Spelling suggestions: "subject:"bipolar cell"" "subject:"dipolar cell""
1 |
Modulation Of Inner Retinal Inhibition With Light AdaptationMazade, Reece Eric January 2015 (has links)
The retina is able to adjust its signaling over a wide range of light levels. A functional result of this is increased visual acuity at brighter luminance levels, such as during the day, due to changes in the organization of retinal receptive fields. This process is commonly referred to as light adaptation. These organizational changes have been shown to occur at the level of the ganglion cells, the output neurons of the retina, which have shifts in their excitatory center-inhibitory surround receptive fields that increase their sensitivity to small stimuli. Recent work supports the idea that light-adapted changes in ganglion cell spatial sensitivity are due in part to inner retinal signaling changes, possibly including changes to inhibition onto bipolar cells, the interneurons at the center of retinal signal processing. However, it is unknown how inhibition to the bipolar cells changes with light adaptation, how any changes affect the light signal or what mediates the changes to the bipolar cells that have been suggested by previous reports. To determine how light adaptation affects bipolar cell inhibition, the inhibitory inputs to OFF bipolar cells were measured. OFF bipolar cells, which respond to the offset of light, in particular may be involved in retinal adaptation as they bridge dim- and bright-light retinal pathways. Their inputs were compared between dark- and light-adapted conditions to determine how any inhibitory changes affects their output onto downstream ganglion cells. We found that there was a compensatory switch from primarily glycinergic-mediated inhibition to OFF bipolar cells in the dark to primarily GABAergic-mediated inhibition in the light. Since glycinergic and GABAergic inhibition perform very different roles and are mediated by morphologically different cells, it is likely this switch underlies a change in the spatial distribution of inhibition to these cells. We found that the spatial inhibitory input to OFF bipolar cells became significantly smaller and narrower with light adaptation, translating to smaller inhibitory surrounds of the OFF bipolar cell receptive fields. Through a model, our data suggested that the OFF bipolar cell output to downstream ganglion cells was stronger in the light, due to the narrowing and reduction in the spatial input, to small light stimuli. This would effectively be one way the retina could use to increase visual acuity. Additionally, we found that the inhibitory changes to OFF bipolar cells with light-adaptation are partially mediated by dopamine D1 receptor signaling. Dopamine is released in the light and has been shown to be an important modulator of retinal light-adaptation. However, there are likely other factors involved in mediating inhibitory changes to OFF bipolar cells. Through these studies, we show that light adaptation heavily influences inner retina inhibition and likely plays a prominent role in determining and shaping light signals under different ambient light conditions which may ultimately be one mechanism for increasing visual sensitivity and acuity.
|
2 |
The role of Hh signaling in mouse retinal bipolar cell subtype developmentWu, Di 08 August 2017 (has links)
In the vertebrate retina, bipolar interneurons consist of at least 13 distinct subtypes, which are classified based on their morphology, behavior and gene expression. The mechanisms underlying the formation of these subtypes is poorly understood. Our previous unpublished work has implicated Sonic Hedgehog (Shh) in the formation of cone and rod bipolar cell subtypes. In this thesis, I characterized the relationship between Hh signaling and bipolar subtype cell development in greater detail. Using an in vivo plasmid-based reporter approach, I show that Hh signaling is active in both retinal progenitor cells (RPCs) and bipolar cells of the postnatal retina. Next, to address function, I used a conditional gene targeting approach to show that activation of Smoothened (Smo), a downstream Hh signaling component, is both necessary and sufficient in postnatal RPCs to promote the formation of cone but not rod bipolar cells. In contrast, activation of Smo in postmitotic bipolar cells that are greater than 24 hours old from cell birth, does not affect bipolar subtype formation. Together, these results suggest that Hh signaling functions in postnatal RPCs (and potentially in early bipolar cell precursors) to promote cone bipolar cell formation. / Graduate / 2018-06-12
|
3 |
O efeito das condutâncias dependentes de voltagem e de glutamato nas respostas à luz da célula bipolar ligada a bastonetes: um estudo computacional / Not informed by the authorLeopoldo, Kaê 09 February 2017 (has links)
O sistema visual lida com mudanças significativas na quantidade absoluta de fótons no meio ambiente, que varia 10 a 12 unidades logarítmicas ao longo de um dia. Parte desta versatilidade decorre da existência de fotorreceptores, bastonetes e cones, ativos em luminosidades médias diferentes, e outra parte é consequência de mecanismos de controle de ganho pós-receptorais, que ajustam a faixa dinâmica da retina à luminosidade média. Já na primeira sinapse visual, a atividade de muitos fotorreceptores converge para as células bipolares (BCs), neurônios de segunda ordem. Em mamíferos, supõe-se que o número de neurônios convergentes mantém-se relativamente fixo durante a vida adulta do organismo, embora a árvore dendrítica das BCs aumente de tamanho. No caso de peixes teleósteos, o grau de convergência neuronal para as BCs aumenta com a idade em função de neurogênese e sinaptogênese constantes. Como a relação entre a estrutura celular e o grau de convergência sináptica influencia a integração somática de sinais, estudamos os efeitos do crescimento celular acompanhado de variações na convergência sináptica no caso específico da BC ligada a bastonetes. Para tanto, desenvolvemos um modelo computacional deste tipo celular e dos bastonetes a ela conectados utilizando o ambiente de simulação NEURON, com base em dados de literatura e obtidos por nosso grupo de pesquisa a respeito de sua geometria, conectividade e biofísica, e simulamos diversos tipos de estimulação. Para mimetizar níveis escotópicos de luminosidade, estimulamos apenas um dos bastonetes convergindo para a BC modelo; para mimetizar níveis mesópicos, todos os bastonetes foram estimulados concomitantemente. Estas simulações foram realizadas primeiramente com um modelo de BC contendo apenas condutâncias sinápticas e passivas, para investigar o impacto da geometria celular na integração de sinais. A seguir, o modelo passou a incorporar condutâncias dependentes de voltagem permeáveis a potássio (K+) modeladas a partir de dados da literatura e do nosso grupo de pesquisa, para investigar o papel das mesmas no controle de ganho da sinapse entre BCs e bastonetes durante o crescimento celular. Os resultados destas simulações indicam que o aumento da árvore dendrítica da BC com o crescimento hiperpolariza seu potencial de repouso e aumenta as amplitudes de resposta, devido ao aumento da área de superfície de membrana contendo canais passivos com potencial de reversão negativo. Já o aumento da convergência de bastonetes para a