Glc7 dans les cellules de levure qui peuvent fournir des indices sur le rôle de la sénataxine, orthologue humaine, dans les troubles neurodégénératifs. / Sen1 is an RNA/DNA helicase involved in protecting the yeast genome by resolving RNA/DNA hybrids and in the transcription termination of short non-coding RNAs. Despite the widespread cellular demand for Sen1 action, its cellular abundance is very low, suggesting that mechanisms regulate Sen1 protein levels in the cell. We have confirmed that Sen1 is degraded via a proteasome-dependent pathway. This mechanism depends on the catalytic activity of Glc7, a protein phosphatase that was previously shown to dephosphorylate Sen1 in vitro, and to interact with Sen1 through an ‘RVxF’ motif. Our working hypothesis is that Glc7 controls Sen1 protein levels via dephosphorylation of a phospho-degron. Interestingly, a potential site in the N-terminal region of Sen1 (serine 863) that may work as a phospho-degron has been identified in a proteome-wide analysis of phosphorylation and ubiquitylation cross-talk. In order to identify Sen1 phosphorylation sites enriched in the absence of Glc7, we conducted immunoprecipitation of Sen1 followed by mass spectrometry. This analysis identified one phosphorylation site within Sen1 at serine 1505 that could act as a potential degron site. Note that this site has also been reported in previous phosphoproteomic studies on yeast. Furthermore, the interaction between Sen1 and Glc7 and the importance of the RVxF motif (by mutation of residue F2003) for this interaction was confirmed by co-immunoprecipitation. Surprisingly, prevention of this interaction does not affect the stability of Sen1 or cell growth. Overall, we have identified a small group of Sen1 phosphorylation sites with potential biological relevance. Our findings also confirm that mutating the RVxF motif of Sen1 impairs the interaction with Glc7 in vivo. These data further our understanding of Sen1 protein regulation by Glc7 in yeast cells that may provide clues to the role of senataxin, human orthologue, in neurodegenerative disorders.
184

Implication des régions N-terminales des protéines BRAF et KSR1 dans la formation du dimère BRAF/KSR1

