• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 11
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 95
  • 95
  • 52
  • 49
  • 48
  • 21
  • 20
  • 18
  • 17
  • 15
  • 13
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Multi-Radio Interface for Dependable Body Area Network Communications

Hovakeemian, Yasmin 01 1900 (has links)
Body Area Networks (BANs) are emerging as a convenient option for patient monitoring. They have shown potential in improving health care services through a network of external or implanted biosensors and actuators collecting real-time physiological data. Advancements in wireless networking and sensor development are expediting the adoption of BANs. However, real-time patient monitoring still remains a challenge due to network failures and congestion. In order to improve channel loss resilience and thus link availability, a multi-radio systems approach is adopted incorporating Bluetooth and Wi-Fi. In this work, we propose a multi-radio interface designed for a BAN to improve end-to-end communications. A multi-radio BAN controller is introduced to interface between the two wireless protocols (Wi-Fi and Bluetooth), control inter-radio handovers, manage a shared transmission buffer, and overall, route data accordingly through the protocol stacks. Simulations are conducted to study the performance of the system by adjusting handover timing and its effect on link availability. Advancing a handover has the benefit of a higher throughput at the cost of an increase in power consumption and timing overhead. Furthermore, various human mobility models, AP placement arrangements, and network densities are simulated to evaluate the performance of the BAN multi-radio interface. Sparse networks were found to have the most gain from the addition of the secondary Bluetooth radio system, as primary AP coverage was already very limited. Simulation results for various combinations of simulation parameters are presented to illustrate the improvement in BAN dependability through a multi-radio interface.
12

Electromagnetic Analysis and Modeling of Human Body Communication

Mayukh Nath (16887960) 29 August 2023 (has links)
<p>Progress in miniaturized computing and connectivity has led to a plethora of smart connected electronic devices around humans, leading us towards the era of seamless human-electronics co-operation. In this connected society, radiative communication using electromagnetic fields is the backbone of inter-device connectivity. This unfortunately leads to high power usage as well as physical signals being available for malicious interceptors to snoop. To address the need of security and energy efficiency of inter-device communication for devices on and around the human body, Human Body Communication (HBC) has been proposed. The fundamental philosophy of HBC is to use the human body as a medium - thus being helped and not hurt by the body - for communication between devices. Confinement of a signal within the body implies higher security as well as efficiency. This dissertation is an analysis of these properties of different HBC modalities, through electromagnetic modelling, simulation, and experienced. