Spelling suggestions: "subject:"biomass energy"" "subject:"iomass energy""
221 |
Pyrolysis of sugarcane bagasseHugo, Thomas Johannes 12 1900 (has links)
Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: The world’s depleting fossil fuels and increasing greenhouse gas emissions have given rise to much
research into renewable and cleaner energy. Biomass is unique in providing the only renewable source of
fixed carbon. Agricultural residues such as Sugarcane Bagasse (SB) are feedstocks for ‘second generation
fuels’ which means they do not compete with production of food crops. In South Africa approximately 6
million tons of raw SB is produced annually, most of which is combusted onsite for steam generation. In
light of the current interest in bio-fuels and the poor utilization of SB as energy product in the sugar
industry, alternative energy recovery processes should be investigated. This study looks into the
thermochemical upgrading of SB by means of pyrolysis.
Biomass pyrolysis is defined as the thermo-chemical decomposition of organic materials in the absence of
oxygen or other reactants. Slow Pyrolysis (SP), Vacuum Pyrolysis (VP), and Fast Pyrolysis (FP) are
studied in this thesis. Varying amounts of char and bio-oil are produced by the different processes, which
both provide advantages to the sugar industry. Char can be combusted or gasified as an energy-dense fuel,
used as bio-char fertilizer, or upgraded to activated carbon. High quality bio-oil can be combusted or
gasified as a liquid energy-dense fuel, can be used as a chemical feedstock, and shows potential for
upgrading to transport fuel quality. FP is the most modern of the pyrolysis technologies and is focused on
oil production. In order to investigate this process a 1 kg/h FP unit was designed, constructed and
commissioned. The new unit was tested and compared to two different FP processes at
Forschungszentrum Karlsruhe (FZK) in Germany. As a means of investigating the devolatilization
behaviour of SB a Thermogravimetric Analysis (TGA) study was conducted. To investigate the quality of
products that can be obtained an experimental study was done on SP, VP, and FP.
Three distinct mass loss stages were identified from TGA. The first stage, 25 to 110°C, is due to
evaporation of moisture. Pyrolitic devolatilization was shown to start at 230°C. The final stage occurs at
temperatures above 370°C and is associated with the cracking of heavier bonds and char formation. The
optimal decomposition temperatures for hemicellulose and cellulose were identified as 290°C and 345°C,
respectively. Lignin was found to decompose over the entire temperature range without a distinct peak.
These results were confirmed by a previous study on TGA of bagasse.
SP and VP of bagasse were studied in the same reactor to allow for accurate comparison. Both these
processes were conducted at low heating rates (20°C/min) and were therefore focused on char production. Slow pyrolysis produced the highest char yield, and char calorific value. Vacuum pyrolysis produced the
highest BET surface area chars (>300 m2/g) and bio-oil that contained significantly less water compared
to SP bio-oil. The short vapour residence time in the VP process improved the quality of liquids. The
mechanism for pore formation is improved at low pressure, thereby producing higher surface area chars.
A trade-off exists between the yield of char and the quality thereof.
FP at Stellenbosch University produced liquid yields up to 65 ± 3 wt% at the established optimal
temperature of 500°C. The properties of the bio-oil from the newly designed unit compared well to bio-oil
from the units at FZK. The char properties showed some variation for the different FP processes. At the
optimal FP conditions 20 wt% extra bio-oil is produced compared to SP and VP. The FP bio-oil contained
20 wt% water and the calorific value was estimated at 18 ± 1 MJ/kg. The energy per volume of FP bio-oil
was estimated to be at least 11 times more than dry SB. FP was found to be the most effective process for
producing a single product with over 60% of the original biomass energy. The optimal productions of
either high quality bio-oil or high surface area char were found to be application dependent. / AFRIKAANSE OPSOMMING: As gevolg van die uitputting van fossielbrandstofreserwes, en die toenemende vrystelling van
kweekhuisgasse word daar tans wêreldwyd baie navorsing op hernubare en skoner energie gedoen.
