• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • Tagged with
  • 11
  • 11
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum mechanics for security related tasks

Sheikholeslam, Seyed Arash 13 August 2012 (has links)
This thesis considers the use of quantum mechanics for information security related tasks. Two secure quantum bit commitment protocols are introduced and the security of the protocols against attackers is discussed. The use of quantum entanglement breaking channels for making a protocol secure is considered and some security bounds are given. Entanglement measurement in multipartite systems and a universal entanglement measure are also introduced and discussed. / Graduate
2

Modeling and analysis of quantum cryptographic protocols

Ware, Christopher J 29 August 2008 (has links)
In this thesis we develop a methodology for the modeling and analysis of quantum security protocols, and apply it to a cheat sensitive quantum bit commitment protocol. Our method consists of a formalization of the protocol in the process algebra CQP, a conversion to the PRISM modeling language, verification of security properties, and the quantitative analysis of optimal cheat strategies for a dishonest party. We also define additional syntax and operational semantics for CQP to add decision making capability. For a two party protocol involving Alice committing a bit to Bob, we show that the protocol favors a dishonest Alice over a dishonest Bob. When only one party is dishonest, and uses an optimal cheat strategy, we also show that the probability of cheat detection is bounded at 0.037 for Bob and 0.076 for Alice. In addition, a dishonest Alice is able to reveal an arbitrary commit bit with probability 1 while a dishonest Bob is only able to extract the correct bit before it is revealed with probability 0.854. This bias is interesting as it gives us insight into how the overall protocol functions and where its weaknesses are. By identifying these weaknesses we provide a foundation for future improvements to the protocol to reduce cheating bias or increase cheat detection. Finally, our methodology reveals the weakness of PRISM in modeling quantum variables to their full power and as a result we propose the development of a new modeling tool for quantum protocols.
3

Protecting Sensitive Credential Content during Trust Negotiation

Jarvis, Ryan D. 21 April 2003 (has links)
Keeping sensitive information private in a public world is a common concern to users of digital credentials. A digital credential may contain sensitive attributes certifying characteristics about its owner. X.509v3, the most widely used certificate standard, includes support for certificate extensions that make it possible to bind multiple attributes to a public key contained in the certificate. This feature, although convenient, potentially exploits the certificate holder's private information contained in the certificate. There are currently no privacy considerations in place to protect the disclosure of attributes in a certificate. This thesis focuses on protecting sensitive credential content during trust negotiation and demonstrates, through design and implementation, the privacy benefits achieved through selective disclosure. Selective disclosure of credential content can be achieved using private attributes, a well-known technique that incorporates bit commitment within digital credentials. This technique has not been thoroughly explored or implemented in any prior work. In this thesis, a protocol for issuing and showing credentials containing private attributes is discussed and suggested as a method for concealing and selectively revealing sensitive attributes bound to credentials during trust negotiation. To demonstrate greater privacy control within a credential-based system, private attributes are incorporated into TrustBuilder, an implementation of trust negotiation. With access control at the attribute level, TrustBuilder gives users greater control over their private information and can improve the success rate of negotiations. TrustBuilder also demonstrates how credentials with private attributes can eliminate risks normally associated with exchanging credentials, such as excessive gathering of information that is not germane to the transaction and inadvertently disclosing the value of a sensitive credential attribute.
4

Sécurité polynomiale en cryptographie

Fiedler, Heinz 08 1900 (has links)
Dans ce mémoire, nous proposons des protocoles cryptographiques d'échange de clef, de mise en gage, et de transfert équivoque. Un premier protocole de transfert équivoque, primitive cryptographique universelle pour le calcul multi-parties, s'inspire du protocole d'échange de clef par puzzle de Merkle, et améliore les résultats existants. Puis, nous montrons qu'il est possible de construire ces mêmes primitives cryptographiques sans l'hypothèse des fonctions à sens unique, mais avec le problème 3SUM. Ce problème simple ---dans une liste de n entiers, en trouver trois dont la somme a une certaine valeur--- a une borne inférieure conjecturée de Omega(n^2). / In this work, we propose cryptographic protocols for key exchange, bit commitment and oblivious transfer. Our oblivious transfer protocol, universal cryptographic primitive for multipartie computation, is inspired from Merkle's key exchange protocol with puzzles, and improves on existing results. Then, we show that it's possible to build those same cryptographic primitives without the hypothesis of one-way functions, but with the 3SUM problem. This simple problem ---in a list of n integers, find three that sum is a desired value--- has a conjectured lower bound of Omega(n^2).
5

