Spelling suggestions: "subject:"birman"" "subject:"firman""
1 |
La grammaire du discours en birman parlé : les fonctions des particules enonciatives dans la grammaire du birman parle / Grammar of spoken Burmese discourseHnin Tun, San San 02 December 2013 (has links)
Les particules dites énonciatives sont d’ordinaire étudiées dans les langues à forte contrainte morpho-syntaxique, et il en résulte qu’elles paraissent sortir des cadres descriptifs qui ne mettent pas toujours en lumière les fonctions énonciatives. Nous les étudions en birman, une langue dont on dit, un peu vite, qu’elle a « peu de grammaire », et pour laquelle nous ne pouvons utiliser des théories qui conviennent pour les langues Indo-Européennes. Nous devons, en revanche, tenir compte des caractéristiques propres au birman, langue dans laquelle les particules énonciatives jouent un rôle considérable. Nous devons également préciser leur statut, tant au niveau grammatical que discursif. Notre but est d’examiner l’emploi d’une gamme choisie de ces particules, d’observer si leurs caractéristiques permettent de les ordonner du discursif au grammatical, et de faire apparaître les possibilités énonciatives de la langue birmane.Pour réaliser cette étude, nous utilisons un corpus assez vaste (de plus de 250 000 mot-syllabes), qui parcourt un champ de situations étendu (dialogues spontanés ou simulés et narrations) afin d’identifier plusieurs domaines importants pour une sociolinguistique du birman.Il s’agit donc d’une thèse qui traite de linguistique tibéto-birmane et du birman en particulier, surtout dans sa forme orale actuelle ; de linguistique de corpus ; et d’analyse énonciative. / Lexical items known as discourse particles (« particules énonciatives ») are mostly studied in languages with a strong morpho-syntactic constraint, and as a result they do not seem to fit the descriptive frameworks that do not always highlight their discourse functions. We investigate such functions in Burmese, a language that is sometimes laboured, a little too fast, as a language « with little grammar », for which it is not suitable to describe using the notions of the grammar of Indo-European languages. It is indispensable to take into account characteristics that are particular to Burmese, such as the significant role played by the discourse particles. It is important to identify their status in the language use, at syntactic as well as discourse levels. Our objective is to examine the use of a selected range of particles, in order to identify the relationship between grammar and discourse functions, and more precisely, to bring out their discourse functions in Burmese.This study, using a large corpus (over 250 000 word-syllables) of spoken discourse, consisting of different genres and by different speakers, tempts to identify sociolinguistic aspects of Burmese. This thesis is therefore a study of Tibeto-Burman linguistics, with a focus on Burmese in its spoken form, corpus linguistics, and discourse analysis.
|
2 |
Baskets, Staircases and Sutured Khovanov HomologyBanfield, Ian Matthew January 2017 (has links)
Thesis advisor: Julia E. Grigsby / We use the Birman-Ko-Lee presentation of the braid group to show that all closures of strongly quasipositive braids whose normal form contains a positive power of the dual Garside element δ are fibered. We classify links which admit such a braid representative in geometric terms as boundaries of plumbings of positive Hopf bands to a disk. Rudolph constructed fibered strongly quasipositive links as closures of positive words on certain generating sets of Bₙ and we prove that Rudolph’s condition is equivalent to ours. We compute the sutured Khovanov homology groups of positive braid closures in homological degrees i = 0,1 as sl₂(ℂ)-modules. Given a condition on the sutured Khovanov homology of strongly quasipositive braids, we show that the sutured Khovanov homology of the closure of strongly quasipositive braids whose normal form contains a positive power of the dual Garside element agrees with that of positive braid closures in homological degrees i ≤ 1 and show this holds for the class of such braids on three strands. / Thesis (PhD) — Boston College, 2017. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Mathematics.