Biomassa is uniek as die enigste bron van hernubare vaste koolstof. Landbouafval soos Suikerriet
Bagasse (SB) is grondstowwe vir ‘tweede generasie bio-brandstowwe’ wat nie die mark van
voedselgewasse direk affekteer nie. In Suid Afrika word jaarliks ongeveer 6 miljoen ton SB geproduseer,
waarvan die meeste by die suikermeulens verbrand word om stoom te genereer. Weens die huidige
belangstelling in bio-brandstowwe en ondoeltreffende benutting van SB as energieproduk in die
suikerindustrie moet alternatiewe energie-onginningsprosesse ondersoek word. Hierdie studie is op die
termo-chemiese verwerking van SB deur middel van pirolise gefokus.
Biomassa pirolise word gedefinieer as die termo-chemiese afbreking van organiese bio-materiaal in die
afwesigheid van suurstof en ander reagense. Stadige Pirolise (SP), Vakuum Pirolise (VP), en Vinnige
Pirolise word in hierdie tesis ondersoek. Die drie prosesse produseer veskillende hoeveelhede houtskool
en bio-olie wat albei voordele bied vir die suikerindustrie. Houtskool kan as ‘n vaste energie-digte
brandstof verbrand of vergas word, as bio-houtskoolkompos gebruik word, of kan verder tot geaktiveerde
koolstof geprosesseer word. Hoë kwaliteit bio-olie kan verbrand of vergas word, kan as bron vir
chemikalië gebruik word, en toon potensiaal om in die toekoms opgegradeer te kan word tot
vervoerbrandstof kwaliteit. Vinnige pirolise is die mees moderne pirolise tegnologie en is op bio-olie
produksie gefokus. Om die laasgenoemde proses te toets is ‘n 1 kg/h vinnige pirolise eenheid ontwerp,
opgerig en in werking gestel. Die nuwe pirolise eenheid is getoets en vegelyk met twee verskillende
vinnige pirolise eenhede by Forschungszentrum Karlsruhe (FZK) in Duitsland. Termo-Gravimetriese
Analise (TGA) is gedoen om die ontvlugtigingskenmerke van SB te bestudeer. Eksperimentele werk is
verrig om die kwaliteit van produkte van SP, VP, vinnige pirolise te vergelyk.
Drie duidelike massaverlies fases van TGA is geïdentifiseer. Die eerste fase (25 – 110°C) is as gevolg van
die verdamping van vog. Pirolitiese ontvlugtiging het begin by 230°C. Die finale fase (> 370°C) is met
die kraking van swaar verbindings en die vorming van houtskool geassosieer. Die optimale
afbrekingstemperatuur vir hemisellulose en sellulose is as 290°C en 345°C, respektiewelik, geïdentifiseer.
Daar is gevind dat lignien stadig oor die twede en derde fases afgebreek word sonder ‘n duidelike
optimale afbrekingstemperatuur. Die resultate is deur vorige navorsing op TGA van SB bevestig. SP en VP van bagasse is in dieselfde reaktor bestudeer, om ‘n akkurate vergelyking moontlik te maak.
Beide prosesse was by lae verhittingstempo’s (20°C/min) ondersoek, wat gevolglik op houtskoolformasie
gefokus is. SP het die hoogste houtskoolopbrengs, met die hoogste verbrandingsenergie, geproduseer. VP
het hootskool met die hoogste BET oppervlakarea geproduseer, en die bio-olie was weens ‘n dramatiese
afname in waterinhoud van beter gehalte. Die meganisme vir die vorming van ‘n poreuse struktuur word
deur lae atmosferiese druk verbeter. Daar bestaan ‘n inverse verband tussen die kwantiteit en kwaliteit
van die houtskool.
