• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 5
  • 5
  • 2
  • 1
  • Tagged with
  • 30
  • 16
  • 16
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Microélectrodes de nanotubes de carbone pour conversion d'énergie

Michardière, Anne-Sophie 14 November 2013 (has links) (PDF)
Ce travail de thèse présente une nouvelle classe de microélectrodes de fibres de nanotubes de carbone (NT). Celles-ci sont réalisées par un filage en voie humide autorisant l'inclusion d'additifs au sein des fibres afin d'adapter leur formulation. Ainsi, le développement d'électrodes incluant la bilirubine oxydase (BOD) pour biopile enzymatique a permis d'obtenir un haut courant de réduction à l'aide d'un transfert d'électrons direct entre BOD et NT. Egalement, des actionneurs électromécaniques incluant une faible quantité de PVA réticulé sont proposés. De telles fibres génèrent une grande contrainte et présentent un temps de réponse court lorsqu'une faible tension leur est appliquée. La mobilité des NT les uns par rapport aux autres au sein de celles-ci a été réduite. Cette dernière est présente dans tout actionneur en NT et génère du fluage et une relaxation de contrainte de ces matériaux limitant ainsi leurs performances. Ces travaux ouvrent de nombreuses voies pour de nouvelles microtechnologies de conversion d'énergie, notamment appliquées au médical ou dans la micro-robotique.
12

Conception et développement d'une cathode utilisant la laccase de Trametes versicolor

Zheng, Meihui 19 December 2012 (has links) (PDF)
L'objectif de ce projet est de développer une biocathode enzymatique en utilisant une laccase qui catalyse la réduction de dioxygène en eau. La laccase de T. Versicolor produite au laboratoire a été choisie sur la base de sa bonne stabilité et son potentiel redox élevé. Cette laccase a été immobilisée par liaison covalente (EDC/NHS) ou par adsorption sur la surface d'une électrode de carbone fonctionnalisée. L'activité de laccase en présence d'ABTS et le courant de réduction d'O2 ont été évalués. Le transfert direct d'électrons (TED) a eu lieu entre l'électrode et la laccase immobilisée. Pour fonctionnaliser les surfaces des électrodes de carbone deux approches ont été étudiées. Dans une première approche, les surfaces ont été électrochimiquement fonctionnalisées par réduction de sel de diazonium pour générer des groupements amines ou carboxyliques. La laccase a été ensuite immobilisée par une liaison covalente sur des surfaces fonctionnalisées par des groupements carboxyliques et le courant a atteint une densité de 25,1±6,1 µA∙cm-2. L'oxydation de cette laccase a permis d'atteindre une densité de courant de 166,8±21,4 µA∙cm-2. Une autre stratégie de fonctionnalisation des électrodes qui consiste en traitement des surfaces par plasma a été étudiée. Le procédé plasma est innovant, simple et rapide. Différentes paramètres du plasma ont été étudiés. Selon le type de plasma (air, O2 et N2), des groupements carboxyliques, carbonyles et amines/amides ont été générés. La réduction d'O2 a également été effectuée par TED. Une densité de courant de l'ordre de 108 µA∙cm-2, a été obtenue pour la laccase immobilisée d'une façon covalente sur des surfaces traitées par plasma N2.
13

Biomatériaux d'électrode appliqués à la réalisation et à la caractérisation d'un biocapteur immunologique et de biopiles enzymatiques / Electrode biomaterials employed in fabrication and characterization of immunosensor and enzymatic biofuel cells.