Marullo, Sara 08 1900 (has links)
La voie de signalisation RAS-ERK régule la prolifération et la différenciation cellulaire par la propagation séquentielle d’un signal jusqu’au noyau, aboutissant à la régulation des gènes cibles. Après réception d’un stimulus extracellulaire conduisant à l’activation de la petite GTPase RAS (Rat Sarcoma), la transduction du signal s’effectue par les phosphorylations successives de RAF (Rapid Accelerated Fibrosarcoma), MEK (MAPK/ERK Kinase 1/2) et ERK (Extracellular signal-Regulated Kinase 1/2). Chez les mammifères, la famille élargie des protéines RAF comprend les trois kinases ARAF, BRAF, CRAF et les pseudokinases KSR1, KSR2 pour Kinase Suppressor of Ras 1/2. En l’absence de stimuli, les kinases RAF adoptent une forme auto-inhibée où leur région régulatrice N-terminale (N-terminal Region ou NTR) inhibe l’activité catalytique de leur domaine kinase (Kinase Domain ou KD). L’activation des GTPases RAS ancre les kinases RAF à la membrane plasmique via le domaine RBD (Ras Binding Domain) de leur NTR. Ce phénomène favorise la dérépression des KD et dévoile leur interface de dimérisation. L’association de deux protéines RAF l’une avec l’autre induit l’activation des kinases RAF et la phosphorylation de leur substrat MEK. Bien que dénuées d’activité kinase intrinsèque, les pseudokinases KSR sont néanmoins capables de dimériser avec les kinases RAF et de les activer. Des mutations des protéines clés de la voie RAS-ERK conduisent à son activation anormale et sont directement responsables du développement et de la progression tumorale. Notamment, la kinase BRAF est altérée dans 7 % des cancers. L’échec des stratégies thérapeutiques permettant d’inhiber les kinases RAF a mis en lumière l’importance de la dimérisation dans la régulation de leur activité. Ainsi, les processus favorisant la formation d’hétérodimères RAF/KSR ne sont, à ce jour, pas bien compris. La problématique de la thèse a été d’identifier les mécanismes moléculaires régissant la formation spécifique du dimère BRAF/KSR1 aboutissant à la phosphorylation du substrat MEK1. Les objectifs de la thèse ont donc été 1) de déterminer ce qui permet au substrat MEK1 de se lier aux différentes protéines de la famille RAF, 2) d’identifier les domaines nécessaires à l’interaction spécifique de BRAF et KSR1, 3) de développer des stratégies de purification du dimère BRAF/KSR1 pour en faire une analyse structurale. Ce travail a dans un premier temps montré que le substrat MEK1 est l’activateur de sa propre kinase BRAF, en favorisant sa transactivation par KSR1 via des interactions au niveau des domaines kinases. De manière inattendue, nous avons par la suite établi que ce sont les NTR des protéines BRAF et KSR1 qui guident leur hétérodimérisation. Le dimère BRAF/KSR1 repose ainsi sur l’interaction directe du domaine BRS de BRAF et du domaine CC-SAM de KSR1. Nous avons montré que le domaine CRD de BRAF exerce une influence sur l’interaction BRS/CC-SAM et par extension, sur la dimerisation de BRAF avec KSR1. Enfin, nous avons testé plusieurs stratégies de purification du dimère BRAF/KSR1 qui nous ont permis d’optimiser une technique de purification à partir de cellules de mammifères et de générer des constructions pour des cellules d’insectes. Ainsi, ce travail nous a permis d’améliorer la compréhension des mécanismes de formation de l’hétérodimère BRAF/KSR1 et son lien avec le substrat MEK1. Nous avons découvert des nouveaux moyens de régulation de la signalisation RAS-ERK. À terme, les résultats obtenus s’avèreront utiles pour le développement de nouvelles stratégies thérapeutiques efficaces pour inhiber la voie RAS-ERK dans des contextes pathologiques. / The RAS-ERK signaling pathway regulates cell proliferation and differentiation by signal propagation from the cell surface to the nucleus, resulting in the regulation of targeted genes. After receiving an extracellular stimulus leading to the activation of the small GTPase RAS (Rat Sarcoma), signal transduction is mediated by the successive phosphorylations of RAF (Rapid Accelerated Fibrosarcoma), MEK (MAPK/ERK Kinase 1/2) and ERK (Extracellular signal-Regulated Kinase 1/2) kinases. In mammals, the extended family of RAF proteins is comprised of the three kinases ARAF, BRAF, CRAF and the two pseudokinases KSR1, KSR2 from Kinase Suppressor of Ras 1/2. In the absence of a stimulus, RAF kinases are in an auto-inhibited conformation wherein their N-terminal regulatory region (NTR) inhibits the catalytic activity of their kinase domain (KD). Activation of the RAS GTPases anchors RAF kinases to the plasma membrane through binding of the RBD (Ras Binding Domain), present in their NTR. This phenomenon induces the release of the KDs and unveils their dimerization interfaces. The association of two RAF proteins with each other stimulates the activation of RAF kinases and the phosphorylation of their substrate MEK. Although lacking an intrinsic kinase activity, KSR pseudokinases are nevertheless able to stimulate RAF kinase activity through dimerization and transactivation. Mutations of core members of the RAS-ERK pathway led to its abnormal activation and are directly responsible for tumor development and progression. In particular, the BRAF isoform is mutated in 7 % of cancers. Unsuccessful therapeutic strategies developed to inhibit RAF kinases have highlighted the importance of dimerization in the regulation of the catalytic activity of RAF kinases. Moreover, the process favoring the formation of RAF/KSR heterodimers is not fully understood. The focus of this Ph.D. was to identify the molecular mechanisms governing the specific formation of the BRAF/KSR1 dimer leading to the phosphorylation of the MEK1 substrate. Our main objectives were therefore to 1) determine what allows the substrate MEK1 to bind to the different members of the RAF family of proteins, 2) identify the domains necessary for the specific interaction of BRAF and KSR1 3) develop a new approach to purify the BRAF/KSR1 dimer for structural analysis. This work showed that the substrate MEK1 stimulates the activation of its own kinase, by promoting BRAF transactivation by KSR1 through interactions at the kinase domain level. Unexpectedly, we subsequently established that the NTRs of BRAF and KSR1 guide their heterodimerization. BRAF/KSR1 dimer formation is thus based on direct interaction of the BRS domain of BRAF and the CC-SAM domain of KSR1. We then showed that the CRD domain of BRAF has an influence on the BRS/CC-SAM interaction which overall modulates the dimerization of BRAF with KSR1. Finally, we tested several BRAF/KSR1 dimer purification strategies that allowed us to optimize a purification technique from mammalian cells. We also generated constructs enhanced for insect cells expression in the hope of successfully stabilizing BRAF/KSR1 in a signaling complex. Thus, this work allowed us to improve the understanding of the mechanisms underlying the formation of BRAF/KSR1 heterodimer and its link with its MEK1 substrate. We have discovered new ways of regulating the RAS-ERK signaling pathway. Ultimately, theses results will prove useful for the development of new effective therapeutic strategies to inhibit the RAS-ERK pathway in pathological contexts.
185