Vinnige pirolise by die Universiteit van Stellenbosch het ‘n bio-olie opbrengs van 65 ± 3 massa% by ‘n
vooraf vasgestelde optimale temperatuur van 500°C geproduseer. Die eienskappe van bio-olie wat deur
die nuwe vinnige pirolise eenheid geproduseer is het goed ooreengestem met die bio-olie afkomstig van
FZK se pirolise eenhede. Die houtskool eienskappe van die drie pirolise eenhede het enkele verskille
getoon. By optimale toestande vir vinnige pirolise word daar 20 massa% meer bio-olie as by SP en VP
geproduseer. Vinnige pirolise bio-olie het ‘n waterinhoud van 20 massa% en ‘n verbrandingswarmte van
18 ± 1 MJ/kg. Daar is gevind dat ten opsigte van droë SB die energie per enheidsvolume van bio-olie
ongeveer 11 keer meer is. Vinnige pirolise is die mees doeltreffende proses vir die vervaardiging van ‘n
produk wat meer as 60% van die oorspronklike biomassa energie bevat. Daar is gevind dat die optimale
hoeveelhede van hoë kwaliteit bio-olie en hoë oppervlakarea houtskool doelafhanklik is.
|
222 |
Increasing cellulosic biomass in sugarcaneNdimande, Sandile 04 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Increased demand of petroleum, declining fossil fuel reserves, geopolitical instability and the environmentally detrimental effects of fossil fuels have stimulated research to search for alternative sources of energy such as plant derived biofuels. The main feedstocks for production of first generation biofuels (bioethanol) are currently sucrose and starch, produced by crops such as sugarcane, sugarbeet, maize, and cassava. The use of food crop carbohydrates to produce biofuels is viewed as competing for limited agronomic resources and jeopardizing food security. Plants are also capable of storing sugars in their cell walls in the form of polysaccharides such as cellulose, hemicelluloses and pectin, however those are usually cross-linked with lignin, making their fermentation problematic, and are consequently referred to as lignocellulosics. Current technologies are not sufficient to degrade these cell wall sugars without large energy inputs, therefore making lignocellulosic biomass commercially unviable as a source of sugars for biofuel production. In the present study genes encoding for enzymes for cellulosic, hemicellulosic and starch-like polysaccharides biosynthesis were heterologously expressed to increase the amount of fermentable sugars in sugarcane. Transgenic lines heterologously expressing CsCesA, encoding a cellulose synthase from the marine invertebrate Ciona savignyi showed significant increases in their total cellulose synthase enzyme activity as well as the total cellulose content in internodal tissues. Elevation in cellulose contents was accompanied by a rise in hemicellulosic glucose content and uronic acid amounts, while total lignin was reduced in internodal tissues. Enzymatic saccharification of untreated lignocellulosic biomass of transgenic sugarcane lines had improved glucose release when exposed to cellulose hydrolyzing enzymes.
Calli derived from transgenic sugarcane lines ectopically expressing galactomannan biosynthetic sequences ManS and GMGT from the cluster bean (Cyamopsis tetragonoloba) were observed to be capable of producing a galactomannan polysaccharide. However, after regeneration, transgenic sugarcane plants derived from those calli were unable to produce the polymer although the inserted genes were transcribed at the mRNA level. While the ectopic expression of Deinococcus radiodurans amylosucrase protein in the cytosol had a detrimental effect on the growth of transgenic lines (plants showed stunted growth through the 18 months growth period in greenhouse), contrastingly targeting the amylosucrase protein into the vacuole resulted in 3 months old transgenic lines which were having high maltooligosaccharide and soluble sugar (sucrose, glucose and fructose) levels in leaves. After 18 months growing in the greenhouse, the mature transgenic lines were morphologically similar to the untransformed lines and also contained comparable maltooligosaccharide and soluble sugar and starch amounts. The non-biosynthesis of galactomannan and amylose polysaccharides in the matured transgenic plants may be due to post-transcriptional protein processing and or protein instability, possibly explainable by other epigenetic mechanisms taking place to regulate gene expression in the at least allo-octaploid species of sugarcane under investigation in this study.