Giroud, Fabien 27 October 2011 (has links)
Ce mémoire est consacré au développement d'un immunocapteur impédancemétrique et de deux biopiles enzymatiques. Premièrement, le poly(pyrrole-NHS) est utilisé pour l'immobilisation successive d'un modèle de la ciprofloxacine (CF) et de l'anticorps dirigé spécifiquement contre CF. La détection est réalisée par la spectroscopie d'impédance électrochimique. Elle détecte le déplacement en solution de l'anticorps. Le seuil de détection est de 1.10-12 g.mL-1. Deuxièmement, la production énergétique est abordée suivant deux approches. La première se base sur l'apparition d'un gradient de pH produit par deux enzymes (la GOx et l'uréase) et converti en f.e.m. en utilisant un couple rédox sensible au pH. La seconde, repose sur les propriétés biocatalytiques de la GOx d'oxyder le glucose et de la polyphénol oxydase de réduire le dioxygène. Cette pile est capable de fonctionner aussi bien in vitro que in vivo. Une fois optimisée, la pile affiche une f.e.m. de 315 mV et une puissance de 27 μW. / This work is focused on the development of an impedimetric immunosensor and two enzymatic biofuel cells. Firstly, poly(pyrrole-NHS) is used to graft a model of the ciprofloxacin antibiotic (CF) and its specific antibody (Ab) in two steps. The displacement of the antibody in solution directed by a strong affinity between Ab and CF is monitored by electrochemical impedance spectroscopy. The detection limit is 10-12 g mL-1. Secondly, production of electricity is studied by two different methods. The first one is based on the creation of a pH difference driven enzymatically by glucose oxidase (GOx) and urease. This pH gradient is converted to e.m.f. by adding a pH-dependant redox couple. The second method uses glucose/O2 fu
14

Elaboration de bioélectrodes à base de nanotubes de carbone pour la réalisation de biopiles enzymatiques Glucose/02 / Carbon nanotube-based bioelectrodes for Glucose/O2 biofuel cells

Reuillard, Bertrand 03 December 2014 (has links)
Ce mémoire est consacré à l'optimisation de la connexion enzymatique d'enzymes pour l'oxydation du glucose et la réduction de O2 sur matrices de nanotube de carbone (CNT) dans les biopiles à glucose.Premièrement, le transfert électronique indirect de la glucose oxydase (GOx) est optimisé dans une matrice nanostructurée de CNT contenant la 1,4-naphtoquinone comme médiateur rédox. Cette bioanode a ensuite été combinée avec des biocathodes similaires à bases d'enzymes à cuivre (laccase et tyrosinase). La biopile GOx-NQ/Lac a permis d'obtenir des puissances maximales de l'ordre de 1,5 mW.cm-2. Les utilisations de cette pile en décharge courte, longue et sa stabilité dans le temps ont également été étudiées. La seconde partie présente la préparation d'une autre anode basée sur la connexion indirecte d'une glucose déshydrogènase NAD+-dépendante (GDH-NAD+) comme alternative pour l'oxydation du glucose. La GDH-NAD+ a été combinée avec un catalyseur d'oxydation de NADH par différentes méthodes. Tout d'abord, elle a été encapsulée au sein du métallopolymère rédox, puis, la modification supramoléculaire a dans un second temps permis d'immobiliser le catalyseur moléculaire et l'enzyme à la surface des CNTs. Ces deux bioanodes ont permis respectivement l'obtention de courants catalytiques d'oxydation du glucose de 1,04 et 6 mA.cm-2. La seconde bioanode a été combinée avec une biocathode à base de BOD et a permis l'obtention de densités de courants maximales de l'ordre de 140 µW.cm-2 La dernière partie concerne l'élaboration d'une biocathode bienzymatique pour la réduction de O2. Le DET de la HRP sur CNTs a dans un premier temps été optimisé par modification de la surface par différents dérivés pyrène. Ensuite, la combinaison de la GOx et de la HRP sur la même électrode a permis de réduire efficacement O2 en 2 étapes. La biocathode est capable de délivrer une densité de courant maximale de l'ordre de 200 µA.cm-2. Cette dernière, combinée avec la bioanode GDH présentée précédemment a permis d'obtenir une biopile opérationnelle en conditions physiologiques et 10 mM de NAD+, en étant capable de débiter une densité de puissance maximale de l'ordre de 57 µW.cm-2. / This work focuses on the optimization of the electrical wiring of glucose oxidizing and dioxygen reducing enzymes on carbon nanotube (CNT) matrixes for glucose biofuel cells.In the first part, glucose oxidase (GOx) mediated electron transfer (MET) is optimized in nanostructured CNTs matrixes by mechanical compression of a CNTs/GOx composite containing 1,4-naphtoquinone as redox mediator. This bioanode was then combined with MCOs (laccase and tyrosinase) based biocathodes. The GOx-NQ/Lac biofuel cell was able to deliver a maximum power density of 1.5 mW.cm-2. The use of this biofuel cell in short/long time discharge and in storage has also been studied. The second part presents the preparation of another bioanode based on the indirect wiring of a NAD+-dependant glucose dehydrogenase (GDH-NAD+) as an alternative for glucose oxidation. The GDH-NAD+ has been combined with an NADH oxidation catalyst by two different techniques. The first one involves the encapsulation of the protein in the metallopolymer redox film, whereas the second one relies on the supramolecular modification of the CNTs by the molecular catalyst and the enzyme. Both bioanodes showed good catalytic properties toward glucose oxidation in presence of NAD+ with respectively 1.04 mA cm-2 and 6 mA cm-2. The latter has been combined with a BOD based biocathode to form a biofuel cell exhibiting maximum power densities of 140 µW cm-2. The last part of this work focuses on the design of a bienzymatic biocathode for O2 reduction. The DET of horseradish peroxidase (HRP) was first investigated and optimized by modification of the CNTs with pyrenes derivatives. The combination of the HRP with the GOx on the same electrode enables an efficient reduction of O2 in a 2-step process. The biocathode could exhibit maximum currents densities of 200 µA cm-2. This cathode along with the previous GDH bioanode formed a biofuel cell functional in physiological conditions and 10 mM NAD+ showing maximum power densities of 57 µW cm-2.
15