Sécurité polynomiale en cryptographie

Fiedler, Heinz 08 1900 (has links)
Dans ce mémoire, nous proposons des protocoles cryptographiques d'échange de clef, de mise en gage, et de transfert équivoque. Un premier protocole de transfert équivoque, primitive cryptographique universelle pour le calcul multi-parties, s'inspire du protocole d'échange de clef par puzzle de Merkle, et améliore les résultats existants. Puis, nous montrons qu'il est possible de construire ces mêmes primitives cryptographiques sans l'hypothèse des fonctions à sens unique, mais avec le problème 3SUM. Ce problème simple ---dans une liste de n entiers, en trouver trois dont la somme a une certaine valeur--- a une borne inférieure conjecturée de Omega(n^2). / In this work, we propose cryptographic protocols for key exchange, bit commitment and oblivious transfer. Our oblivious transfer protocol, universal cryptographic primitive for multipartie computation, is inspired from Merkle's key exchange protocol with puzzles, and improves on existing results. Then, we show that it's possible to build those same cryptographic primitives without the hypothesis of one-way functions, but with the 3SUM problem. This simple problem ---in a list of n integers, find three that sum is a desired value--- has a conjectured lower bound of Omega(n^2).
6

Cryptography with spacetime constraints / Cryptographie avec des contraintes spatio-temporelles

Chakraborty, Kaushik 12 October 2017 (has links)
Dans cette thèse,nous étudions comment exploiter des contraintes spatio-temporelles,notamment le principe d'impossibilité de transmission supraluminique,dans le but de créer des primitives cryptographiques sûres,par exemple la vérification de position ou la "mise en gage de bit''(bit commitment). D'après le principe d'impossibilité de transmission supraluminique,aucun vecteur physique d'information ne peut voyager plus vite que la vitesse de la lumière. Ce principe entraîne une contrainte sur le temps de communication entre deux points éloignés. Ce délai dans le transfert d'information peut être utilisé comme une contrainte temporelle interdisant la communication. En cryptographie multi-agents,il est connu que l'hypothèse de non-communication entre les agents permet de réaliser de manière sécurisée de nombreuses primitives comme la "mise en gage de bit'' et l'un des buts de cette thèse est de comprendre à quel point les contraintes spatio-temporelles peuvent être exploitèes pour simuler des scénarios de non-communication. Dans la première partie de cette thèse nous étudions comment utiliser une contrainte de non-communication pour essayer de vérifier la position d'une personne.Dans la dernière partie,nous nous penchons sur deux exemples de protocoles de ``mise en gage de bit'' relativistes afin d'en étudier la sécurité contre des adversaires classiques. Pour conclure cette thèse,nous mentionnons quelques problèmes ouverts intéréssants. Ces problèmes ouverts peuvent être très utiles pour comprendre le rôle de contraintes spatio-temporelles,par exemple de l'impossibilité de transmission supraluminique,dans la conception de primitives cryptographiques parfaitement sûres. / In this thesis we have studied how to exploit relativistic constraints such as the non-superluminal signalling principle to design secure cryptographic primitives like position-verification and bit commitment. According to non-superluminal signalling principle, no physical carrier of information can travel faster than the speed of light. This put a constraint on the communication time between two distant stations. One can consider this delay in information transfer as a temporal non-communication constraint. Cryptographic primitives like bit-commitment, oblivious transfer can be implemented with perfect secrecy under such non-communication assumption between the agents. The first part of this thesis has studied how non-signalling constraints can be used for secure position verification. Here, we have discussed about a strategy which can attack any position verification scheme. In the next part of this thesis we have discussed about the nonlocal games, relevant for studying relativistic bit commitment protocols. We have established an upper bound on the classical value of such family of games. The last part of this thesis discusses about two relativistic bit commitment protocols and their security against classical adversaries. We conclude this thesis by giving a brief summary of the content of each chapter and mentioning interesting open problems. These open problems can be very useful for better understanding of the role of spacetime constraints such as non-superluminal signalling in designing perfectly secure cryptographic primitives.
7

Two-player interaction in quantum computing : cryptographic primitives & query complexity