|
223 |
Biomass Energy Systems and Resources in Tropical TanzaniaWilson, Lugano January 2010 (has links)
<p>Tanzania has a characteristic developing economy, which is dependent on agricultural productivity. About 90% of the total primary energy consumption of the country is from biomass. Since the biomass is mostly consumed at the household level in form of wood fuel, it is marginally contributing to the commercial energy supply. However, the country has abundant energy resources from hydro, biomass, natural gas, coal, uranium, solar, wind and geothermal. Due to reasons that include the limited technological capacity, most of these resources have not received satisfactory harnessing. For instance: out of the estimated 4.7GW macro hydro potential only 561MW have been developed; and none of the 650MW geothermal potential is being harnessed. Furthermore, besides the huge potential of biomass (12 million tons of oil equivalent), natural gas (45 million cubic metres), coal (1,200 million tones), high solar insolation (4.5 – 6.5 kWh/m<sup>2</sup>), 1,424km of coastal strip, and availability of good wind regime (> 4 m/s wind speed), they are marginally contributing to the production of commercial energy. Ongoing exploration work also reveals that the country has an active system of petroleum and uranium. On the other hand, after commissioning the 229km natural gas pipeline from SongoSongo Island to Dar es Salaam, there are efforts to ensure a wider application in electricity generation, households, automotive and industry.</p><p> </p><p>Due to existing environmental concerns, biomass resource is an attractive future energy for the world, Tanzania inclusive. This calls for putting in place sustainable energy technologies, like gasification, for their harnessing. The high temperature gasification (HTAG) of biomass is a candidate technology since it has shown to produce improved syngas quality in terms of gas heating value that has less tar.</p><p> </p><p>This work was therefore initiated in order to contribute to efforts on realizing a commercial application of biomass in Tanzania. Particularly, the work aimed at establishing characteristic properties of selected biomass feedstock from Tanzania. The characteristic properties are necessary input to thermochemical process designers and researchers. Furthermore, since the properties are origin-specific, this will provide baseline data for technology transfer from north to south. The characteristic properties that were established were chemical composition, and thermal degradation behaviour. Furthermore, laboratory scale high temperature gasification of the biomasses was undertaken.</p><p> </p><p>Chemical composition characteristics was established to palm waste, coffee husks, cashew nut shells (CNS), rice husks and bran, bagasse, sisal waste, jatropha seeds, and mango stem. Results showed that the oxygen content ranged from 27.40 to 42.70% where as that of carbon and hydrogen ranged from 35.60 to 56.90% and 4.50 to 7.50% respectively. On the other hand, the elemental composition of nitrogen, sulphur and chlorine was marginal. These properties are comparable to findings from other researchers. Based on the results of thermal degradation characteristics, it was evident that the cashew nut shells (CNS) was the most reactive amongst the analyzed materials since during the devolatilization stage the first derivative TG (DTG) peak due to hemicellulose degradation reached (-5.52%/minute) compared palm stem whose first peak was -4.81%/minute. DTG first peak for the remaining materials was indistinct.</p><p> </p><p>Results from the laboratory gasification experiments that were done to the coffee husks showed that gasification at higher temperature (900°C) had an overall higher gasification rate. For instance, during the inert nitrogen condition, 7% of coffee husk remained for the case of 900°C whereas the residue mass for the gasification at 800 and 700°C was 10 and 17% respectively. Steam injection to the biomass under high temperature gasification evolved the highest volumetric concentration of carbon monoxide. The CO peak evolution at 900°C steam only was 23.47 vol. % CO whereas that at 700°C was 21.25 vol. % CO. Comparatively, the CO peaks for cases without steam at 900°C and 2, 3, and 4% oxygen concentrations were 4.59, 5.93, and 5.63% respectively. The reaction mechanism of coffee husks gasification was highly correlated to zero reaction order exhibiting apparent activation energy and the frequency factor 161 kJ/mol and 3.89x10<sup>4</sup>/minute respectively.</p> / QC 20100923
|
224 |
Hydrodynamics of a Cold Model of a Dual Fluidized Bed Gasification PlantLim, Mook Tzeng January 2012 (has links)
Biomass energy is increasingly used to reduce the dependence on fossil fuels and reduce the impact of greenhouse gas emissions on global warming. Fluidized bed