Localisation, régulation et fonction du récepteur du facteur de libération de l'hormone de croissance dans le rein de rat

Paré, Caroline 08 1900 (has links)
Mémoire numérisé par la Direction des bibliothèques de l’Université de Montréal / Le récepteur du facteur de libération de l'hormone de croissance (GHRH-R) appartient à la sous-famille B-111 des récepteurs couplés aux protéines G. Les concentrations les plus élevées de GHRH-R sont retrouvées dans les cellules somatotropes de l'hypophyse antérieure, site primaire d'action du GHRH. Le GHRH-R a été détecté dans plusieurs tissus extrahypophysaires suggérant de nouveaux rôles pour le système GHRH/GHRH-R. Des données récentes indiquent que l'ARNm du GHRH-R est présent dans le rein, le cerveau, la thyroïde, le cœur, le poumon, le duodénum, l'intestin grêle et le gros intestin, la rate, le muscle squelettique, l'épididyme, l'urètre, mais non dans le foie. Le rein constitue toutefois le seul tissu extrahypophysaire qui renferme une concentration suffisante d'ARNm du GHRH-R pour permettre une détection sans amplification. De plus, plusieurs composantes de l'axe somatotrope se retrouvent au niveau du rein et y exercent des effets. Cependant, aucune étude n'a été menée sur la localisation précise du GHRH-R, sur la régulation des niveaux d'ARNm du GHRH-R ou sur son rôle dans le tissu rénal. Des études de protection à la RNase ont permis de déterminer que l'ARNm du GHRH-R est abondant dans la médulla rénale et confiné à l'anse de Henlé. Une régulation des niveaux d'ARNm du GHRH-R est observée au cours du développement et du vieillissement. Celle-ci diffère de la régulation observée dans l'hypophyse antérieure. En effet, les niveaux d'ARNm du GHRH-R sont faibles durant la période périnatale, augmentent entre 30 et 70 jours pour finalement diminuer à un âge avancé (12-22 mois). Un dimorphisme sexuel pourrait également être présent puisque les niveaux d'ARNm du GHRH-R retrouvés chez la femelle de 70 jours sont inférieurs à ceux du mâle. La fonctionnalité du récepteur rénal a été démontrée indirectement, puisqu'une stimulation prolongée de préparations cellulaires enrichies en anse de Henlé avec le rGHRH(1-29)NH2 induit une régulation à la baisse des niveaux d'ARNm du GHRH-R. Comme la liaison du GHRH à son récepteur hypophysaire active une voie AMPc-dépendante impliquée dans plusieurs actions du GHRH, incluant la synthèse et la sécrétion de GH ainsi que la prolifération et la différenciation des cellules somatotropes, l'utilisation d'une telle voie de signalisation dans le rein ainsi que l'implication du GHRH-R dans la prolifération des cellules de l'anse de Henlé ont donc été examinées. Bien qu'il ait été démontré que le GHRH stimule la production d'AMPc dans les cellules de l'anse de Henlé, il est prématuré d'affirmer qu'il y a activation du système adénylate cyclase-AMPc-protéine kinase A tel que dans la cellule somatotrope. Finalement, il a été observé qu'une stimulation au GHRH induit une augmentation de la prolifération cellulaire de l'anse de Henlé. L'importance de cette fonction du système GHRH/GHRH-R rénal demeure toutefois à être déterminée dans un contexte physiologique.
186