Magnin, Loick 05 December 2011 (has links) (PDF)
This dissertation studies two different aspects of two-player interaction in the model of quantum communication and quantum computation.First, we study two cryptographic primitives, that are used as basic blocks to construct sophisticated cryptographic protocols between two players, e.g. identification protocols. The first primitive is ''quantum bit commitment''. This primitive cannot be done in an unconditionally secure way. However, security can be obtained by restraining the power of the two players. We study this primitive when the two players can only create quantum Gaussian states and perform Gaussian operations. These operations are a subset of what is allowed by quantum physics, and plays a central role in quantum optics. Hence, it is an accurate model of communication through optical fibers. We show that unfortunately this restriction does not allow secure bit commitment. The proof of this result is based on the notion of ''intrinsic purification'' that we introduce to circumvent the use of Uhlman's theorem when the quantum states are Gaussian. We then examine a weaker primitive, ''quantum weak coin flipping'', in the standard model of quantum computation. Mochon has showed that there exists such a protocol with arbitrarily small bias. We give a clear and meaningful interpretation of his proof. That allows us to present a drastically shorter and simplified proof.The second part of the dissertation deals with different methods of proving lower bounds on the quantum query complexity. This is a very important model in quantum complexity in which numerous results have been proved. In this model, an algorithm has restricted access to the input: it can only query individual bits. We consider a generalization of the standard model, where an algorithm does not compute a classical function, but generates a quantum state. This generalization allows us to compare the strength of the different methods used to prove lower bounds in this model. We first prove that the ''multiplicative adversary method'' is stronger than the ''additive adversary method''. We then show a reduction from the ''polynomial method'' to the multiplicative adversary method. Hence, we prove that the multiplicative adversary method is the strongest one. Adversary methods are usually difficult to use since they involve the computation of norms of matrices with very large size. We show how studying the symmetries of a problem can largely simplify these computations. Last, using these principles we prove the tight lower bound of the INDEX-ERASURE problem. This a quantum state generation problem that has links with the famous GRAPH-ISOMORPHISM problem.
8

Two-player interaction in quantum computing: cryptographic primitives and query complexity / Interaction à deux joueurs en informatique quantique: primitives cryptographiques et complexité en requêtes

Magnin, Loïck C.A. 05 December 2011 (has links)
Cette thèse étudie deux aspects d'interaction entre deux joueurs dans le modèle du calcul et de la communication quantique.<p><p>Premièrement, elle étudie deux primitives cryptographiques quantiques, des briques de base pour construire des protocoles cryptographiques complexes entre deux joueurs, comme par exemple un protocole d'identification.<p><p>La première primitive est la "mise en gage quantique". Cette primitive ne peut pas être réalisée de manière inconditionnellement sûre, mais il est possible d'avoir une sécurité lorsque les deux parties sont soumises à certaines contraintes additionnelles. Nous étudions cette primitive dans le cas où les deux joueurs sont limités à l'utilisation d'états et d'opérations gaussiennes, un sous-ensemble de la physique quantique central en optique, donc parfaitement adapté pour la communication via fibres optiques. Nous montrons que cette restriction ne permet malheureusement pas la réalisation de la mise en gage sûre. Pour parvenir à ce résultat, nous introduisons la notion de purification intrinsèque, qui permet de contourner l'utilisation du théorème de Uhlman, en particulier dans le cas gaussien.<p><p>Nous examinons ensuite une primitive cryptographique plus faible, le "tirage faible à pile ou face", dans le modèle standard du calcul quantique. Carlos Mochon a donné une preuve d'existence d'un tel protocole avec un biais arbitrairement petit. Nous donnons une interprétation claire de sa preuve, ce qui nous permet de la simplifier et de la raccourcir grandement.<p><p>La seconde partie de cette thèse concerne l'étude de méthodes pour prouver des bornes inférieures dans le modèle de la complexité en requête. Il s'agit d'un modèle de complexité central en calcul quantique dans lequel de nombreux résultats majeurs ont été obtenus. Dans ce modèle, un algorithme ne peut accéder à l'entrée uniquement qu'en effectuant des requêtes sur chacune des variables de l'entrée. Nous considérons une extension de ce modèle dans lequel un algorithme ne calcule pas une fonction, mais doit générer un état quantique.<p><p>Cette généralisation nous permet de comparer les différentes méthodes pour prouver des bornes inférieures dans ce modèle. Nous montrons d'abord que la méthode par adversaire ``multiplicative" est plus forte que la méthode ``additive". Nous montrons ensuite une réduction de la méthode polynomiale à la méthode multiplicative, ce qui permet de conclure à la supériorité de la méthode par adversaire multiplicative sur toutes les autres méthodes.<p><p>Les méthodes par adversaires sont en revanche souvent difficiles à utiliser car elles nécessitent le calcul de normes de matrices de très grandes tailles. Nous montrons comment l'étude des symétries d'un problème simplifie grandement ces calculs.<p><p>Enfin, nous appliquons ces formules pour prouver la borne inférieure optimale du problème Index-Erasure, un problème de génération d'état quantique lié au célèbre problème Isomorphisme-de-Graphes. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
9

Méthodes pour la réduction d’attaques actives à passives en cryptographie quantique