BC despolariza seu potencial de repouso e diminui as amplitudes resposta, o que equivaleria a uma diminuição da sensibilidade 3 em células reais. Mais ainda, o aumento no grau de convergência contribui para a diminuição das latências de resposta da BC, ao passo que o crescimento celular aumenta as latências linearmente. A inserção de canais dependentes de voltagem nos terminais dendríticos da BC aproxima as amplitudes e diminui as latências de resposta de BCs com diferentes graus de convergência. Além disso, tais canais reduzem os efeitos decorrentes do crescimento celular descritos anteriormente, tornando a amplitude e latência de resposta independentes do tamanho da árvore dendrítica. Desse modo, canais de K+ dependentes de voltagem dendríticos estabilizam as amplitudes e latências de resposta da BC ao longo do crescimento, contribuindo para a coerência da mensagem passada para as outras camadas da retina e, posteriormente, para o cérebro. Estes resultados sugerem que correntes ativas são fundamentais não apenas para controlar o ganho das sinapses entre bastonetes e BCs em um mesmo estado de adaptação, mas também para estabilizar o potencial de repouso e velocidade e amplitudes de resposta dos neurônios ao longo do crescimento / The visual system deals with significant changes in the absolute quantity of photons in the environment, which vary 10 to 12 log units throughout a single day. Part of this versatility is due to the existence of different photoreceptors, rods and cones, which function at different mean light intensities, and due to post-receptor gain control mechanisms, which adjust the dynamic range of the retina to the mean luminosity. At the first visual synapse, the activity of many photoreceptors converges onto bipolar cells (BCs), second order neurons of the retina. In mammals, the degree of convergence is supposed to be constant throughout adult life, despite evidence of morphological changes in the dendritic structure of BCs. In teleost fish, however, the convergence of rods to BCs increases with age due to constant retinal neurogenesis and synaptogenesis. Since cellular structure and synaptic convergence influence somatic signal integration, we investigated the effects of cellular growth and synaptic convergence in the responses of the rod bipolar cell. We developed a computational model of a BC-rod circuitry within the NEURON simulation environment, based on literature data and on data collected by our own research group regarding the geometry, connectivity and biophysics of BCs. To simulate scotopic light levels, only one of the rods converging to the model BC was stimulated. Mesopic light levels were simulated by concomitantly stimulating all rods. We initially investigated the impact of cell geometry in somatic signal integration, by studying a model BC containing only passive and synaptic conductances. We subsequently inserted a voltage-gated potassium (K+) conductance in the dendritic tips of the model in order to investigate its role in controlling the gain of the rod-BC synapse during growth. Our results indicate that increasing the dendritic tree leads to hyperpolarization of the BC resting potential, due to the larger membrane surface containing the passive conductance, which has a negative reversal potential. Increasing rod convergence, on the other hand, depolarizes the BC resting potential and decreases response amplitudes, which would be equivalent to a decrease in sensitivity in a real cell. In addition, increases in convergence reduce response latencies, whereas cellular growth increases latencies linearly. The insertion of voltage-gated K+ conductances in the dendritic tips of the BC, in turn, aproximates the response amplitudes and decreases response latencies of BCs with different synaptic convergences. Moreover, voltage-gated conductances reduce the consequences of cellular growth, rendering response amplitudes and latencies independent of dendritic 5 tree size. These active conductances therefore contribute to signal consistency. Our results suggest that active currents not only control the gain of the rod-BC synapse in a given adaptive state, but also stabilize the BC resting potential, as well as response amplitude and latency during growth
|
4 |
Models of Visual Processing by the RetinaReal, Esteban January 2012 (has links)
The retina contains neural circuits that carry out computations as complex as object motion sensing, pattern recognition, and position anticipation. Models of some of these circuits have been recently discovered. A remarkable outcome of these efforts is that all such models can be constructed out of a limited set of components such as linear filters, instantaneous nonlinearities, and feedback loops. The present study explores the consequences of assuming that these components can be used to construct models for all retinal circuits. I recorded extracellularly from several retinal ganglion cells while stimulating the photoreceptors with a movie rich in temporal and spatial frequencies. Then I wrote a computer program to fit their responses by searching through large spaces of anatomically reasonable models built from a small set of circuit components. The program considers the input and output of the retinal circuit and learns its behavior without over-fitting, as verified by running the final model against previously unseen data. In other words, the program learns how to imitate the behavior of a live neural circuit and predicts its responses to new stimuli. This technique resulted in new models of retinal circuits that outperform all existing ones when run on complex spatially structured stimuli. The fitted models demonstrate, for example, that for most cells the center--surround structure is achieved in two stages, and that for some cells feedback is more accurately described by two feedback loops rather than one. Moreover, the models are able to make predictions about the behavior of cells buried deep within the retina, and such predictions were verified by independent sharp-electrode recordings. I will present these results, together with a brief collection of ideas and methods for furthering these modeling efforts in the future. / Physics
|
5 |
Na+ channels enhance low contrast signalling in the superior-coding direction-selective circuitMcLaughlin, Amanda J. 16 April 2018 (has links)
Light entering the eye is transformed by the retina into electrical signals. Extensive processing takes place in the retina before these signals are transmitted to the brain. Beginning in the outer retina, light-evoked electrical signals are distributed into parallel pathways specialized for different visual tasks, such as the detection of dark vs. bright ambient light, the onset or offset of light, and the direction of stimulus motion. Pathway diversity is a consequence of cell type diversity, differential cell connectivity, synapse organization, receptor expression, or any combination thereof. Cell connectivity itself can be accomplished through excitatory or inhibitory chemical synapses, or electrical coupling via gap junctions. Gap junctions are further specialized based on the expression of different connexin subunit isoforms. In aggregate, this diversity gives rise to ganglion cells with highly specialized functions, including ON and/or OFF responses, contrast-tuning and direction-selectivity (DS).