Transfert électronique au sein d'une pile à combustible microbienne. Compréhension des Paramètres Expérimentaux et Structuraux à l'Interface entre une Bactérie électro-active et une Electrode carbonée / Electronic transfer within a microbial fuel cell. Better understanding of Experimental and Structural Parameters at the Interface between Electro-active Bacteria and Carbon-based Electrodes

Pinto, David 14 November 2016 (has links)
Les biopiles microbiennes (PACB) sont un type de pile à combustible utilisant des bactéries comme catalyseurs. Par la métabolisation de matières organiques, les bactéries produisent et transfèrent des électrons à une matrice conductrice. Les matériaux carbonés, comme les feutres de carbone (fibres de 10 µm de diamètre) sont adaptés comme matériau anodique. L’objectif de cette thèse est d’évaluer l’effet des paramètres expérimentaux et structuraux sur la formation du biofilm et sur le comportement électrochimique d’une bactérie électro-active à la surface d’une électrode. Suite à l’optimisation de la croissance de Shewanella oneidensis en condition de semi-aérobie, l’effet de la présence d’oxygène, de l’état de croissance de la bactérie et de la nature de l’électrolyte sur le transfert électronique, ont été évalué. La polarisation de l’anode a des potentiels compris entre -0.3 et 0.5 V conduit à deux conclusions : (i) Les bactéries sont plus sensibles a des potentiels positifs élevés en réacteur mono-compartiment. (ii) En PACB à deux compartiments, les potentiels négatifs et positifs conduisent à deux structures de biofilm différentes. Un biofilm artificiel a été conçu en encapsulant des bactéries dans une gel de silice incorporé dans un feutre de carbone. Il apparait que le transfert électronique des bactéries encapsulées varie en fonction de la rigidité du réseau de silice. Finalement, par l’electrospinning d’une solution de PAN et le traitement thermique de la membrane obtenue, une électrode formée de fibres micrométriques a été conçue. Son utilisation en PACB conduit à une augmentation des performances de la biopile. Le courant anodique augmente d’un facteur 10 à 100. / Microbial fuel cells (MFC) are a type of fuel cells based on bacteria as biologic catalysts. By the metabolism of organic compounds, these micro-organisms produce and transfer electrons to a conductive matrix. The objective of this study is to evaluate the impact of working conditions and structural parameters on the biofilm formation and the electrochemical behaviour of electroactive bacteria. By optimising the bacterial growth of Shewanella oneidensis strain in semi-aerobic condition, various working condition was evaluated to better understand the interaction between a carbon felt (CF) electrode and the bacteria. It appears that the bacterial state of growth influences the electron transfer of the cells, as well as the electrolyte nature. The effect of the anodic polarization was evaluated by applying various poised potential between -0.3 V and 0.5 V in both single and dual-chamber MFC. This study leads to the conclusion that bacteria are more sensible to highly positive potential in membrane-less MFC. On the contrary, in dual-chamber reactors, both positive and negative potential leads to the formation of different biofilm architectures. Then, an artificial biofilm was created by incorporating bacteria encapsulated into a silica gel into a CF. The electrochemical behaviour of bacteria seems sensible to the tightness of the silica network. Finally, by the electrospinning of polyacrylonitrile solution and then the annealing of the fiber mat, an electrode with micro-scaled carbon fibers was produced. The use of this electrode as an anode in a MFC leads to an increase of the MFC performance and more specially of the anodic current density by a factor 10 to 100.
16

