• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 148
  • 56
  • 54
  • 45
  • 28
  • 18
  • 18
  • 13
  • 9
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 446
  • 74
  • 70
  • 42
  • 42
  • 41
  • 40
  • 40
  • 37
  • 31
  • 28
  • 27
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Tailoring Structure Property Relationships and Elastic Phenomenon in Native and Polymer Reinforced Silica Aerogels

Randall, Jason P. 06 August 2010 (has links)
No description available.
212

Synthesis and Biological Evaluation of Various Derivatives of a Broad-Spectrum Anticancer Nucleoside

Shelton, Jadd R. 07 August 2012 (has links) (PDF)
Recently the Peterson lab discovered a promising anticancer adenosine derivative-- 2´,3´-bis-O-tert-butyldimethylsilyl-5´-deoxy-5´-[N-(methylcarbamoyl)amino]-N6-(N-phenylcarbamoyl)adenosine. This compound showed selective toxicity against human colon cancer cells in vitro with LC50's = 6--10 µM. It was hypothesized that the lead compound exerted its cytotoxic effects by interacting with a protein kinase. A systematic Structure Activity Relationship (SAR) was undertaken in an attempt to increase the kinase-binding affinity of the lead compound. Many regions of the lead compound were examined: the N6-phenyl urea moiety, the 5´-N-methyl urea group, the 2´,3´-bis-O-TBS groups, the nucleobase, and the ribose sugar. Results of these studies produced some promising new derivatives. In particular, one analogue exhibited potent cancer cell growth inhibition with an average GI50 of 0.58 μM (NCI-60). In addition, another compound showed selective toxicity for the non-small cell adenocarcinoma cell line NCI-H522 with an LC50 of 10 nM. Efficient methods for the preparation of a wide variety of N6-aryl and -alkyl substituted derivatives were developed. One versatile route involved the installation of an N6-ethoxy carbonyl and subsequent displacement with an alkly- or arylamine. Synthetic routes for the preparation of of a variety of 2´,3´-bis-O-acylated analogues were also developed. Nucleoside mono-, di-, and triphosphate bioisosteres in which the phosphoester or phosphoanhydride have been replaced by an unnatural functional group have been extensively investigated. A simple and efficient method was developed for the preparation of carbamoyl analogues of nucleoside mono-, di-, and triphosphate surrogates. This method uses a modified version of the Kočovský reaction to install mono-, di-, and triphosphate mimics in good to excellent yields (ave = 75%).
213

Polymer Directed Engineering of Novel Cellulose Network / Polymerstyrd konstruktion av nya cellulosanätverk

Gradin, Christel, Landström, Adina, Szecsödy, Julia January 2021 (has links)
This study investigated a CNF/dendrimer hydrogel and how different concentrations of the carboxylated CNF and bis-MPA ammonium dendrimer affected the hydrogels’ rheological properties. A third generation bis-MPA ammonium dendrimer was diffused into a dispersion of carboxylated cellulose nanofibrils. The CNF was carboxylated by TEMPO-oxidation and phosphate buffer deprotonating the carboxylic group. The ammonium dendrimers are cationic and, when added to the dispersion, act as a salt together with the CNF-carboxy anion creating a cationic dendrimer salt bridge. These will serve as physical crosslinks, and a CNF/dendrimer network is formed; the structure and the absorbed water make a hydrogel. Amplitude strain sweeps were performed with a rheometer to determine the gels' elastic capabilities in terms of storage modulus, G’ and loss modulus, G” as the function of the shear stress. The result shows that a higher concentration of both CNF dispersion and dendrimer yielded a higher value of the storage modulus and a lower critical strain, meaning that the hydrogel becomes firmer and less elastic. / I denna studie undersöktes en CNF/dendrimer hydrogel och hur olika koncentrationer av den karboxylerade CNF och bis-MPA ammonium dendrimer påverkar hydrogelens reologiska egenskaper. En tredje generations bis-MPA ammonium dendrimer läts diffusera i en dispersion av karboxylerade cellulosa nanofibriller (CNF). CNF karboxylerades via TEMPO-oxidation, varefter en fosfatbuffer adderades för att skapa en anjon. Dendrimerens ammoniumgrupper är katjoner och då den adderas till dispersionen kommer den agera som ett salt tillsammans med CNF-karboxyanjonen vilket skapar en katjonisk dendrimersaltbrygga. Denna agerar som en fysisk tvärbindning och skapar ett nätverk av CNF och dendrimer. Nätverket skapar tillsammans med det absorberade vattnet en hydrogel.  En amplitude strain sweep utfördes för att bestämma gelernas viskoelastiska förmåga, från mätningarna fås elasticitetsmodulen, G’ och den viskösa modulen, G’’ som funktioner av skjuvningen. Resultatet visar att en högre koncentration av CNF-dispersionen och dendrimeren leder till ett högre värde på elasticitetsmodulen samt ett lägre värde för den kritiska skjuvningen. Detta innebär att hydrogelen blir hårdare och mindre elastisk.
214