The directionally-selective circuit, a circuit specialized for the encoding of stimulus motion, makes use of many of these circuit specializations. Bipolar cells, in response to glutamate release from cone photoreceptors, provide highly-sensitive glutamatergic input to amacrine cells and DS ganglion cells (DSGCs) in this circuit, while amacrine cells provide cholinergic and directionally-tuned GABAergic input to DSGCs. One population of DSGCs also transmit signals laterally to one another via gap junctions. Thus numerous specializations in bipolar cells, amacrine cells and ganglion cells endow DSGCs with their unique encoding abilities.
In Chapters 2 and 3 of this dissertation I focus on synchronized firing between gap junction-coupled DSGCs. sDSGCs exhibit fine-scale correlations, with action potentials in an sDSGC more likely within ~2ms of action potential firing in a coupled neighbour. I first characterize electrical coupling of DSGCs through the identification of the molecular composition of DSGC gap junctions (Chapter 2). Physiological and immunohistochemical methods allowed me to demonstrate an important role for connexin 36 subunits in DSGC electrical coupling. Next (Chapter 3) I investigate the sub-cellular mechanisms underlying neuronal correlations between electrically coupled DSGCs. Using paired recordings, I show that chemical input (from bipolar cells and amacrine cells), electrical input (from gap junctions), and Na+ channel activity in DSGC dendrites underlie the generation of correlated spiking activity. While a common feature of electrically coupled networks, the mechanisms underlying correlations were previously unclear.
In Chapter 4 I focus on the mechanisms within the DS circuit that endow these neurons with impressive sensitivity to stimulus contrast. Using physiological and pharmacological methods I first assess the relative contrast sensitivity of ganglion cells and starburst amacrine cells (SACs) in the DS circuit. The sensitivity of DSGC and SAC excitatory currents to antagonists of Na+ channels suggests an important role for these channels in amplifying low contrast responses and other weak inputs to the circuit. This role is later attributed to the differential expression of voltage-gated Na+ channels in specific bipolar cell populations.
In aggregate, this dissertation describes several novel circuit mechanisms within the well-studied DS circuit. I also provide specific roles for such specializations in visual coding. / Graduate
|
6 |
Brain-derived neurotrophic factor-induzierte neuroprotektive Osmoregulation der Müller-Gliazelle der Rattenretina / Brain-derived neurotrophic factor-induced neuroprotective osmoregulation of rat retinal glial (Müller) cellsBerk, Benjamin-Andreas 05 June 2015 (has links) (PDF)
Einleitung: Die Ausbildung eines Netzhautödems ist eine Hauptursache für die Verschlechterung des Sehvermögens bei ischämisch-hypoxischen und inflammatorischen Netzhauterkrankungen. Neben der erhöhten Permeabilität der Blut-Retina-Schranke trägt eine Wasserakkumulation in Netzhautzellen zur Ausbildung eines Netzhautödems bei. Müllerzellen regulieren die retinale Ionen- und Osmohomöostase, indem sie einen transzellulären Ionen- und Wassertransport vermitteln. Zudem kontrollieren Müllerzellen die Größe des Extrazellularraumes, indem sie bei neuronaler Aktivität eine Zellkörperschwellung – ausgelöst durch eine Verkleinerung der extrazellulären Osmolarität – verhindern. Unter pathologischen Bedingungen ist die Volumenregulation gestört, sodass Müllerzellen bei Hypoosmolarität anschwellen. Diese Müllerzellschwellung und eine Glutamat-induzierte Schwellung retinaler Neurone tragen zur Ausbildung eines zytotoxischen Netzhautödems bei. Neuroprotektive Faktoren wie BDNF (brain-derived neurotrophic factor) und bFGF (basic fibroblast growth factor) stimulieren das Überleben retinaler Neurone und verzögern so die retinale Degeneration.
Zielstellung: Es war zu zu ermitteln, ob BDNF die zytotoxische Schwellung von Müller- und Bipolarzellen der Rattennetzhaut verhindert.
Material und Methoden: Es wurden Netzhautschnitte und isolierte Müller- und Bipolarzellen von 55 adulten Long-Evans-Ratten (durchschnittlich 8-15 Zellen pro Versuchsreihe) verwendet. Eine osmotische Schwellung von Müller- und Bipolarzellen wurde durch eine Superfusion der Schnitte oder der Zellen mit einer 60%igen hypoosmolaren Lösung in Ab- oder Anwesenheit von Bariumchlorid induziert. Die maximale Querschnittsfläche von Müller- und Bipolarzellsomata wurde vor und nach einer vierminütigen Superfusion mit einem konfokalen Laserscanningmikroskop aufgezeichnet. Die nach der Superfusion ermittelte Querschnittsfläche wurde zu den anfänglich gemittelten Kontrollwerten in Beziehung gesetzt und prozentual als Mittelwert mit Standardfehler bestimmt. Mit Hilfe des Prism-Statistikprogramms (Graphpad) wurden die Ergebnisse mittels einem one-way ANOVA Test und einem nachfolgenden Bonferroni\'s multiple comparison Test sowie durch einen Mann-Whitney U Test statistisch analysiert.