Électrodes enzymatiques à base d’hydrogels rédox en vue de l’oxydation du glucose : effet de la déglycosylation de la glucose oxydase et mise en évidence d’une réduction parasite de l’oxygène sur le médiateur rédox / Enzyme electrodes based on redox hydrogels for glucose oxidation : effect of glucose oxidase deglycosylation and evidence for oxygen side reduction on the redox mediator

Prévoteau, Antonin 16 December 2010 (has links)
La possibilité de convertir l’activité catalytique d’une oxydoréductase en un courant électrique a permis le développement d’une grande diversité d’électrodes enzymatiques. Les anodes catalysant l’oxydation du glucose font partie des plus étudiées pour leurs applications dans la mesure de la glycémie ou dans des biopiles glucose/O2. Parmi les nombreuses stratégies disponibles, l’utilisation d’hydrogels à base de complexes d’osmium en guise de médiateurs rédox fournit d’excellents résultats, qui restent cependant limités en terme de densité de courant ou de sélectivité. Durant cette thèse, la glucose oxydase (GOx) a été déglycosylée. Les électrodes préparées avec la nouvelle enzyme délivraient des courants catalytiques plus élevés, ce qui laissait supposer initialement une diminution de la distance de saut d’électron entre la GOx et le médiateur rédox suite au retrait des oligosaccharides. Une étude avec des électrodes de différentes compositions suggère au contraire que la déglycosylation n’améliore pas le transfert électronique intrinsèque mais la structure globale de l’hydrogel. De fait, une enzyme plus petite et plus négativement chargée doit induire un volume d’hydrogel plus faible pour une même composition molaire. En second lieu, une réduction parasite de l’oxygène affectant ces anodes, non envisagée jusqu’à aujourd’hui, a été mise en évidence et étudiée. En effet, l’interférence de l’O2 n’est usuellement attribuée qu’à sa réactivité avec la GOx. La présente étude prouve que l’O2 se réduit aussi sur les complexes d’osmium si leur potentiel standard E°’ est inférieur à + 0,07 V vs. Ag/AgCl. La cinétique de cette réaction croît exponentiellement quand le E°’ du complexe diminue. En plus d’abaisser le courant d’oxydation et donc les performances de l’anode, la génération de peroxyde d’hydrogène pourrait aussi altérer sa stabilité. Ces résultats suggèrent que le choix d’un médiateur de E°’ donné doit aussi dépendre de l’amplitude de cette réduction. / The possibility of converting the catalytic activity of oxidoreductase enzymes into electric current has led to the development of a high diversity of enzyme electrodes. Anodes catalysing glucose oxidation have been amongst the most studied, especially for their application in monitoring blood glucose or glucose/O2 biofuel cells. Although one of the numerous strategies available, the use of osmium-based hydrogels as redox mediators, has given excellent results, some limitations still remain such as rather low current densities, stability or selectivity Initially, the study focused on the deglycosylation of glucose oxidase (GOx). When most of the oligosaccharides around this glycoenzyme were removed, the ensuing increase in the electrode catalytic current seemed a priori to support the hypothesis of a decrease in the electron hopping distance between the enzyme redox centres and the redox mediator. However, a systematic study of electrode response for different compositions leads us to conclude that deglycosylation does not improve the intrinsic electron transfer but the whole hydrogel structure. This seems due to the smaller size and higher surface charge of the deglycosylated GOx inducing smaller hydrogel volumes than in the native-based GOx. The study then proceeded to examine the oxygen side reduction of commonly used osmium-based redox polymers. The interference of O2 on glucose oxidation current has generally been attributed to O2 reactivity with GOx. The present study shows that O2 reduction also occurs on osmium-based polymers if their formal potential E°’ is below + 0.07 V vs. Ag/AgCl. The kinetics of this reaction appears to increase exponentially when E°’ decreases. As well as reducing the oxidation current and, consequently, lowering anode performances, the generation of hydrogen peroxide could also modify electrode stability. These results suggest that the choice of redox mediator for a given E°'must also take into account the extent of O2 reduction.
17