gasification converts solid biomass into gaseous fuels that can be used for combustion or liquid fuels synthesis. The efficiency of biomass gasification is directly affected by the fluidized bed hydrodynamics. For example, the solids recirculation rate through the system is an important parameter that affects the heat and mass transfer rates. In this study, a cold model of a dual fluidized bed (DFB) biomass gasification plant was designed using scaling laws, and was constructed to investigate the hydrodynamics of
industrial DFBs. A DFB consists of a bubbling fluidized bed (BFB), where biomass is gasified to produce syngas, and a circulating fluidized bed (CFB) where the residues of
gasification are combusted. The investigation was divided into Phase I and II. In Phase I, an operational map was developed for the CFB to define operational boundaries for
steady state operation of the plant. An empirical model was developed to predict the solids mass flow rate out of the CFB riser, which is an empirical function of the exit
opening width, the CFB diameter, and a newly introduced aerodynamic factor. The correlation coefficient, R2 for the empirical function was 0.8327. The aerodynamic
factor accounts for the particle inertia and clustering effects at the exit of the CFB riser. Results from Phase I also showed that increasing the fluidizing velocities increased the solids circulation rate and affected the pressure drop over various points in the CFB plant
due to redistribution of solids with the system. A critical assessment was performed on published correlations found in the literature to determine how accurately they predicted
the hydrodynamics in the CFB riser. By comparing predicted and experimental results, the correlations were found to be inaccurate for the conditions and configuration of the
CFB tested in this study. For example, the solids velocity was not accurately predicted by published correlations due to unaccounted particle clustering effects. The main issue
with the published correlations was a lack of generality, so that the correlations only applied for predicting fluidizing behaviour in the equipment they were developed in. In Phase II, an operational map was developed for the DFB, which incorporated both the CFB and the BFB. Experiments with a binary mixture representing sand and char in an industrial gasifier showed a blocking effect in the connecting chute between the CFB and BFB by the material representing char, which was larger and less dense than the material representing sand. A computational fluid dynamics (CFD) based design tool for modelling the cold model CFB cyclone was developed and validated by comparing the predicted and experimental cyclone pressure drop. The correlation coefficient for the CFD pressure drop prediction was 0.7755. The design tool contained information about the grid resolution and the time step required for modelling the cyclone accurately.
|
225 |
Accelerating enzymatic hydrolysis of cornstarch and cellulose using cationic polymersMora, Sandeep 13 January 2014 (has links)
The effect of cationic polymers on the rate of hydrolysis of cornstarch and cellulosic feedstocks was investigated. Poly(diallyldimethylammonium chloride) (p-DADMAC) and cationic polyacrylamides (c-PAMs) were used in the study. Experiments were performed to analyze the effect of both p-DADMAC and c-PAM on cornstarch liquefaction. Measurements were also made on the hydrolysis rates of bleached softwood to determine the mechanism through which cationic polymers accelerate cellulosic hydrolysis. Additional experiments were performed to study the effect of cationic polymers on different lignocellulosic feedstocks such as sludge, wheat straw and brown pulp.
Studies on cornstarch hydrolysis showed that p-DADMAC increases the rate of α-amylase-induced cornstarch liquefaction, thereby reducing the enzyme dose necessary for optimal hydrolysis. Studies on bleached softwood showed that cationic polyelectrolytes increase the cellulase-induced hydrolysis rates of bleached wood fiber. It was shown that the polymer associates mainly with the amorphous region of fiber and acts principally on endoglucanase. Both c-PAM and p-DADMAC increased the glucose production of brown pulp at lower kappa numbers. Overall, cationic polymers enhanced the production of glucose from cornstarch and different cellulosic feedstocks. The polymer can reduce the enzyme dosage depending on the conditions and feedstocks used.
|
226 |
Using Mutli Criteria Decision Analysis To Develop Sustainability Assessment Tools: Biomass Supply ChainsPerruccio, Deandra Marie 01 January 2015 (has links)
Energy access remains a significant challenge in nations lacking access to resources and strong infrastructure systems, creating barriers to economic development and to increased standards of living. Small scale biomass gasification energy (BGE) systems have been developed to meet energy needs in rural areas, creating synergies between agricultural and agro-forestry systems through utilization of biomass feedstock for energy generation. The sustainability of such systems requires sophisticated planning and coordination of the biomass supply chain.