Ergebnisse: Bei Anwesenheit von BDNF wurde die osmotische Schwellung von Müllerzellen konzentrationsabhängig sowohl in Netzhautschnitten als auch in isolierten Zellen inhibiert. Ebenso inhibierte BDNF konzentrationsabhängig die Schwellung von Bipolarzellen in Netzhautschnitten, jedoch nicht in isolierten Zellen. In Schnitten von postischämischen Netzhäuten bewirkte BDNF eine Schwellungsinhibition von Müllerzellen, nicht aber von Bipolarzellen. Mit pharmakologischen Blockern wurde die durch BDNF induzierte Signalkaskade untersucht. Die BDNF-Schwellungsinhibition von Müllerzellen wurde durch eine Aktivierung von TrkB bewirkt. Die TrkB-Aktivierung führte in Müllerzellen zu einer Transaktivierung von FGF-Rezeptoren sowie zu einer Aktivierung einer glutamatergen-purinergen Signalkaskade, von der bekannt ist, dass sie die osmotische Müllerzellschwellung unterdrückt. Da bFGF die osmotische Müllerzellschwellung inhibiert, wird die Transaktivierung der FGF-Rezeptoren wahrscheinlich durch eine BDNF-induzierte Freisetzung von bFGF aus Müllerzellen vermittelt. Die Ergebnisse lassen vermuten, dass BDNF indirekt auf Bipolarzellen wirkt, indem es eine Freisetzung von Faktoren wie bFGF aus Müllerzellen induziert.
Schlussfolgerungen: Die Schwellungsinhibition von Müller- und Bipolarzellen könnte ein neuroprotektiver Mechanismus von BDNF in der Netzhaut darstellen. Während BDNF direkt TrkB auf Müllerzellen aktiviert, ist die Inhibition der Bipolarzellschwellung indirekt und durch die Ausschüttung von glialen Faktoren wie bFGF vermittelt. Der Verlust des Effektes von BDNF auf die Bipolarzellschwellung in ischämischen Netzhäuten könnte darauf zurückzuführen sein, dass gliotische Müllerzellen keine glialen Faktoren mehr in Reaktion auf BDNF freisetzen. Der Verlust des glialen Einflusses auf die Bipolarzellvolumenhomöostase könnte zur Neurodegeneration in der ischämischen Netzhaut beitragen. / Introduction: Tissue edema is a major blinding complication of ischemic-hypoxic and inflammatory retinal diseases. In addition to the hyperpemeability of the blood-retinal barrier, water accumulation in retinal cells resulting in cellular swelling may contribute to the development of retinal edema. Müller glial cells regulate the retinal ion and water homeostasis by allowing transcellular ion and water fluxes. During neuronal activity Müller cells control the extracellular space volume by autocrine inhibition of cellular swelling caused by the reduction of extracellular osmolarity. However, under pathological conditions, Müller cells are not capable to regulate their volume so that they swell rapidly under hypoosmolarity. The osmotic swelling of Müller glial cells and the glutamate induced swelling of retinal neurons contribute to the development of cytotoxic retinal edema. Various neuroprotective factors including brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF) stimulate the survival of retinal neurons and thus delay the retinal degeneration.
Objective: The objective of the study is to determine whether BDNF inhibits the osmotic swelling of Müller and bipolar cells of the rat retina.
Material and Methods: Retinal slices and freshly isolated Müller and bipolar cells of 55 adult Long-Evans rats (in average 8-15 cells per trial) were used. Osmotic swelling of Müller and bipolar cells was induced by superfusion of retinal slices or isolated cells with a 60% hypoosmotic extracellular solution in the absence or presence of barium chloride. The maximal cross-sectional area of Müller and bipolar cell somata was recorded before and after a four minute-long superfusion by using a laser scanning microscope. To determine the extent of cell soma swelling, the cross-sectional area of the cell body extent after superfusion was related to the former averaged cross-sectional area. Results were given as means with standard error as percent values. Statistical analysis was made with Prism (Graphpad) and the significance was determined by the One-way ANOVA test followed by Bonferroni\'s multiple comparison test and the Mann-Whitney U test, respectively.
Results: We found that BDNF inhibits dose-depending the osmotic swelling of Müller cells in retinal slices and of isolated cells. BDNF also inhibited dose-depending the osmotic swelling of bipolar cells in retinal slices; however, it did not inhibit the osmotic swelling in isolated bipolar cells. In slices of postischemic retinas, BDNF inhibited the swelling of Müller cells but not the swelling of bipolar cells. The BDNF induced signal transduction cascade was examined by simultaneous administration of blocking agents with the receptor agonists in the hypoosmotic solution. The BDNF-induced inhibition of the osmotic Müller cell swelling was mediated by activation of TrkB. Activation of TrkB in Müller cells results in transactivation of FGF receptors and in an activation of a glutamatergic-purinergic signal transduction cascade which is known to inhibit the osmotic swelling of the cells. Since bFGF also inhibits the osmotic swelling of Müller cells, it can be assumed that the transactivation of FGF receptors is mediated by a BDNF-induced release of bFGF from Müller cells. The results suggest that the effect of BDNF on bipolar cells is indirect by inducing a subsequent release of glial factor from Müller cells such as bFGF.