|
3 |
On Spectral Inequalities in Quantum Mechanics and Conformal Field Theory / Spektralolikheter inom Kvantmekanik och Konform FältteoriMickelin, Oscar January 2015 (has links)
Following Exner et al. (Commun. Math. Phys. 26 (2014), no. 2, 531–541), we prove new Lieb-Thirring inequalities for a general class of self-adjoint, second order differential operators with matrix-valued potentials, acting in one space-dimension. This class contains, but is not restricted to, the magnetic and non-magnetic Schrödinger operators. We consider the three cases of functions defined on all reals, all positive reals, and an interval, respectively, and acquire three different kinds of bounds. We also investigate the spectral properties of a family of operators from conformal field theory, by proving an asymptotic phase-space bound on the eigenvalue counting function and establishing a number of spectral inequalities. These bound the Riesz-means of eigenvalues for these operators, together with each individual eigenvalue, and are applied to a few physically interesting examples. / Vi följer Exner et al. (Commun. Math. Phys. 26 (2014), nr. 2, 531–541) och bevisar nya Lieb-Thirring-olikheter för generella, andra gradens självadjungerade differentialoperatorer med matrisvärda potentialfunktioner, verkandes i en rumsdimension. Dessa innefattar och generaliserar de magnetiska och icke-magnetiska Schrödingeroperatorerna. Vi betraktar tre olika fall, med funktioner definierade på hela reella axeln, på den positiva reella axeln, samt på ett interval. Detta resulterar i tre sorters olikheter. Vidare undersöker vi spektralegenskaperna för en klass operatorer från konform fältteori, genom att asymptotiskt begränsa antalet egenvärden med ett fasrymdsuttryck, samt genom att bevisa ett antal spektralolikheter. Dessa begränsar Riesz-medelvärdena för operatorerna, samt varje enskilt egenvärde, och tillämpas på ett par fysikaliskt intressanta exempel.
|
4 |
The Cyclotomic Birman-Murakami-Wenzl AlgebrasYu, Shona Huimin January 2007 (has links)
Doctor of Philosophy / This thesis presents a study of the cyclotomic BMW algebras, introduced by Haring-Oldenburg as a generalization of the BMW (Birman-Murakami-Wenzl) algebras related to the cyclotomic Hecke algebras of type G(k,1,n) (also known as Ariki-Koike algebras) and type B knot theory involving affine/cylindrical tangles. The motivation behind the definition of the BMW algebras may be traced back to an important problem in knot theory; namely, that of classifying knots (and links) up to isotopy. The algebraic definition of the BMW algebras uses generators and relations originally inspired by the Kauffman link invariant. They are intimately connected with the Artin braid group of type A, Iwahori-Hecke algebras of type A, and with many diagram algebras, such as the Brauer and Temperley-Lieb algebras. Geometrically, the BMW algebra is isomorphic to the Kauffman Tangle algebra. The representations and the cellularity of the BMW algebra have now been extensively studied in the literature. These algebras also feature in the theory of quantum groups, statistical mechanics, and topological quantum field theory. In view of these relationships between the BMW algebras and several objects of "type A", several authors have since naturally generalized the BMW algberas for other types of Artin groups. Motivated by knot theory associated with the Artin braid group of type B, Haring-Oldenburg introduced the cyclotomic BMW algebras B_n^k as a generalization of the BMW algebras such that the Ariki-Koike algebra h_{n,k} is a quotient of B_n^k, in the same way the Iwahori-Hecke algebra of type A is a quotient of the BMW algebra. In this thesis, we investigate the structure of these algebras and show they have a topological realization as a certain cylindrical analogue of the Kauffman Tangle algebra. In particular, they are shown to be R-free of rank k^n (2n-1)!! and bases that may be explicitly described both algebraically and diagrammatically in terms of cylindrical tangles are obtained. Unlike the BMW and Ariki-Koike algebras, one must impose extra so-called "admissibility conditions" on the parameters of the ground ring in order for these results to hold. This is due to potential torsion caused by the polynomial relation of order k imposed on one of the generators of B_n^k. It turns out that the