The goal of this thesis is to investigate and improve structural and process related characteristics of sustainability assessments for small scale bio-energy systems, specifically focusing on establishment and management of biomass supply chains through the development and dissemination of a generic sustainability assessment framework for biomass supply chains of small-scale BGE systems in rural East Africa. Building on a preliminary sustainability assessment framework (Christensen, 2013; Joerg, 2013) this research develops an assessment tool designed to capture sustainability requirements of the biomass supply chain in the ecological, social, and economic spheres through testing on three case studies in rural Uganda. Application and analysis of a preliminary framework on pilot projects in a rural east African context using Multi Criteria Decision Analysis (MCDA) methodologies contributes to development of strategies for energy system analysis and building stakeholder capacity to incorporate social, economic, and environmental considerations. The assessment process is outlined, including scoring, data collection, contextual considerations. Model application is discussed, including the impact of weighting on decision outcomes, uncertainty management, sensitivity analysis, and identification of tradeoffs among criteria. Finally, discussion of tool usefulness verses usability contributes to bridging academic research with practitioner priorities.
|
227 |
Thermodynamic, economic and emissions analysis of a micro gas turbine cogeneration system operating on biofuels /Kunte, Benjamin. January 2015 (has links)
Orientador: José Alexandre Matelli / Coorientador: José Luz Silveira / Banca: Celso Eduardo Tuna / Banca: Pedro Lacava / Resumo: Os métodos mais promissores para reduzir gases de efeito estufa, bem como combater o iminente esgotamento das reservas de energia fóssil, são: a) o uso de combustíveis alternativos obtidos a partir da biomassa, como o biogás ou gás de síntese (syngas); b) o aumento da eficiência do sistema através da redução da percentagem de energia útil perdido para o ambiente. Enquanto a otimização da eficiência de uma determinada máquina da central elétrica, por exemplo, turbina a gás ou compressor, é um desenvolvimento muito demorado, a cogeração pode rápida e significativamente aumentar a eficiência global da central. Neste trabalho, análise termodinâmica, econômica e de emissões de um sistema de cogeração baseado em uma microturbina a gás de 200 kW combinado com uma caldeira de recuperação são conduzidas. Além disso, a operação de biogás e syngas é comparada com a operação de gás natural para investigar a pertinência destes dois combustíveis alternativos para o uso em micro turbinas a gás. A central de cogeração proposta mostrou-se tecnicamente viável para todos os combustíveis, porque a microturbina selecionada é disponível em várias versões, específicas para cada combustível, com sistemas de injeção de combustível otimizados. A central apresentou eficiências energéticas globais de 50,9%, 48,6% e 47,9% para operação com gás natural, biogás e syngas, respectivamente. Devido aos preços muito elevados do gás natural e do syngas, a central de cogeração apresentou viabilidade econômica apenas no caso de operação com biogás, com curtos períodos de retorno de aproximadamente 2,8 anos e alta economia anual esperada. Além disso, o biogás tem a maior eficiência ecológica e, portanto, apresentou-se como a melhor alternativa aos combustíveis fósseis / Abstract: The most promising methods to reduce greenhouse gases as well as counteract against the imminent depletion of fossil fuels are: a) the use of alternative fuels obtained from biomass, such as biogas or bio-syngas; b) enhancing the power plant efficiency by decreasing the percentage of useful energy lost to the environment. Whereas efficiency optimisation of a particular machine in a power plant, e.g. gas turbine or compressor, is a very longsome development, cogeneration can quickly and significantly increase the overall efficiency of a power plant. In this work, energetic, exergetic, emissions and economic analyses of a cogeneration system consisting of a 200 kW micro gas turbine combined with a heat recovery steam generator are introduced and conducted. Furthermore, biogas