Conclusion: The results show that BDNF inhibits the osmotic swelling of Müller and bipolar cells. The inhibition of cytotoxic cell swelling may contribute to the neuroprotective action of BDNF in the retina. While BDNF acts directly in Müller cells, the BDNF-induced inhibition of the bipolar cell swelling is indirect and mediated by the release of glial factors such as bFGF from Müller cells. The abrogation of the BDNF-induced inhibition of the osmotic bipolar cell swelling in the postischemic retina could be explained with the impairment of the release of glial factors by Müller cells. The abrogation of the Müller cell-mediated regulation of the bipolar cell volume could contribute to the neuronal degeneration in the ischemic retina.
|
7 |
Transfer of small molecules across membrane-mimetic interfacesVelicky, Matej January 2011 (has links)
The presented thesis investigates the transfer of drug molecules across interfaces that mimic biological membrane barriers. The permeability of drug molecules across biological membrane mimics has been investigated in a novel artificial membrane permeation assay configuration using an in situ time-dependent approach and reproducible rotation of the membrane. A method to determine the membrane permeability from the knowledge of measured permeability and the applied stirring rate is presented. The initial transient of the permeation response, previously not observed in situ, is investigated and its importance in data evaluation is discussed. The permeability coefficients of 31 drugs are optimised for the conditions found in vivo and a correlation with the fraction absorbed in humans is presented. The evidence for ionic and/or ion-pair flux across the artificial membrane obtained from measurement of permeability at different pH is supported by the investigation of the permeation assay with external membrane polarisation. The permeability coefficient of the solute's anionic form is determined. Liquid/liquid electrochemistry has been used to study the transfer of ionized species across the interface between water and 1,2-dichloroethane. An alternative method to study the transfer of partially ionised drug molecules employing a rotating liquid/liquid interface is presented. In addition, a bipolar electrochemical cell with a rotating-disc electrode is developed and its properties investigated in order to verify the hydrodynamics of the rotating artificial membrane configuration. Finally, in support of the electrochemical techniques used is this thesis, a detailed preparation and evaluation of the silver/silver sulphate reference electrode is presented.
|
8 |
Brain-derived neurotrophic factor-induzierte neuroprotektive Osmoregulation der Müller-Gliazelle der RattenretinaBerk, Benjamin-Andreas 05 June 2015 (has links)
Einleitung: Die Ausbildung eines Netzhautödems ist eine Hauptursache für die Verschlechterung des Sehvermögens bei ischämisch-hypoxischen und inflammatorischen Netzhauterkrankungen. Neben der erhöhten Permeabilität der Blut-Retina-Schranke trägt eine Wasserakkumulation in Netzhautzellen zur Ausbildung eines Netzhautödems bei. Müllerzellen regulieren die retinale Ionen- und Osmohomöostase, indem sie einen transzellulären Ionen- und Wassertransport vermitteln. Zudem kontrollieren Müllerzellen die Größe des Extrazellularraumes, indem sie bei neuronaler Aktivität eine Zellkörperschwellung – ausgelöst durch eine Verkleinerung der extrazellulären Osmolarität – verhindern. Unter pathologischen Bedingungen ist die Volumenregulation gestört, sodass Müllerzellen bei Hypoosmolarität anschwellen. Diese Müllerzellschwellung und eine Glutamat-induzierte Schwellung retinaler Neurone tragen zur Ausbildung eines zytotoxischen Netzhautödems bei. Neuroprotektive Faktoren wie BDNF (brain-derived neurotrophic factor) und bFGF (basic fibroblast growth factor) stimulieren das Überleben retinaler Neurone und verzögern so die retinale Degeneration.
Zielstellung: Es war zu zu ermitteln, ob BDNF die zytotoxische Schwellung von Müller- und Bipolarzellen der Rattennetzhaut verhindert.
Material und Methoden: Es wurden Netzhautschnitte und isolierte Müller- und Bipolarzellen von 55 adulten Long-Evans-Ratten (durchschnittlich 8-15 Zellen pro Versuchsreihe) verwendet. Eine osmotische Schwellung von Müller- und Bipolarzellen wurde durch eine Superfusion der Schnitte oder der Zellen mit einer 60%igen hypoosmolaren Lösung in Ab- oder Anwesenheit von Bariumchlorid induziert. Die maximale Querschnittsfläche von Müller- und Bipolarzellsomata wurde vor und nach einer vierminütigen Superfusion mit einem konfokalen Laserscanningmikroskop aufgezeichnet. Die nach der Superfusion ermittelte Querschnittsfläche wurde zu den anfänglich gemittelten Kontrollwerten in Beziehung gesetzt und prozentual als Mittelwert mit Standardfehler bestimmt. Mit Hilfe des Prism-Statistikprogramms (Graphpad) wurden die Ergebnisse mittels einem one-way ANOVA Test und einem nachfolgenden Bonferroni\''s multiple comparison Test sowie durch einen Mann-Whitney U Test statistisch analysiert.
Ergebnisse: Bei Anwesenheit von BDNF wurde die osmotische Schwellung von Müllerzellen konzentrationsabhängig sowohl in Netzhautschnitten als auch in isolierten Zellen inhibiert. Ebenso inhibierte BDNF konzentrationsabhängig die Schwellung von Bipolarzellen in Netzhautschnitten, jedoch nicht in isolierten Zellen. In Schnitten von postischämischen Netzhäuten bewirkte BDNF eine Schwellungsinhibition von Müllerzellen, nicht aber von Bipolarzellen. Mit pharmakologischen Blockern wurde die durch BDNF induzierte Signalkaskade untersucht. Die BDNF-Schwellungsinhibition von Müllerzellen wurde durch eine Aktivierung von TrkB bewirkt. Die TrkB-Aktivierung führte in Müllerzellen zu einer Transaktivierung von FGF-Rezeptoren sowie zu einer Aktivierung einer glutamatergen-purinergen Signalkaskade, von der bekannt ist, dass sie die osmotische Müllerzellschwellung unterdrückt. Da bFGF die osmotische Müllerzellschwellung inhibiert, wird die Transaktivierung der FGF-Rezeptoren wahrscheinlich durch eine BDNF-induzierte Freisetzung von bFGF aus Müllerzellen vermittelt. Die Ergebnisse lassen vermuten, dass BDNF indirekt auf Bipolarzellen wirkt, indem es eine Freisetzung von Faktoren wie bFGF aus Müllerzellen induziert.