Bioélectrodes enzymatiques pour des applications en biocapteurs et en biopiles / Enzymeatic bioelectrodes for applications in biosensors and biofuel cells

Jarrar, Haytem 16 December 2011 (has links)
La principale originalité de ce travail est la mise en œuvre de deux voies d'immobilisation du biorécepteur sur différents matériaux d'électrodes. Dans un premier temps, nous avons démontré que le polyneutral red (PNR) représente une bonne matrice de rétention pour les enzymes. De plus, de part ses propriétés de médiation vis-à-vis des enzymes et principalement de leur cofacteur (NAD/FAD), ce polymère permet une connexion intime entre le site actif de l'enzyme et l'électrode. L'ensemble de ces caractéristiques nous a permis de mettre en œuvre une bioélectrode applicable en tant qu'anode d'un biocapteur à glucose et d'une cellule de biopile à combustible. Dans un second temps, la glocose oxydase a été immobilisée de façon covalente sur une électrode. L'électro-oxydation de l'éthylène a été menée sur les électrodes de carbone vitreux pour obtenir des fonctions amines. La voie proposée est simple, rapide et efficace. Puis, la glucose oxydase a été greffée avec succès par la méthode EDC / NHS sur les fonctions amines après optimisation des conditions de pH. Ces bioélectrodes ont ensuite été testées en tant que biocapteur à glucose montrant une bonne sensibilité de glucose avec une bonne stabilité sur une période de 4 semaines ce qui prouve l'efficacité de la méthode de greffage pour des applications de détection et dosage. / The main originality of this work is the development of two-way to immobilize a bioreceptor on different electrode materials. Initially, we demonstrated that the polyneutral red (PNR) is a good matrix for retaining enzymes. In addition, its properties of mediation towards enzymes and mainly their cofactor (NAD / FAD), this polymer provides an intimate connection between the active site of the enzyme and the electrode. All these features allowed us to develop an bioelectrodes as the anode of a biosensor for glucose and a fuel cell biopile. In a second step, the glocose oxidase was covalently immobilized on an electrode. The electro-oxidation of ethylene diamine was carried out on glassy carbon electrodes to obtain amine functions. This proposed way is simple, fast and efficient. Then, glucose oxidase was successfully grafted by the method EDC / NHS on amine functions after the optimization of pH conditions. These bioelectrodes were then tested as glucose biosensor and showed good sensitivity with good stability over a period of 4 weeks which proves the effectiveness of the grafting method for detection and assay applications.
18