and syngas operation are compared to natural gas operation, to investigate the adequacy of these two alternative fuels for use in micro gas turbines. The proposed cogeneration plant proved to be technically feasible for all fuels, because the selected micro gas turbine Capstone C200 is available in various, fuel-specific versions with optimised fuel injection systems. The plant presented overall energetic efficiencies of 50.9%, 48.6% and 47.9% for natural gas, biogas and syngas operation, respectively. Due to very high natural gas and syngas prices, the cogeneration plant presented economic feasibility only in case of biogas operation, with short payback periods of approximately 2.8 years and high expected annual saving. Moreover, biogas has the highest ecologic efficiency and was therefore found to be the best alternative to fossil fuels / Mestre
|
228 |
Obtenção, caracterização e aplicação de lipases vegetais /Delgado, Clarissa Hamaio Okino. January 2014 (has links)
Orientador: Luciana Francisco Fleuri / Banca: Luiz Fernando Rolim de Almeida / Banca: Haroldo Yukio Kawaguti / Resumo: O presente estudo está dividido em cinco capítulos, o primeiro apresenta uma revisão bibliográfica sobre o uso de subprodutos agroindustriais vegetais como fonte de compostos bioativos e aplicações industriais de lipases. Os capítulos seguintes descrevem o estudo de matrizes vegetais para obtenção de lipases, bem como a aplicação das lipases mais promissoras em reações de hidrólise e síntese. As matrizes de laranja e manga foram as que apresentaram maior potencial, pois além da elevada atividade lipolítica são abundantes e possuem processos de produção e processamento bem estabelecidos. Pela primeira vez, foi constatada a presença de lipases em três subprodutos do processamento de suco de laranja denominadas casca, bagaço e frit e em três partes de manga denominadas casca, polpa e semente, as quais, apresentaram atividade em ampla faixa de pH desde o neutro (6-7) ao alcalino, elevada termoestabilidade e atividade em diferentes p-NP-ésteres, apresentando atividade de até 77,7 U/g para o extrato enzimático bruto do subproduto denominado frit de laranja e de 170 U/g para o extrato bruto de casca de manga. Todas as matrizes de laranja e de manga foram capazes de catalisar as reações de hidrólise e esterificação, sendo observado taxa de 58,5% de esterificação de ácido oleico para uma lipase obtida de manga. Cinco matrizes foram capazes de catalisar reações de alcoólise, sendo elas casca e polpa de manga em óleo de milho, polpa e semente de manga em óleo de soja e frit de laranja em óleo de soja / Abstract: This study is divided into five chapters, the first presents a literature review on the use of agroindustrial byproducts plant as a source of bioactive compounds and industrial applications of lipases. The following chapters describe the study of vegetable matrices for obtaining lipases, as well as the most promising application of lipases for the hydrolysis and synthesis. The lipases of orange and mango showed the greatest potential, because besides the high lipase activity are abundant and have production processes and well established processing. For the first time, the presence of lipase was determined in byproducts of processing of orange juice called peel, core and frit and three parts of manga called peel, pulp and seed, which showed activity in a wide pH range from neutral (6-7) to alkaline thermostability and activity at different p-NP- esters. Having activity of up to 77.7 U/g for the raw byproduct enzyme extract called frit orange and 170 U/g for the raw enzyme extract from peel of mango. All arrays of orange and mango were able to catalyze the reactions of hydrolysis and esterification, observed the rate of 58.5% on the esterification of oleic acid by lipase obtained from mango. Five matrices were able to catalyze the alcoholysis reactions, peel and pulp mango in corn oil, mango seed and pulp in soybean oil and orange frit in soybean oil / Mestre
|
229 |
Design, construction and operation of a membrane- and mediator-less microbial fuel cell to generate electrical energy from artificial wastewater with a concomitant bio-remediation of the wastewater.Mahlangu, Winnie Mpumelelo 04 1900 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science.