BIS-MPA DENDRIMERS AS A PLATFORM FOR MOLECULAR IMAGING APPLICATIONS

Sadowski, Lukas January 2016 (has links)
The objective of this research was to develop and validate new macromolecular imaging agents to detect and characterize malignant tumours. Using well-defined, highly branched macromolecules called dendrimers as the structural scaffold, efficient functionalization of the periphery was demonstrated using “click” chemistry in order to prepare multivalent imaging probes. Furthermore, a transmetalation was demonstrated to displace chelated copper with technetium, enabling “click” reactions to be performed in the presence of the dipicolylamine (DPA), a ligand known to chelate many metals. The dendritic scaffold was functionalized with either hydrophobic or hydrophilic targeting vectors. The hydrophobic ligand, an acyloxymethyl ketone targeting the overexpression of cathepsin B exhibited poor in vitro affinity when coupled to either G1 or G2 dendrimers, despite the use of various linkers. A glu-urea-lys dipeptide, representing a hydrophilic prostate specific membrane antigen targeting vector, demonstrated excellent affinity in vitro. The lead compound, a G2 dendrimer bearing four PSMA targeting vectors attached via an alkyl spacer was further investigated in vitro and in vivo. Unfortunately, poor tumor uptake was observed and the compound was hypothesized to hydrolyze readily (<15min), based on the in vitro plasma stability data. To rectify the aforementioned problem, non neo-pentyl esters were replaced with either carbamate or ether linkages. In vitro plasma stability analysis of the analogous compounds demonstrated increased stability. In particular, the ether analogue was found to be most stable, with minimal degradation observed after 4 hours. / Thesis / Doctor of Philosophy (PhD)
215

Frontal Alpha Asymmetry and Behavioral Inhibition and Activation Systems

Saldjoughi Tivander, Victoria January 2023 (has links)
Extensive research has been conducted on the relationship between brain activity and personality traits, and several theories propose a lateralization of specific personality qualities. A prominent model suggests frontal lateralization of motivational direction, specifically, the behavioral inhibition and activation systems (BIS/BAS), with greater right frontal activity linked to behavioral inhibition and greater left frontal activity linked to behavioral activation. Recent studies have presented contrasting findings in the absence of this correlation. With the present study I aimed to investigate the link between frontal lateralization and the BIS/BAS. I further examined the test-retest reliability of resting-state frontal alpha asymmetry (FAA), and of the BIS/BAS scale. Resting-state frontal EEG asymmetry and participants’ responses to the BIS/BAS scale were collected from University of Skövde students on multiple occasions. FAA were obtained from electrode sites F4-F3, F6-F5, and F8-F7 over three sessions, two weeks apart, along with BIS/BAS scores from the first and third sessions. Within-subject FAA showed variability over time, suggesting FAA to be a less reliable measure of personality traits. Only two out of the four BIS/BAS subscales demonstrated consistent scores, raising doubts about the reliability of using it to assess personality traits. BAS Drive correlated negatively with FAA, contrary to the expected direction, but no other significant correlation was observed between resting-state FAA and BIS/BAS. Verifying FAA as an indicator of BIS and BAS is important for drawing meaningful associations between them. Future research should consider employing a repeated measures design and a larger sample size to enhance the understanding of this relationship.
216

Birth Order and Motivation

Chooi, Weng Tink 03 August 2009 (has links)
No description available.
217

Approach/avoidance motivation: Extensions of the congruency effect

Hammill, Amanda C. 24 July 2008 (has links)
No description available.
218

Inside-out design and synthesis of spiroligomers for transesterification reactions

Kheirabadi, Mahboubeh January 2014 (has links)
This work describes the application of spiroligomers as serine hydrolases mimetics. Through collaboration with Kendall Houk's group, for the first time in the Schafmeister lab, we demonstrate that "theozymes" can be successfully used as models to design highly functionalized spiroligomer constructs for organocatalysis. We demonstrate a structure-function relationship between the structure of a series of bi-functional and tri-functional spiroligomer based transesterification catalysts and their catalytic activity. First, we designed and synthesized a series of stereochemically and regiochemically diverse bi-functional spiroligozymes to identify the best arrangement of a pyridine as a general base catalyst and an alcohol nucleophile to accelerate attack on vinyl trifluoroacetate as an electrophile. The best bifunctional spiroligozyme reacts with vinyl trifluoroacetate to form an acyl-spiroligozyme conjugate 2.7x103-fold faster than the background reaction with benzyl alcohol. We then incorporated an additional urea functional group to activate the acyl-spiroligozyme intermediate through hydrogen bonds and enable acyl transfer to methanol. The best trifunctional spiroligozyme carries out multiple turnovers and acts as a transesterification catalyst with k1/kuncat of 2.2x103 and k2/kuncat of 1.3x102. Quantum mechanical calculations identified four transition states in the catalytic cycle and provided a detailed view of every stage of the transesterification reaction. With the aim of accelerating the k2, we sought to design better oxyanion holes that hold multiple hydrogen bonding groups in close proximity of the catalytic groups. A macrocyclic motif would be a good candidate to force the oxyanion hole arm to arrange hydrogen-bonding groups in a precise three-dimensional constellation for transition state stabilization. In Chapter 4, we introduce an in silico designed macrocyclic spiroligomer, which overlays well with catalytic active site of an inhibitor bound-esterase. Finally, we detail our effort to develop new methodologies for rapidly synthesizing spiroligomers on solid-support. This would allow us to efficiently permute their structures for diverse applications such as organocatalysts, host molecules, and biologically related applications such as inhibiting protein-protein interactions. / Chemistry
219