Functions of interactions and localization of Ankle2 during mitosis

Wang, Xinyue 12 1900 (has links)
Les cellules cancéreuses sont sujettes à des défauts de reformation de l'enveloppe nucléaire (EN) après la mitose. BAF est l'une des premières protéines recrutées sur les chromosomes pour initier la reformation de l’EN. Chez l'humain, le recrutement de BAF nécessite sa déphosphorylation par la phosphatase PP2A et Ankle2, une protéine du réticulum endoplasmique (RE) interagissant avec PP2A. Cependant, les fonctions d’Ankle2 dans la reformation de l’EN ne sont pas complètement comprises. Pour les étudier, notre laboratoire utilise la drosophile comme organisme modèle. On ne sait pas si Ankle2 de drosophile fonctionne dans le NER. Nous avons constaté qu’Ankle2 est nécessaire au recrutement de BAF pour le réassemblage du noyau après la mitose chez la drosophile. Pour mieux comprendre son fonctionnement, nous avons identifié des protéines avec lesquelles BAF interagit : PP2A, Vap33 (une protéine du RE) et certaines Kinases Dépendantes des Cyclines (CDK). Nous avons cartographié les régions d’Ankle2 impliquées dans ces interactions protéiques grâce à une analyse mutationnelle, des co-purifications par affinité et des pulldowns GST. Nous avons ensuite généré des mutants d’Ankle2 spécifiquement déficients pour des interactions et testé leur capacité à sauver la prolifération et la reformation de l’EN dans des cellules où Ankle2 endogène est déplété. Nos résultats indiquent que l'interaction entre Ankle2 et PP2A est essentielle pour sa fonction dans la reformation de l’EN. Une analyse biochimique suggère qu’Ankle2 fonctionne comme une sous-unité régulatrice de PP2A. En utilisant une approche phosphoprotéomique, nous avons confirmé que la déphosphorylation de BAF dépend d’Ankle2 et nous avons aussi identifié de nouveaux substrats potentiels du complexe PP2A-Ankle2. Nous concluons que le complexe PP2A-Ankle2 est nécessaire à la déphosphorylation de BAF et à son recrutement pour le réassemblage du noyau. Les expériences en cours permettront de déterminer les exigences d'autres interactions d’Ankle2 pour ses fonctions dans la reformation de l’EN. La suite de ces travaux impliquera l’étude de la régulation de nouveaux substrats de PP2A-Ankle2 impliqués dans ce processus. Une reformation de l’EN défectueuse peut provoquer une 4 micronucléation, ce qui peut déclencher une réponse immunitaire innée. La perturbation de la reformation de l’EN dans les cellules cancéreuses pourrait donc être bénéfique dans le contexte de l’immunothérapie. / Cancer cells are prone to defects in Nuclear Envelope Reformation (NER) after mitosis. BAF is one of the first proteins recruited on chromosomes to initiate NER. In humans, BAF recruitment requires its dephosphorylation by PP2A and Ankle2, a PP2A-interacting protein of the endoplasmic reticulum (ER). However, the functions of Ankle2 in NER are incompletely understood. Our lab uses Drosophila as a model system. Whether Drosophila Ankle2 functions in NER is unknown. We found that Ankle2 is required for BAF recruitment to reassembling nuclei in Drosophila. To better understand how it functions, we identified its interactors, which include PP2A, Vap33 (an ER protein) and Cyclin-Dependent Kinases (CDKs). We mapped the regions of Ankle2 involved in these protein-protein interactions through a mutational analysis, affinity co-purifications and GST pulldowns. We then generated mutant forms of Ankle2 defective in individual interactions and tested their ability to rescue proliferation and NER in cells depleted from endogenous Ankle2. Our results indicate that the interaction of Ankle2 with PP2A is essential for its function in NER. A biochemical analysis suggests that Ankle2 functions as a regulatory subunit of PP2A. Using a phosphoproteomic approach, we confirmed that BAF dephosphorylation depends on Ankle2 and also identified novel candidate substrates of the PP2A-Ankle2 complex. We conclude that PP2A-Ankle2 complex is required for BAF dephosphorylation and recruitment to reassembling nuclei. Ongoing experiments will determine the requirements of other interactions of Ankle2 for its functions in NER. Future work will explore the regulation of novel PP2A-Ankle2 substrates in this process. Defective NER can cause micronucleation, which can elicit an innate immune response. Disrupting NER in cancer cells could be beneficial in the context of immunotherapy.
187