Schlussfolgerungen: Die Schwellungsinhibition von Müller- und Bipolarzellen könnte ein neuroprotektiver Mechanismus von BDNF in der Netzhaut darstellen. Während BDNF direkt TrkB auf Müllerzellen aktiviert, ist die Inhibition der Bipolarzellschwellung indirekt und durch die Ausschüttung von glialen Faktoren wie bFGF vermittelt. Der Verlust des Effektes von BDNF auf die Bipolarzellschwellung in ischämischen Netzhäuten könnte darauf zurückzuführen sein, dass gliotische Müllerzellen keine glialen Faktoren mehr in Reaktion auf BDNF freisetzen. Der Verlust des glialen Einflusses auf die Bipolarzellvolumenhomöostase könnte zur Neurodegeneration in der ischämischen Netzhaut beitragen.:Inhaltsverzeichnis
ABKÜRZUNGSVERZEICHNIS IX
ABBILDUNGSVERZEICHNIS XI
TABELLENVERZEICHNIS XIV
1 EINLEITUNG 1
2 LITERATURÜBERSICHT 3
2.1 Sehorgan - Das Auge 3
2.2 Retina beim Mensch und Tier – Aufbau und Funktionalitäten 4
2.2.1 Bildprozessor der Tierwelt – Die Retina 10
2.2.2 Die Sehbahn – Visuelle Verarbeitung 10
2.2.3 Die Müllerzelle – Vorkommen und Funktion 13
2.2.4 Tierartlicher Vergleich der Müllerzelle 14
2.2.5 Netzhaut als Modellgewebe 16
2.3 Ödembildung: Netzhautödem – Hirnödem 17
2.3.1 Allgemein: Die Pathogenese des Ödems 17
2.3.2 Das Gehirnödem – Ursachen und Folge 17
2.3.3 Das Netzhautödem – Ursachen und Folge 18
2.3.4 Volumen- und Osmohomöostase der Retina 19
2.3.5 Osmotische Schwellung und Osmoregulation der Müllerzelle 19
2.4 Neuroprotektion durch Neurotrophine und Wachstumsfaktoren 21
2.4.1 Brain-derived neurotrophic factor (BDNF) 21
2.4.2 Basic Fibroblastic Growth Factor (bFGF) 22
2.4.3 Neuroprotektive Effekte von BDNF und bFGF in der Retina 23
2.5 Zielstellung 24
2.6 Veterinärmedizinische Relevanz 25
2.6.1 Augenerkrankungen in der Klein- und Großtiermedizin 25
2.6.2 Schlussfolgerung für die Tiermedizin 31
3 TIERE, MATERIAL UND METHODEN 32
3.1 Versuchstiere 32
3.2 Material 32
3.2.1 Chemikalien und Reagenzien 32
3.2.2 Lösungen 33
3.2.3 Testsubstanzen 33
3.2.4 Pharmakologische Blocker 33
3.2.5 Antikörper 35
3.3 Verwendete Materialien und Geräte 36
3.4 Versuchsaufbau und Durchführung von Schwellungsversuchen 37
3.4.1 Gewebspräparation: Retina 37
3.4.2 Zellschwellungsversuche 39
3.4.3 Aufnahmetechnik 40
3.4.4 Superfusion von Retinaschnitten 40
3.4.5 Superfusion von isolierten retinalen Zellen 41
3.4.6 Das Physiologie-Modell: Isoosmolarität – Hypoosmolarität 42
3.4.7 Das Pathologie-Modell mit Barium 42
3.4.8 Tiermodell der retinalen Ischämie – Reperfusion 43
3.5 Auswertungsverfahren 43
3.5.1 Morphometrie der Somata 44
3.5.2 Statistische Analyse 44
3.6 Immunozytochemische Färbungen 45
4 ERGEBNISSE 46
4.1 Zellidentifikation in Retinaschnitten 46
4.1.1 Färbemethodik – MitoTracker Orange 47
4.1.2 Morphologie der Müllerzelle 47
4.1.3 Morphologie der Bipolarzelle 48
4.1.4 Identifikation von Müller- und Bipolarzellen 48
4.1.5 Morphologie isolierter Müller – und Bipolarzellen 49
4.2 Kontrollversuche 50
4.3 Untersuchung des Schwellungsverhaltens mit Testsubstanzen 51
4.4 Untersuchung des Schwellungsverhalten unter BDNF 52
4.4.1 Morphologie der Müllerzellen in Retinaschnitte unter BDNF 52
4.4.2 Wirkung von BDNF auf Müllerzellen in Retinaschnitten 53
4.4.3 Wirkung von BDNF auf die Schwellung von isolierten Müllerzellen 57
4.4.4 Wirkung von BDNF auf die osmotische Schwellung von Bipolarzellen in Retinaschnitten 58
4.4.5 Konzentrationsabhängigkeit der Wirkung von BDNF auf die osmotische Schwellung von Bipolarzellen in Retinaschnitten 59
4.4.6 Wirkung von BDNF auf die Schwellung von isolierten Bipolarzellen 61
4.4.7 Wirkung von BDNF auf die osmotische Müller- und Bipolarzellschwellung in der postischämischen Retina 62
4.5 Untersuchung der osmotischen Schwellung von retinalen Zellen unter bFGF 63
4.5.1 Wirkung von bFGF auf Müllerzellen in Retinaschnitten 63
4.5.2 bFGF-induzierte Transaktivierung metabotroper Glutamatrezeptoren in Müllerzellen 65
4.5.3 Wirkung von bFGF auf die Schwellung von Bipolarzellen in Retinaschnitten 65
4.6 Immunozytochemischer Nachweis von BDNF und TrkB in Müller- und Bipolarzellen 66
4.6.1 Kontrollaufnahmen 66
4.6.2 Immunzytochemischer Nachweis von BDNF und TrkB in isolierten Müllerzellen 67
4.6.3 Immunzytochemischer Nachweis von BDNF und TrkB in isolierten Bipolarzellen 69