representation theory of B_2^k is crucial in determining these conditions precisely. The representation theory of B_2^k is analysed in detail in a joint preprint with Wilcox in [45] (http://arxiv.org/abs/math/0611518). The admissibility conditions and a universal ground ring with admissible parameters are given explicitly in Chapter 3. The admissibility conditions are also closely related to the existence of a non-degenerate Markov trace function of B_n^k which is then used together with the cyclotomic Brauer algebras in the linear independency arguments contained in Chapter 4. Furthermore, in Chapter 5, we prove the cyclotomic BMW algebras are cellular, in the sense of Graham and Lehrer. The proof uses the cellularity of the Ariki-Koike algebras (Graham-Lehrer [16] and Dipper-James-Mathas [8]) and an appropriate "lifting" of a cellular basis of the Ariki-Koike algebras into B_n^k, which is compatible with a certain anti-involution of B_n^k. When k = 1, the results in this thesis specialize to those previously established for the BMW algebras by Morton-Wasserman [30], Enyang [9], and Xi [47]. REMARKS: During the writing of this thesis, Goodman and Hauschild-Mosley also attempt similar arguments to establish the freeness and diagram algebra results mentioned above. However, they withdrew their preprints ([14] and [15]), due to issues with their generic ground ring crucial to their linear independence arguments. A similar strategy to that proposed in [14], together with different trace maps and the study of rings with admissible parameters in Chapter 3, is used in establishing linear independency of our basis in Chapter 4. Since the submission of this thesis, new versions of these preprints have been released in which Goodman and Hauschild-Mosley use alternative topological and Jones basic construction theory type arguments to establish freeness of B_n^k and an isomorphism with the cyclotomic Kauffman Tangle algebra. However, they require their ground rings to be an integral domain with parameters satisfying the (slightly stronger) admissibility conditions introduced by Wilcox and the author in [45]. Also, under these conditions, Goodman has obtained cellularity results. Rui and Xu have also obtained freeness and cellularity results when k is odd, and later Rui and Si for general k, under the assumption that \delta is invertible and using another stronger condition called "u-admissibility". The methods and arguments employed are strongly influenced by those used by Ariki, Mathas and Rui [3] for the cyclotomic Nazarov-Wenzl algebras and involve the construction of seminormal representations; their preprints have recently been released on the arXiv. It should also be noted there are slight differences between the definitions of cyclotomic BMW algebras and ground rings used, as explained partly above. Furthermore, Goodman and Rui-Si-Xu use a weaker definition of cellularity, to bypass a problem discovered in their original proofs relating to the anti-involution axiom of the original Graham-Lehrer definition. This Ph.D. thesis, completed at the University of Sydney, was submitted September 2007 and passed December 2007.
|
5 |
The Cyclotomic Birman-Murakami-Wenzl AlgebrasYu, Shona Huimin January 2007 (has links)
Doctor of Philosophy / This thesis presents a study of the cyclotomic BMW algebras, introduced by Haring-Oldenburg as a generalization of the BMW (Birman-Murakami-Wenzl) algebras related to the cyclotomic Hecke algebras of type G(k,1,n) (also known as Ariki-Koike algebras) and type B knot theory involving affine/cylindrical tangles. The motivation behind the definition of the BMW algebras may be traced back to an important problem in knot theory; namely, that of classifying knots (and links) up to isotopy. The algebraic definition of the BMW algebras uses generators and relations originally inspired by the Kauffman link invariant. They are intimately connected with the Artin braid group of type A, Iwahori-Hecke algebras of type A, and with many diagram algebras, such as the Brauer and Temperley-Lieb algebras. Geometrically, the BMW algebra is isomorphic to the Kauffman Tangle algebra. The representations and the cellularity of the BMW algebra have now been extensively studied in the literature. These algebras also feature in the theory of quantum groups, statistical mechanics, and topological quantum field