Conception et optimisation de piles enzymatiques glucose-O2 pour la gestion de puissance / Design and optimization of glucose-O2 enzymatic cells for power management

Abreu, Caroline 16 November 2017 (has links)
Ce mémoire est consacré à l’optimisation de la connexion enzymatique pour l’oxydation du glucose et la réduction du dioxygène dans une matrice de nanotubes de carbone (CNTs) sous forme de compression dans les biopiles à glucose, et à l’assemblage de biopiles dans un système à flux. Dans un premier temps, le transfert électronique indirect de la glucose oxydase (GOx) et de la glucose déshydrogénase FAD-dépendante (FADGDH) est optimisé dans une matrice nanostructurée de CNTs contenant différents médiateurs rédox. Ces bioanodes ont pu être combinées avec des biocathodes similaires à bases d’enzymes à cuivre, la laccase (Lac) et la bilirubine oxydase (BOD). La biopile GOx-NQ/Lac présente une puissance de l’ordre de 150 µW sous 150 mmol.L-1 de glucose et la biopile GOx-NQ/BOD orientée par la PP IX, quant à elle, possède une puissance de l’ordre de 0,5 mW sous 5 mmol.L-1 de glucose. Cette biopile présente une très bonne alternative à l’implantable ou à l’alimentation d’un appareil électronique à faible demande énergétique. La partie suivante concerne l’élaboration d’un design de biopile à flux optimisant la diffusion du substrat à l’intérieur de la bioélectrode. De ce fait, plusieurs systèmes de biopiles GOx-NQ/BOD à flux de substrat ont été étudiés. La configuration de flux traversant a permis d’obtenir une puissance de l’ordre de 1 mW sous 5 mmol.L-1 de glucose et oxygène dissous. La possibilité d’utiliser cette pile en décharge continue ou en cycle de charge/décharge a été étudiée. Ce système de biopile à flux de glucose a permis également d’associer plusieurs biopiles en série ou en parallèle. Ainsi, l’alimentation d’un minuteur et d’un test d’ovulation a pu être réalisée à l’aide de biopiles associées en série. D’autre part, l’utilisation d’un circuit de gestion de l’énergie a permis d’alimenter un capteur de température en stockant l’énergie produite par deux biopiles connectées en série. Cette partie se consacre également à une biopile basée sur l’association de la HRP à la cathode et la GOx-NQ à l’anode. Ce système est très intéressant puisque grâce à la maitrise du sens du flux de notre substrat, le peroxyde d’hydrogène formé par l’anode peut être alors consommé par la cathode. Cette pile s’est montrée parfaitement opérationnelle en condition physiologique et a abouti à l’obtention de puissances de l’ordre de 0,8 mW. / This work is devoted to the optimization of the enzymatic connection for the oxidation of glucose and the reduction of dioxygen in a matrix of carbon nanotubes (CNTs) in the form of compression in glucose biofuel cells, and the assembly of biofuel cells in a flow system.First, mediated electron transfer of glucose oxidase (GOx) and FAD-dependent glucose dehydrogenase (FADGDH) is optimized in a nanostructured CNTs matrix containing different redox mediators. These bioanodes could be combined with similar biocathodes with copper enzyme bases, laccase (Lac) and bilirubin oxidase (BOD). The GOx-NQ/Lac biofuel cell has a power of the order of 150 μW under 150 mmol L-1 of glucose and the biofuel cell GOx-NQ/BOD oriented by the PP IX, order of 0.5 mW under 5 mmol L-1 of glucose. This biofuel cell presents a very good alternative to the implantable or to the supply of an electronic device with low energy demand.The next part concerns the development of a biofuel cell design with flux optimizing the diffusion of the substrate inside the bioelectrode. As a result, several GOx-NQ/BOD flow systems have been studied. The flow-through configuration made it possible to obtain a power of the order of 1 mW under 5 mmol L-1 of glucose and dissolved oxygen. The possibility of using this battery in continuous discharge or in charge/discharge cycle has been studied. This biofuel cell system with a glucose flow has also made it possible to associate several biofuel cells in series or in parallel. Thus, the power supply of a timer and an ovulation test could be realised using associated biofuel cells in series. The use of an energy management circuit made it possible to supply a temperature sensor by storing the energy produced by two biofuel cells connected in series.Moreover, this part is about another biofuel cell based on the association of HRP with the cathode and the GOx-NQ at the anode. This system is very interesting because, thanks to the control of the flow direction of our substrate, the hydrogen peroxide formed by the anode can then be consumed by the cathode. This stack was perfectly operational in physiological condition and led to the achievement of powers of the order of 0.8 mW.
19