5 DISKUSSION 71
5.1 Osmotische Volumenregulation bei Müller- und Bipolarzellen 71
5.2 Immunozytochemische Lokalisation von BDNF und TrkB 73
5.3 Inhibition der osmotischen Schwellung von Müller- und Bipolarzellen durch BDNF 75
5.4 TrkB-Aktivierung in Müllerzellen durch BDNF 77
5.5 Abhängigkeit des BDNF-Effekts von einer Transaktivierung von FGF-Rezeptoren 78
5.6 Indirekte Wirkung von BDNF auf die Bipolarzellschwellung durch gliale Faktoren 79
5.7 Abhängigkeit der BDNF-Wirkung von der Transaktivierung weiterer Rezeptoren 80
5.8 BDNF-induzierte Aktivierung von Ionenkanälen in Müllerzellen 81
5.9 BDNF-induzierte Signalkaskade der Inhibition der retinalen Zellschwellung 82
5.10 Neuroprotektive Wirkung von BDNF 84
6 ZUSAMMENFASSUNG 86
7 SUMMARY 88
8 BILDQUELLENVERZEICHNIS 90
9 LITERATURVERZEICHNIS 91
DANKSAGUNG 109 / Introduction: Tissue edema is a major blinding complication of ischemic-hypoxic and inflammatory retinal diseases. In addition to the hyperpemeability of the blood-retinal barrier, water accumulation in retinal cells resulting in cellular swelling may contribute to the development of retinal edema. Müller glial cells regulate the retinal ion and water homeostasis by allowing transcellular ion and water fluxes. During neuronal activity Müller cells control the extracellular space volume by autocrine inhibition of cellular swelling caused by the reduction of extracellular osmolarity. However, under pathological conditions, Müller cells are not capable to regulate their volume so that they swell rapidly under hypoosmolarity. The osmotic swelling of Müller glial cells and the glutamate induced swelling of retinal neurons contribute to the development of cytotoxic retinal edema. Various neuroprotective factors including brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF) stimulate the survival of retinal neurons and thus delay the retinal degeneration.
Objective: The objective of the study is to determine whether BDNF inhibits the osmotic swelling of Müller and bipolar cells of the rat retina.
Material and Methods: Retinal slices and freshly isolated Müller and bipolar cells of 55 adult Long-Evans rats (in average 8-15 cells per trial) were used. Osmotic swelling of Müller and bipolar cells was induced by superfusion of retinal slices or isolated cells with a 60% hypoosmotic extracellular solution in the absence or presence of barium chloride. The maximal cross-sectional area of Müller and bipolar cell somata was recorded before and after a four minute-long superfusion by using a laser scanning microscope. To determine the extent of cell soma swelling, the cross-sectional area of the cell body extent after superfusion was related to the former averaged cross-sectional area. Results were given as means with standard error as percent values. Statistical analysis was made with Prism (Graphpad) and the significance was determined by the One-way ANOVA test followed by Bonferroni\''s multiple comparison test and the Mann-Whitney U test, respectively.
Results: We found that BDNF inhibits dose-depending the osmotic swelling of Müller cells in retinal slices and of isolated cells. BDNF also inhibited dose-depending the osmotic swelling of bipolar cells in retinal slices; however, it did not inhibit the osmotic swelling in isolated bipolar cells. In slices of postischemic retinas, BDNF inhibited the swelling of Müller cells but not the swelling of bipolar cells. The BDNF induced signal transduction cascade was examined by simultaneous administration of blocking agents with the receptor agonists in the hypoosmotic solution. The BDNF-induced inhibition of the osmotic Müller cell swelling was mediated by activation of TrkB. Activation of TrkB in Müller cells results in transactivation of FGF receptors and in an activation of a glutamatergic-purinergic signal transduction cascade which is known to inhibit the osmotic swelling of the cells. Since bFGF also inhibits the osmotic swelling of Müller cells, it can be assumed that the transactivation of FGF receptors is mediated by a BDNF-induced release of bFGF from Müller cells. The results suggest that the effect of BDNF on bipolar cells is indirect by inducing a subsequent release of glial factor from Müller cells such as bFGF.