theory. In view of these relationships between the BMW algebras and several objects of "type A", several authors have since naturally generalized the BMW algberas for other types of Artin groups. Motivated by knot theory associated with the Artin braid group of type B, Haring-Oldenburg introduced the cyclotomic BMW algebras B_n^k as a generalization of the BMW algebras such that the Ariki-Koike algebra h_{n,k} is a quotient of B_n^k, in the same way the Iwahori-Hecke algebra of type A is a quotient of the BMW algebra. In this thesis, we investigate the structure of these algebras and show they have a topological realization as a certain cylindrical analogue of the Kauffman Tangle algebra. In particular, they are shown to be R-free of rank k^n (2n-1)!! and bases that may be explicitly described both algebraically and diagrammatically in terms of cylindrical tangles are obtained. Unlike the BMW and Ariki-Koike algebras, one must impose extra so-called "admissibility conditions" on the parameters of the ground ring in order for these results to hold. This is due to potential torsion caused by the polynomial relation of order k imposed on one of the generators of B_n^k. It turns out that the representation theory of B_2^k is crucial in determining these conditions precisely. The representation theory of B_2^k is analysed in detail in a joint preprint with Wilcox in [45] (http://arxiv.org/abs/math/0611518). The admissibility conditions and a universal ground ring with admissible parameters are given explicitly in Chapter 3. The admissibility conditions are also closely related to the existence of a non-degenerate Markov trace function of B_n^k which is then used together with the cyclotomic Brauer algebras in the linear independency arguments contained in Chapter 4. Furthermore, in Chapter 5, we prove the cyclotomic BMW algebras are cellular, in the sense of Graham and Lehrer. The proof uses the cellularity of the Ariki-Koike algebras (Graham-Lehrer [16] and Dipper-James-Mathas [8]) and an appropriate "lifting" of a cellular basis of the Ariki-Koike algebras into B_n^k, which is compatible with a certain anti-involution of B_n^k. When k = 1, the results in this thesis specialize to those previously established for the BMW algebras by Morton-Wasserman [30], Enyang [9], and Xi [47]. REMARKS: During the writing of this thesis, Goodman and Hauschild-Mosley also attempt similar arguments to establish the freeness and diagram algebra results mentioned above. However, they withdrew their preprints ([14] and [15]), due to issues with their generic ground ring crucial to their linear independence arguments. A similar strategy to that proposed in [14], together with different trace maps and the study of rings with admissible parameters in Chapter 3, is used in establishing linear independency of our basis in Chapter 4. Since the submission of this thesis, new versions of these preprints have been released in which Goodman and Hauschild-Mosley use alternative topological and Jones basic construction theory type arguments to establish freeness of B_n^k and an isomorphism with the cyclotomic Kauffman Tangle algebra. However, they require their ground rings to be an integral domain with parameters satisfying the (slightly stronger) admissibility conditions introduced by Wilcox and the author in [45]. Also, under these conditions, Goodman has obtained cellularity results. Rui and Xu have also obtained freeness and cellularity results when k is odd, and later Rui and Si for general k, under the assumption that \delta is invertible and using another stronger condition called "u-admissibility". The methods and arguments employed are strongly influenced by those used by Ariki, Mathas and Rui [3] for the cyclotomic Nazarov-Wenzl algebras and involve the construction of seminormal representations; their preprints have recently been released on the arXiv. It should also be noted there are slight differences between the definitions of cyclotomic BMW algebras and ground rings used, as explained partly above. Furthermore, Goodman and Rui-Si-Xu use a weaker definition of cellularity, to bypass a problem discovered in their original proofs relating to the anti-involution axiom of the original Graham-Lehrer definition. This Ph.D. thesis, completed at the University of Sydney, was submitted September 2007 and passed December 2007.