Lamontagne, Philippe 12 1900 (has links)
No description available.
10

Quantum coin flipping and bit commitment : optimal bounds, pratical constructions and computational security / Pile-ou-face et mise-en-gage de bit quantique : bornes optimales, constructions pratiques et sécurité calculatoire

Chailloux, André 24 June 2011 (has links)
L'avènement de l'informatique quantique permet de réétudier les primitives cryptographiques avec une sécurité inconditionnelle, c'est à dire sécurisé même contre des adversaires tout puissants. En 1984, Bennett et Brassard ont construit un protocole quantique de distribution de clé. Dans ce protocole, deux joueurs Alice et Bob coopèrent pour partager une clé secrète inconnue d'une tierce personne Eve. Ce protocole a une sécurité inconditionnelle et n'a pasd'équivalent classique.Dans ma thèse, j'ai étudié les primitives cryptographiques à deux joueurs où ces joueurs ne se font pas confiance. J'étudie principalement le pile ou face quantique et la mise-en-gage quantique de bit. En informatique classique, ces primitivessont réalisables uniquement avec des hypothèses calculatoires, c'est-à-dire en supposant la difficulté d'un problème donné. Des protocoles quantiques ont été construits pour ces primitives où un adversaire peut tricher avec une probabilité constante strictement inférieure à 1, ce qui reste impossible classiquement. Néanmoins, Lo et Chau ont montré l'impossibilité de créer ces primitives parfaitement même en utilisant l'informatique quantique. Il reste donc à déterminer quelles sont les limites physiques de ces primitives.Dans une première partie, je construis un protocole quantique de pile ou face où chaque joueur peut tricher avec probabilité au plus 1/racine(2) + eps pour tout eps > 0. Ce résultat complète un résultat de Kitaev qui dit que dans un jeu de pile ou face quantique, un joueur peut toujours tricher avec probabilité au moins 1/racine(2). J'ai également construit un protocole de mise-en-gage de bit quantique optimal où un joueur peut tricher avec probabilité au plus 0,739 + eps pour tout eps > 0 puis ai montré que ce protocole est en fait optimal. Finalement, j'ai dérivé des bornes inférieures et supérieures pour une autre primitive: la transmission inconsciente, qui est une primitive universelle.Dans une deuxième partie, j'intègre certains aspects pratiques dans ces protocoles. Parfois les appareils de mesure ne donnent aucun résultat, ce sont les pertes dans la mesure. Je construis un protocole de lancer de pièce quantique tolérant aux pertes avec une probabilité de tricher de 0,859. Ensuite, j'étudie le modèle dispositif-indépendant où on ne suppose plus rien sur les appareils de mesure et de création d'état quantique.Finalement, dans une troisième partie, j'étudie ces primitives cryptographiques avec un sécurité computationnelle. En particulier, je fais le lien entre la mise en gage de bit quantique et les protocoles zero-knowledge quantiques. / Quantum computing allows us to revisit the study of quantum cryptographic primitives with information theoretic security. In 1984, Bennett and Brassard presented a protocol of quantum key distribution. In this protocol, Alice and Bob cooperate in order to share a common secret key k, which has to be unknown for a third party that has access to the communication channel. They showed how to perform this task quantumly with an information theoretic security; which is impossible classically.In my thesis, I study cryptographic primitives with two players that do not trust each other. I study mainly coin flipping and bit commitment. Classically, both these primitives are impossible classically with information theoretic security. Quantum protocols for these primitives where constructed where cheating players could cheat with probability stricly smaller than 1. However, Lo, Chau and Mayers showed that these primitives are impossible to achieve perfectly even quantumly if one requires information theoretic security. I study to what extent imperfect protocols can be done in this setting.In the first part, I construct a quantum coin flipping protocol with cheating probabitlity of 1/root(2) + eps for any eps > 0. This completes a result by Kitaev who showed that in any quantum coin flipping protocol, one of the players can cheat with probability at least 1/root(2). I also constructed a quantum bit commitment protocol with cheating probability 0.739 + eps for any eps > 0 and showed that this protocol is essentially optimal. I also derived some upper and lower bounds for quantum oblivious transfer, which is a universal cryptographic primitive.In the second part, I study some practical aspects related to these primitives. I take into account losses than can occur when measuring a quantum state. I construct a Quantum Coin Flipping and Quantum Bit Commitment protocols which are loss-tolerant and have cheating probabilities of 0.859. I also construct these primitives in the device independent model, where the players do not trust their quantum device. Finally, in the third part, I study these cryptographic primitives with information theoretic security. More precisely, I study the relationship between computational quantum bit commitment and quantum zero-knowledge protocols.

Page generated in 0.074 seconds