Nanostructuration des électrodes pour l'électrocatalyse enzymatique : vers une biopile H2/O2 "verte" / Electrode nanostructuration for enzyme electrocatalyst : towards a "green" H2/O2 fuel cell

Monsalve Grijalba, Karen 06 December 2016 (has links)
Parmi les technologies basées sur H2 comme vecteur d’énergie, les biopiles à combustibles utilisant des enzymes comme biocatalyseurs spécifiques et efficaces au lieu des catalyseurs au platine apparaissent comme des alternatives émergentes. L’objectif de cette thèse est de comprendre les paramètres gouvernant l’immobilisation fonctionnelle sur des interfaces nanostructurées d'enzymes spécifiques de l’oxydation de H2 et de la réduction d’O2 en vue de désigner une biopile H2/O2 performante.Divers nanomatériaux sont caractérisés, nanoparticules d’or (AuNP) et nanotubes de carbone (CNT), présentant différentes tailles et chimie de surface, aptes à développer des ratios importants surface/volume, autorisant une augmentation du nombre de molécules enzymatiques incorporées et donc une augmentation des courants catalytiques. L’immobilisation des enzymes sur AuNP a permis de discriminer entre l’augmentation de surface ou un effet nano sur l’efficacité catalytique. L’étude intégrée sur CNT, avec les charges de l’interface électrochimique, les charges et moments dipolaires des enzymes considérées, a permis de démontrer que les interactions électrostatiques contrôlent le processus de transfert d’électrons. Cette étude montre que les bases moléculaires pour une immobilisation efficace des enzymes, obtenues sur monocouches est applicables aux réseaux 3D.La détermination des nanostructures optimales pour les réactions enzymatiques est étudiée pour un changement d’échelle. Ainsi des feutres de carbone sont fonctionnalisés avec les nanostructures adaptées, pour au final développer la première biopile H2/O2 capable d’alimenter un multicapteur et un système de communication sans fil. / Among the technologies based on H2 as an energy carrier, biofuel cells that use specific and effective enzymes as biocatalysts instead of platinum catalysts appear as emerging alternative. The objective of this thesis is to understand the parameters governing the functional immobilization of specific enzymes for H2 oxidation and O2 reduction reactions on nanostructured interfaces, aimed to design a performant H2 / O2 biofuel cell.Gold nanoparticles (AuNP) and carbon nanotubes (CNT) having different sizes and surface chemistry are characterized. These nanomaterials develop important ratios surface / volume ratio, allow an increment in the number of enzyme molecules immobilized and therefore an increase catalytic currents. The immobilization of enzymes on AuNP allowed the discrimination between the increase in surface area and a nanomaterial effect on catalytic efficiency. The study on CNT integrates the charge of the electrochemical interface, dipole moments and the surface charge of enzymes. It demonstrated that electrostatic interactions control the electron transfer process. This study shows that the molecular basis for effective immobilization of enzymes, obtained on monolayers is applicable to 3D networks.The determination of the best parameters for enzymatic reactions, allows the development of an optimized 3-D volumetric interface based on carbon felt. We finally design for the first time a H2/O2 biofuel cell able to generate enough electric power to feed a complete wireless communication device.
20