Polysaccharides ayant une activité immunomodulatrice chez les champignons indigènes du Québec

Sánchez, Maribel Pacheco 11 April 2018 (has links)
Les champignons représentent une source importante de principes bio-actifs (polysaccharides, polysaccharides-peptides, triterpènes etc.) ayant des propriétés thérapeutiques. Parmi ces principes actifs, les polysaccharides revêtent un intérêt particulier en raison de leur activité immunomodulatrice. À cet effet, le lentinan extrait du champignon Lentinus edodes est l'un des polysaccharides fongiques les plus étudiés. L'intérêt pour ce composé est principalement attribuable à ses propriétés immunomodulatrices se traduisant par différents effets thérapeutiques (anticancérigène, antibactérien et antiviral). Les travaux présentés dans cette thèse ont montré, dans un premier temps, la présence de lentinan-homologue chez 14 espèces de champignons indigènes du Québec. La teneur en lentinan-homologue variait de 1,0 à 68,5 mg/g de poids sec. Les champignons présentant les contenus les plus élevés en ce composé étaient Polyporus squamosus (27,5 mg/g de poids sec), Russula cyanoxantha (24,7 mg/g de poids sec), Russula mariae (68,5 mg/g de poids sec) et Russula variata (29,6 mg/g de poids sec). La présence de ce composé (en concentration relativement élevée) chez ces champignons pourrait leur conférer une valeur ajoutée. Dans un deuxième temps, les travaux réalisés ont montré la présence (35,1 mg/g de poids sec), chez le champignon Collybia dryophila, d'un (3-D-glucane ayant une activité immunomodulatrice. Ce P-D-glucane (poids moléculaire de 1,237 x 106 Da), nommé CDP (Collybia dryophila polysaccharide), est composé de liaisons glucosidiques P-(l—>3) et p-(l—»4). Le CDP a la propriété de diminuer la production d'oxyde nitrique (NO) et d'augmenter la production de prostaglandine E2 (PGE2) induite par le lipopolysaccharide (LPS) et l'interféron gamma (IFNy) chez les macrophages. Les travaux ont également démontré que le CDP inhibe l'expression de l'ARNm codant pour l'oxyde nitrique synthase inductible (iNOS), suggérant que le CDP module la production de NO au niveau transcriptionnel. Ce composé a également été détecté chez les champignons Amanita rubescens (27,0 mg/g de poids sec), Coprinus comatus (30,8 mg/g de poids sec), Lactarius deliciosus (14,5 mg/g de poids sec), Marasmius oreades (18,5 mg/g de poids sec), Panellus serotinus (21,9 mg/g de poids sec), Suillus americanus (4,9 mg/g de poids sec) et Lentinus edodes (11,0 mg/g de poids sec). Considérant que la production excessive de NO est étroitement liée à des maladies inflammatoires, le CDP pourrait présenter un intérêt comme agent anti-inflammatoire.
188