April, 2015 / Microbial fuel cell (MFC) technology presents great potential for use as a dual system for industrial waste water remediation and electricity generation. The hurdle in up-scaling this technology has been identified as MFC-bioreactor architecture, both with regards to bioremediation and carbon source to electricity conversion rates. In addition to the latter’s limitations, the use of expensive mediators and membrane to enhance MFC performance renders the technology uneconomic to employ industrially. A 60mm high double chamber membrane and mediator-less MFC-bioreactor was designed, and constructed. The novel MFC-bioreactor made of transparent polyacrylic plastic had a total working volume of 8 litres with the anode chamber situated at the bottom and the cathode chamber at the top separated by a 10cm deep artificial membrane made up of glass wool, glass beads and marble balls. The MFC was operated under various operating parameters including; feeding modes (batch and continuous), with different substrate concentration at a range of external resistance (100-9000Ω) .The voltage produced during MFC operation was monitored and used to estimate the power density output of the MFC. The pseudo membrane was able to sufficiently separate the anode and cathode chambers allowing the development of potential difference and hence generation of current. The MFC demonstrated the potential for sustainable operation by producing and maintaining a stable power density of 2000mW/m2 when operated with an external resistance of 1000Ω. This power density was accompanied by a 73% remediation efficiency of the synthetic wastewater. It was concluded that the results of this research show proof of concept for a membrane-less MFC that can produce electrical energy in the absence of an electron shuffling mediator.
|
230 |
Biogasoline production from waste cooking oil using nano-cobalt molybdenum catalystMabika, Kudzai January 2016 (has links)
Thesis (M.Sc. (Eng.))--University of the Witwatersrand, Faculty of Engineering and the Built Environment, School of Chemical and Metallurgical Engineering, 2016. / The world is gradually shifting to renewable clean energy and away from fossil fuels which are considered to have a finite reserve and have negative impact on the environment. Many alternatives have been developed including biofuels. Of the biofuel family, not all products are produced at the same level given the differences in technological advancements. Commonly produced biofuels which are commercialised are bioethanol and biodiesel. Given that a large number of vehicles operate using gasoline, there is a need to develop biogasoline specific processes to produce biogasoline. Bioethanol is used as a blending agent and has a drawback of engine corrosion. Biogasoline can be used for blending or to substitute gasoline in existing motors. The main objective of the project was to produce biogasoline from waste cooking oil using nano-particle catalyst for better performance.
A Co-Mo/Al2O3 catalyst was synthesized and tested in two processes namely thermal cracking and hydrocracking. The waste cooking oil used in this study was pre-treated to remove salts and excess water prior to cracking process. Various analytical techniques were then used to characterize the catalyst, waste cooking oil and the products.
Waste cooking oil was successfully pre-treated for salt removal with salt dropping from 13.18% to 4.37%. Effect of catalyst performance on thermal cracking proved to be minimal with temperature being the major factor in cracking. The catalyst performed better under hydrocracking with effects of catalyst calcination temperature and catalyst/oil ratio being more apparent as opposed to thermal cracking. Highest percentage biogasoline achieved under thermal cracking was 81.6% at a reaction temperature of 600°C. The highest percentage biogasoline achieved under hydrocracking was 75.7% at a reaction temperature of 210°C, using calcined catalyst at 700°C, catalyst/oil mass ratio of 1/75 and reaction time of 1hr. The biogasoline produced had low sulphur content. The highest sulphur containing product for hydrocracking was 7.4% and that for thermal cracking was 1.3%.
It is recommended that the hydrocracking and thermal cracking methods be used for biogasoline production and that further research be done on the optimization of the biogasoline production process and synthesis of nano Co-Mo catalyst. / MT2016
|
Page generated in 0.0696 seconds