|
6 |
Forme normale tournante des tressesFromentin, Jean 30 June 2009 (has links) (PDF)
Une tresse est une classe d'équivalence de mots de tresse. Diverses formes normales sur les tresses ont été décrites dans la littérature, c'est-à-dire, divers moyens de sélection, pour toute tresse, d'un mot de tresse distingué la représentant. Définie de façon naturelle sur les monoïdes de tresses de Birman-Ko-Lee (ou duaux), la forme normale tournante peut être étendue au groupe de tresses tout entier. Ici, nous donnons des contraintes de nature combinatoire satisfaites par cette nouvelle forme normale. Nous en obtenons ainsi une caractérisation et montrons que l'ensemble des formes normales tournantes des tresses duales constitue un langage régulier.<br /><br />Un résultat de P. Dehornoy (1992) affirme que toute tresse non triviale admet un représentant sigma-défini. Ce résultat est à la base de la construction de l'ordre des tresses. A l'aide de la forme normale tournante et de ses propriétés, nous montrons que toute tresse admet un représentant sigma-défini de longueur quasi-géodésique, ce qui résout une question ouverte depuis une quinzaine d'années. <br /><br />Un résultat de R. Laver montre que les monoïdes de Birman-Ko-Lee munis de l'ordre des tresses sont bien ordonnés mais laisse ouvert la détermination de leurs longueurs.<br />A l'aide de la forme normale tournante, nous obtenons une caractérisation de l'ordre des tresses sur le monoïde de Birman-ko-Lee à n brins à partir de sa restriction sur celui à (n-1) brins. Une conséquence de ce résultat est une nouvelle démonstration du résultat de R. Laver ainsi que la détermination de la longueur des monoïdes de tresses duaux munis de l'ordre des tresses.
|
7 |
La modalité et ses corrélats en birman, dans une perspective comparativeVittrant, Alice 10 December 2004 (has links) (PDF)
Ce travail sur La modalité et ses corrélats en birman, dans une perspective comparative, s'inscrit délibérement dans une approche typologique, par la confrontation d'un modèle théo¬rique à des données langagières afin de le faire évoluer vers une plus grande universalité. <br />Nous commencerons notre étude par une première partie théorique sur les notions de modalité, de temps et d'aspect (TAM). Après avoir rappelé les liens existant entre ces trois notions, nous nous attacherons à les expliciter. Nous nous appuierons, pour ce faire, sur les travaux de Cohen (1989) et de Dik (1997) pour l'aspect. En ce qui concerne la modalité, nous nous inspirerons plus particulièrement de l'approche sémantique de Frawley (1992) et de celle, fonctionnaliste, de Dik (1997) : à la suite de Frawley, nous consi¬dérerons la négation comme faisant partie du domaine de la modalité, et utiliserons l'idée proposée par Dik d'une stratification de la phrase pour formuler un modèle hiérarchisé de la modalité à cinq niveaux. <br />Nous continuerons par une présen¬tation générale de la langue birmane, et plus particulièrement du birman vernaculaire. <br />Nous proposerons ensuite une ré-analyse du syntagme verbal birman, fondée sur la notion de constructions de verbe en séries (CVS) ; elle sera accompagnée d'une présentation des morphèmes verbaux et des valeurs qu'ils véhiculent.<br />Nous aborderons enfin l'expression de la modalité en birman, sujet principal du présent travail, en montrant, dans un premier temps, que cette dernière, bien représentée dans la langue, utilise des formes variées : morphèmes spécialisés, morphèmes grammaticalisés, constructions syntaxiques, expressions figées. Puis nous mettrons en évidence que la modalité en birman intervient à différents niveaux dans l'énon¬cé ; elle peut être inhérente au procès (niveau A), concerner la prédication (niveau B), s'inscrire dans la proposition (niveau C), porter sur la phrase entière (D) ou opérer au niveau de l'énoncé (niveau E).<br />Pour conclure, nous verrons que la modalité est une notion essentielle en birman : obligatoirement exprimée dans le syntagme verbal, elle apparaît à tous les niveaux précédemment définis, et sous des formes nombreuses et variées.