Physiopathologie des anomalies du développement alvéolaire dans le RCIU : approche expérimentale et clinique

Zana-Taïeb, Elodie 08 July 2014 (has links) (PDF)
Une croissance intra-utérine insuffisante représente, avec la prématurité et les malfor-mations congénitales, une des principales causes de morbidité et de mortalité néonatales. Ces pathologies sont liées entre elles, les nouveau-nés prématurés étant souvent atteints de RCIU (RCIU). Les études épidémiologiques récentes ont montré que le RCIU était associé à une augmentation de la morbidité respiratoire dès la période néonatale, avec, en particulier, une augmentation du risque de dysplasie broncho-pulmonaire (DBP), principale séquelle respira-toire de la prématurité. La DBP est caractérisée par des anomalies du développement alvéo-laire et vasculaire, considérées comme les conséquences d'agressions multiples sur un poumon immature. La physiopathologie exacte reste encore largement méconnue. Nous nous sommes intéressés dans ce travail au lien entre RCIU et DBP avec un abord expérimental et clinique. Alors que les études épidémiologiques sont relativement concordantes sur le lien entre RCIU et DBP, les études expérimentales, montrent des résultats divers tant sur le développement pulmonaire qu'au niveau moléculaire. Nous avons donc voulu identifier, dans un premier temps, un modèle de RCIU reproduisant les anomalies du développement alvéolaire observées chez l'Homme en utilisant trois modèles précédemment validés chez le rat : un modèle de res-triction protidique per-gestationnelle , un modèle de ligature unilatérale de l'artère utérine, un modèle d'injection d'un inhibiteur chimique de la NO synthase, le L NAME. Seule la restric-tion protidique anténatale permet de reproduire à long terme des lésions de l'alvéolisation proches de celles observées dans la DBP. En revanche, dans ce modèle, les modifications des principaux gènes identifiés précédemment dans les anomalies le développement alvéolaire ne sont pas observées, que ce soit avant, pendant ou après l'alvéolisation. Ce résultat nous a ame-né à entreprendre une étude multigénique qui a permis d'identifier plusieurs voies modifiées pendant l'alvéolisation dans ce modèle. Parmi celles-ci, les gènes impliqués dans la contractili-té et l'adhésion cellulaire, l'immunité ou la voie des " Peroxisome Proliferator-Activated Re-ceptor ". Dans la partie clinique de cette étude, nous avons évalué le risque de DBP chez les extrêmes prématurés atteints de RCIU dont les mères présentaient des signes de pathologie vasculaire de la grossesse (prééclampsie). Cette étude rétrospective unicentrique sur 184 en-fants a permis de comparer des enfants atteints de RCIU à des enfants eutrophes pris en charge de manière homogène. Le RCIU d'origine vasculaire multiplie le risque de DBP par 6. Un marqueur précoce de l'évolution vers une DBP est un taux de plaquettes bas à la naissance, évoquant le rôle d'un taux élevé de facteurs anti-angiogéniques circulants. Une étude est en cours pour corréler les facteurs anti-angiogéniques circulants présents chez les mères pré-éclamptiques au devenir respiratoire, en particulier à l'évolution vers une DBP, de leurs nou-veau-nés d'âge gestationnel inférieur à 30 semaines d'aménorrhée. En conclusion, nous avons montré expérimentalement que seule la restriction protidique anténatale chez le rat reproduisait les troubles de l'alvéolisation comparables à ceux observés dans la DBP. De nouvelles voies moléculaires potentiellement impliquées dans les anomalies de l'alvéolisation ont été mises en évidence. Par ailleurs, le rôle de facteurs anti-angiogéniques d'origine maternelle comme fac-teurs de développement d'une DBP est en cours d'évaluation.
189

Mécanismes moléculaires de la réponse des plantes aux radiations ionisantes. Exploration du rôle des glucosinolates dans la réponse antioxydante.