Conception guidée par la physiologie de biopiles bioinspirées implantables / Physiological considerations for the design and integration of bioinspired implantable biofuel cells

Alcaraz, Jean-Pierre 19 October 2016 (has links)
On peut imaginer dans un futur proche que des micro-robots implantés pourront suppléer la défaillance de certaines fonctions essentielles. C’est déjà le cas avec les stimulateurs cardiaques dont les piles au lithium sont bien adaptées à leur fonctionnement pendant des années de vie du patient. Cependant, pour des systèmes plus gourmands en énergie, il convient d’améliorer la longévité et la puissance volumique de ces piles. La stratégie que nous avons choisie est basée sur une approche biomimétique et deux voies ont été suivies pour créer une biopile bioinspirée : les biopiles enzymatiques génèrent un courant électrique à partir de l’oxydation de molécules organiques et la réduction d’oxygène en eau. Les biopiles à base de membranes biomimétiques génèrent un potentiel électrique à partir du transfert d’ions au travers une membrane biomimétique.Les biopiles enzymatiques, qui utilisent par exemple le glucose et l’oxygène, sont théoriquement capables de fonctionner indéfiniment car ces substrats sont toujours présents dans l’organisme. Cependant, la biocompatibilité et la performance à long terme de ces biopiles restent des verrous pour leur mise en œuvre chez l’homme. Cette thèse décrit la conception et l’implantation de nouvelles biopiles enzymatiques chez différents modèles animaux. Leur implantation constitue un véritable défi technologique et nous amenons des solutions guidées par la physiologie en abordant les problèmes de biocompatibilité mais aussi de techniques de mesure électrique.Nous sommes maintenant capables d’implanter ces biopiles chez de gros animaux en analysant en temps réel les performances de la biopile implantée.Cette thèse développe également le concept de biopile à base de membranes biomimétiques. Il s’agit d’une biopile mettant en œuvre des protéines de transport (par exemple des canaux ioniques) insérées dans des membranes biomimétiques. Nous avons démontré la faisabilité de la transformation d’un gradient de NaCl en gradient de protons. Nous avons aussi réussi à générer une différence de potentiel de 20 millivolts avec une membrane plane de 38 mm². Cette membrane biomimétique, contenant l’échangeur sodium/proton NhaA, est stable pendant plus de 15 jours. / We believe that in the near future micro-robots or artificial implanted organs can replace failing essential organs. Lithium batteries of cardiac pacemakers are well adapted to operate for years into sick patients. However, for next generation energy intensive implanted devices, longevity and volumic power of these batteries have to be improved.We chose two biomimetic approaches to create bioinspired biofuel cells: the enzymatic biofuel cells generate electrical current from the oxidation and the reduction of organic or inorganic compounds. The biomimetic biofuel cell generate an electrical potential from ion transfer across a biomimetic membrane.The enzymatic biofuel.cells, utilizing glucose and oxygen, are theorically able to work almost indefinitely as their substrates are always present in the body fluids. However, the biocompatibility and the long-term performance of these biofuel cells for a human implantation remain a real bottleneck. This thesis describes the design and the implantation of of new enzymatic biofuel cells in different animal models. The implantation of such devices is challenging and we brought creative solutions with a physiological point of view by addressing biocompatibility problems and electrical measurement techniques. We are now capable to implant these biofuel cells in big animals by analyzing the performances of the biofuel cell in real time.This thesis initiates the biomimetic biofuel cell concept. It consists in membrane transport protein (i.e ion channels) incorporated in a biomimetic membrane. The building of a biomimetic device demonstrates the transformation of a NaCl gradient into a proton gradient. We also generate a 20 mV voltage with a 38 mm² flat membrane. This biomimetic membrane containing the NhaA sodium/ proton exchanger is stable for more than two weeks.

Page generated in 0.0317 seconds