|
8 |
Une monographie du Bisu - Tome 1& Tome 2Beaudouin, Patrick 20 December 1991 (has links) (PDF)
Les Bisu, regroupés avec les Mpi, les Phou Noy, les Pyen et les Côông dans la famille Bisoïde, appartiennent à la division Lolo de la famille des langues tibéto-birmanes. Ils représentent, au nord de la Thaïlande, une population d'environ 500 individus répartis en 4 villages, dans un rayon de 80 km au sud de Chiang Raï. Fortement intégrés, les Bisu, que les Thaï considèrent comme des Lua (Lawa), ont abandonné la quasi-totalité de leurs traditions, adoptant le mode de vie des Yuan, les Thaï du nord. Le seul indice de leur identité à avoir, jusque-là, survécu est leur langue, déjà bien métissée d'emprunts au Thaï et dont l'extinction est prévisible à court terme. "Une monographie du Bisu" présente, en 2 tomes, la description du peuple Bisu et de sa langue. Le tome 1 comprend quatre parties distinctes : - une présentation ethnographique du peuple Bisu - une étude phonologique de la langue - l'analyse de la grammaire - Six textes retranscrivant les traditions Bisu. Le tome 2 est un dictionnaire de 1600 mots.
|
9 |
Algèbres de Temperley-Lieb, Birman-Murakami-Wenzl et Askey-Wilson, et autres centralisateurs de U_q(sl_2)Zaimi, Meri 08 1900 (has links)
Mémoire par articles. / Ce mémoire contient trois articles reliés par l'idée sous-jacente d'une généralisation de la dualité de Schur-Weyl. L'objectif principal est d'obtenir une description algébrique du centralisateur de l'image de l'action diagonale de U_q(sl_2) dans le produit tensoriel de trois représentations irréductibles, lorsque q n'est pas une racine de l'unité. La relation entre une algèbre de Askey-Wilson étendue AW(3) et ce centralisateur est examinée à cet effet. Dans le premier article, les éléments du centralisateur de l'action de U_q(sl_2) dans son produit tensoriel triple sont définis à l'aide de la matrice R universelle de U_q(sl_2). Il est montré que ces éléments respectent les relations définissantes de AW(3). Dans le deuxième article, la matrice R universelle de la superalgèbre de Lie osp(1|2) est utilisée de manière similaire avec l'algèbre de Bannai-Ito BI(3). Dans ce cas, le formalisme de la matrice R permet de définir l'algèbre de Bannai-Ito de rang supérieur BI(n) comme le centralisateur de l'action de osp(1|2) dans son produit tensoriel n-fois. Le troisième article propose une conjecture qui établit un isomorphisme entre un quotient de AW(3) et le centralisateur de l'image de l'action diagonale de U_q(sl_2) dans le produit tensoriel de trois représentations irréductibles quelconques. La conjecture est prouvée pour plusieurs cas, et les algèbres de Temperley-Lieb, Birman-Murakami-Wenzl et Temperley-Lieb à une frontière sont retrouvées comme quotients de l'algèbre de Askey-Wilson. / This master thesis contains three articles related by the underlying idea of a generalization of the Schur-Weyl duality. The main objective is to obtain an algebraic description of the centralizer of the image of the diagonal action of U_q(sl_2) in the tensor product of three irreducible representations, when q is not a root of unity. The connection between a centrally extended Askey-Wilson algebra AW(3) and this centralizer is examined for this purpose. In the first article, the elements of the centralizer of the action of U_q(sl_2) in its threefold tensor product are defined with the help of the universal R-matrix of U_q(sl_2). These elements are shown to satisfy the defining relations of AW(3). In the second article, the universal R-matrix of the Lie superalgebra osp(1|2) is used in a similar fashion with the Bannai-Ito algebra BI(3). In this case, the formalism of the R-matrix allows to define the higher rank Bannai-Ito algebra BI(n) as the centralizer of the action of osp(1|2) in its n-fold tensor product. The third article proposes a conjecture that establishes an isomorphism between a quotient of AW(3) and the centralizer of the image of the diagonal action of U_q(sl_2) in the tensor product of any three irreducible representations. The conjecture is proved for several cases, and the Temperley-Lieb, Birman-Murakami-Wenzl and one-boundary Temperley-Lieb algebras are recovered as quotients of the Askey-Wilson algebra.
|
Page generated in 0.0297 seconds