Gicquel, Morgane 14 September 2012 (has links) (PDF)
Les organismes terrestres sont exposés à des faibles doses de radiations ionisantes d'origine naturelle ou anthropique. Les effets majeurs de ces rayonnements sont dus aux dommages sur l'ADN et à la radiolyse de l'eau qui génère un stress oxydant via la production de radicaux libres. De part leur métabolisme secondaire développé, les végétaux sont utilisés pour l'étude des effets des radiations ionisantes et pour la recherche de molécules antioxydantes. Cette thèse financée par la région Bretagne a donc caractérisé la réponse physiologique et moléculaire de la plante modèle Arabidopsis thaliana à des doses faibles (10 Gy) à modérées (40 Gy) de radiations ionisantes, ainsi que le rôle des glucosinolates, composés caractéristiques de la famille des Brassicaceae. Deux études globales en protéomique et en transcriptomique ont révélée : (1) une réponse commune aux deux doses concernant les mécanismes de réparation de l'ADN, la régulation du cycle cellulaire et la protection des structures cellulaires ; (2) Un ajustement du métabolisme énergétique et une activation des voies métaboliques secondaires (i.e. glucosinolates et flavonoïdes) après la dose 10 Gy ; (3) une induction du contrôle enzymatique des ROS, du recyclage des composés cellulaires et de la mort cellulaire programmée après la dose 40 Gy. Le rôle protecteur des glucosinolates a ensuite été exploré. La capacité antioxydante in vitro de certains d'entre eux et de leurs dérivés a été montrée. Leurs effets modulateurs par rapport à l'irradiation ont été testés in vivo sur des marqueurs physiologiques de croissance. L'importance de la teneur en glucosinolates pour avoir un effet positif ou négatif a été mise en évidence.
190

Mécanismes moléculaires de la graviperception chez le peuplier (Populus tremula x Populus alba)

Azri, Wassim 06 March 2009 (has links) (PDF)
Le redressement du peuplier suite à une stimulation gravitationnelle implique un processus de courbure locale lié à une élongation différentielle dans les zones en croissance primaire et un processus de courbure lié à la différenciation du bois de réaction dans les zones en croissance secondaire. Ces modifications morphogénétiques sont détectées au niveau de la région basale et apicale de la tige de peuplier inclinée. La région basale a développé le bois de tension une semaine après l'inclinaison, alors que la région apicale est réorientée 24 h après l'inclinaison. Ceci implique que les tissus de la région basale et apicale de la tige répondent de façon différente à l'inclinaison. Une étude d'expression menée au niveau du transcriptome a été réalisée à partir des ARNm extraits de tiges ayant été ou non inclinées pendant 45 min. En 45 min., la plante ne s'est pas redressée, mais a perçu le signal. Cette approche a permis d'identifier des transcrits de gènes impliqués dans la graviperception. L'étude de la régulation du transcriptome a été élargie par une analyse de la variation de l'accumulation des protéines extraites de tiges inclinées ou non. Les profils d'électrophorèse bidimensionnelle des conditions non stressées et stressées de la région basale et apicale ont montré une variation dans l'accumulation des protéines. Une analyse par RT-PCR quantitative de certaines protéines différentielles dont l'activité est potentiellement régulée par la thioredoxine (Trx) montre une accumulation de transcrits variable entre la région apicale et basale et des changements d'expression rapides et transitoires. Une étude complémentaire sur 2 thiorédoxines (Trx) (western blot, immunolocalisation in situ) a permis de montrer d'une part l'expression de Trx h1 une semaine après l'inclinaison et d'autre part la localisation de Trx h1 et Trx h2 au niveau des amyloplastes. L'ensemble de ces résultats a conduit à suggérer que les évènements moléculaires conduisant à la réorientation de la tige sont différents selon le tissu analysé. Probablement, chaque partie de la tige reçoit et répond différemment au signal gravité.

Page generated in 0.0872 seconds