CONSTRUCTING NANOSTRUCTURES WITH ATOMIC PRECISION: THE SYNTHESIS OF SPIROLIGOMER-BASED MACROCYCLES

Pfeiffer, Conrad T. January 2016 (has links)
This dissertation presents the development of a synthetic strategy to produce various spiroligomer-based macrocycles that bridge the gap between organic molecules and small proteins. “Spiroligomers” (formerly known as “bis-peptides”) are a class of molecules produced by the assembly of “bis-amino acids”, molecules containing two amino acid regions on a single cyclic core. Each bis-amino acid is connected through pairs of amide bonds to form a diketopiperazine consequently eliminating single bond rotation and, therefore, avoids the complicated folding process common to the field of peptidomimetics. Spiroligomers are shape-programmable since the three-dimensional structure is controlled by the stereochemistry of the bis-amino acid monomers used in the synthesis, the connectivity of the monomers, and the number of monomers used. Furthermore, bis-amino acids can contain additional functional groups attached to multiple locations on the monomer which allows each spiroligomer, once synthesized, the ability to display these functional groups in predictable three-dimensional coordinates, with respect to each other. The synthesis of large spiroligomer-based structures requires the production of large amounts of bis-amino acid monomers. To this end, the scale of the synthesis of proline-based bis-amino acids from inexpensive trans-4-hydroxy-L-proline has been increased roughly 5-fold with respect to the previously published method. In addition to the time and solvent savings as a result of increasing the scale, the synthetic steps have been altered with considerations to ensure the production takes place in a convenient and environmentally friendly manner. Additionally, the desire to synthesize large spiroligomer-based structures means that the synthesis of each spiroligomer fragment must be as efficient and high-yielding as possible. To achieve this goal, a new synthetic approach to highly functionalized spiroligomers on solid support has been developed that results in increased yields relative to previously published methods. This new approach makes use of a protecting group, para-nitrobenzyl carbamate, which has not previously been incorporated in bis-amino acids as well as a pentafluorophenol ester activation strategy that also has not been in the synthesis of spiroligomers. Finally, an extendable synthetic route to spiroligomer-based macrocycles has been developed and representative macrocycles have been synthesized. This approach uses solid support to assemble multiple spiroligomers together through amino acids linkers before being cyclized in solution at dilute concentration to yield the desired macrocycles. Minimal functionality was included in the representative macrocycles to simplify structural information, confirmed by NMR and other means, and the macrocyclic structures were further investigated for host-guest activity using fluorescent, solvatochromic dyes. / Chemistry
220

SYNTHESIS AND APPLICATION OF FUNCTIONALIZED SPIROLIGOMERS TOWARDS ORGANOCATALYSIS

Zhao, Qingquan January 2014 (has links)
This thesis research presents the synthesis and first application of bis-amino acid-based spiroligomers towards the development of organocatalysis, from small molecules to moderate size spiroligomers, and to macromolecules. By synthesizing a toolbox of cyclic monomers called "bis-amino acids", the Schafmeister group has developed an approach to construct both small and macromolecules named "Spiroligomers". These molecules arrange catalytic functional groups in a shape-persistent and programmable backbone. Unlike proteins and small peptides, spiroligomers do not fold; rather, their polycyclic backbone structures are controlled by the sequence and stereochemistry of the component monomers. Firstly, we demonstrated a structure/catalytic activity relationship together with computational modeling that suggests that a specific hydrophobic interaction between the modified pro4 catalyst and the aldehyde substrate is responsible for an observed rate enhancement in the aldol reaction. For the moderate size molecules, several spiroligomer libraries were prepared through solid phase or solution phase synthesis and screened for either the alcohol kinetic resolution reaction or the aldol reaction. The poor activity and selectivity suggest that the scaffolds involved cannot create the necessary chiral environment for asymmetric catalysis. Finally, a synthetic method of macromolecules using cross metathesis coupling was developed and a series of tetra-functionalized macrocyclic spiroligomers were synthesized. Three of these macromolecules were examined as asymmetric catalysts in the aldol reaction and gave moderate activity and selectivity. The NMR analysis of these macromolecules indicates their dynamic nature. As the first application of bis-amino acid based macromolecules in organocatalysis area, although these catalysts only generated moderate activity and selectivity, they provided evidence that changing the configuration of one stereocenter of the fourteen available within these macromolecules can alter the selectivity. This synthetic methodology also provides an effective way to create more complicated pocket like spiroligomer macromolecules for the future applications in catalysis and molecular recognition. / Chemistry

Page generated in 0.6142 seconds