Conclusion: The results show that BDNF inhibits the osmotic swelling of Müller and bipolar cells. The inhibition of cytotoxic cell swelling may contribute to the neuroprotective action of BDNF in the retina. While BDNF acts directly in Müller cells, the BDNF-induced inhibition of the bipolar cell swelling is indirect and mediated by the release of glial factors such as bFGF from Müller cells. The abrogation of the BDNF-induced inhibition of the osmotic bipolar cell swelling in the postischemic retina could be explained with the impairment of the release of glial factors by Müller cells. The abrogation of the Müller cell-mediated regulation of the bipolar cell volume could contribute to the neuronal degeneration in the ischemic retina.:Inhaltsverzeichnis
ABKÜRZUNGSVERZEICHNIS IX
ABBILDUNGSVERZEICHNIS XI
TABELLENVERZEICHNIS XIV
1 EINLEITUNG 1
2 LITERATURÜBERSICHT 3
2.1 Sehorgan - Das Auge 3
2.2 Retina beim Mensch und Tier – Aufbau und Funktionalitäten 4
2.2.1 Bildprozessor der Tierwelt – Die Retina 10
2.2.2 Die Sehbahn – Visuelle Verarbeitung 10
2.2.3 Die Müllerzelle – Vorkommen und Funktion 13
2.2.4 Tierartlicher Vergleich der Müllerzelle 14
2.2.5 Netzhaut als Modellgewebe 16
2.3 Ödembildung: Netzhautödem – Hirnödem 17
2.3.1 Allgemein: Die Pathogenese des Ödems 17
2.3.2 Das Gehirnödem – Ursachen und Folge 17
2.3.3 Das Netzhautödem – Ursachen und Folge 18
2.3.4 Volumen- und Osmohomöostase der Retina 19
2.3.5 Osmotische Schwellung und Osmoregulation der Müllerzelle 19
2.4 Neuroprotektion durch Neurotrophine und Wachstumsfaktoren 21
2.4.1 Brain-derived neurotrophic factor (BDNF) 21
2.4.2 Basic Fibroblastic Growth Factor (bFGF) 22
2.4.3 Neuroprotektive Effekte von BDNF und bFGF in der Retina 23
2.5 Zielstellung 24
2.6 Veterinärmedizinische Relevanz 25
2.6.1 Augenerkrankungen in der Klein- und Großtiermedizin 25
2.6.2 Schlussfolgerung für die Tiermedizin 31
3 TIERE, MATERIAL UND METHODEN 32
3.1 Versuchstiere 32
3.2 Material 32
3.2.1 Chemikalien und Reagenzien 32
3.2.2 Lösungen 33
3.2.3 Testsubstanzen 33
3.2.4 Pharmakologische Blocker 33
3.2.5 Antikörper 35
3.3 Verwendete Materialien und Geräte 36
3.4 Versuchsaufbau und Durchführung von Schwellungsversuchen 37
3.4.1 Gewebspräparation: Retina 37
3.4.2 Zellschwellungsversuche 39
3.4.3 Aufnahmetechnik 40
3.4.4 Superfusion von Retinaschnitten 40
3.4.5 Superfusion von isolierten retinalen Zellen 41
3.4.6 Das Physiologie-Modell: Isoosmolarität – Hypoosmolarität 42
3.4.7 Das Pathologie-Modell mit Barium 42
3.4.8 Tiermodell der retinalen Ischämie – Reperfusion 43
3.5 Auswertungsverfahren 43
3.5.1 Morphometrie der Somata 44
3.5.2 Statistische Analyse 44
3.6 Immunozytochemische Färbungen 45
4 ERGEBNISSE 46
4.1 Zellidentifikation in Retinaschnitten 46
4.1.1 Färbemethodik – MitoTracker Orange 47
4.1.2 Morphologie der Müllerzelle 47
4.1.3 Morphologie der Bipolarzelle 48
4.1.4 Identifikation von Müller- und Bipolarzellen 48
4.1.5 Morphologie isolierter Müller – und Bipolarzellen 49
4.2 Kontrollversuche 50
4.3 Untersuchung des Schwellungsverhaltens mit Testsubstanzen 51
4.4 Untersuchung des Schwellungsverhalten unter BDNF 52
4.4.1 Morphologie der Müllerzellen in Retinaschnitte unter BDNF 52
4.4.2 Wirkung von BDNF auf Müllerzellen in Retinaschnitten 53
4.4.3 Wirkung von BDNF auf die Schwellung von isolierten Müllerzellen 57
4.4.4 Wirkung von BDNF auf die osmotische Schwellung von Bipolarzellen in Retinaschnitten 58
4.4.5 Konzentrationsabhängigkeit der Wirkung von BDNF auf die osmotische Schwellung von Bipolarzellen in Retinaschnitten 59
4.4.6 Wirkung von BDNF auf die Schwellung von isolierten Bipolarzellen 61
4.4.7 Wirkung von BDNF auf die osmotische Müller- und Bipolarzellschwellung in der postischämischen Retina 62
4.5 Untersuchung der osmotischen Schwellung von retinalen Zellen unter bFGF 63
4.5.1 Wirkung von bFGF auf Müllerzellen in Retinaschnitten 63
4.5.2 bFGF-induzierte Transaktivierung metabotroper Glutamatrezeptoren in Müllerzellen 65
4.5.3 Wirkung von bFGF auf die Schwellung von Bipolarzellen in Retinaschnitten 65
4.6 Immunozytochemischer Nachweis von BDNF und TrkB in Müller- und Bipolarzellen 66
4.6.1 Kontrollaufnahmen 66
4.6.2 Immunzytochemischer Nachweis von BDNF und TrkB in isolierten Müllerzellen 67
4.6.3 Immunzytochemischer Nachweis von BDNF und TrkB in isolierten Bipolarzellen 69
5 DISKUSSION 71
5.1 Osmotische Volumenregulation bei Müller- und Bipolarzellen 71
5.2 Immunozytochemische Lokalisation von BDNF und TrkB 73
5.3 Inhibition der osmotischen Schwellung von Müller- und Bipolarzellen durch BDNF 75
5.4 TrkB-Aktivierung in Müllerzellen durch BDNF 77
5.5 Abhängigkeit des BDNF-Effekts von einer Transaktivierung von FGF-Rezeptoren 78
5.6 Indirekte Wirkung von BDNF auf die Bipolarzellschwellung durch gliale Faktoren 79
5.7 Abhängigkeit der BDNF-Wirkung von der Transaktivierung weiterer Rezeptoren 80
5.8 BDNF-induzierte Aktivierung von Ionenkanälen in Müllerzellen 81
5.9 BDNF-induzierte Signalkaskade der Inhibition der retinalen Zellschwellung 82
5.10 Neuroprotektive Wirkung von BDNF 84
6 ZUSAMMENFASSUNG 86
7 SUMMARY 88
8 BILDQUELLENVERZEICHNIS 90
9 LITERATURVERZEICHNIS 91
DANKSAGUNG 109
|
Page generated in 0.0647 seconds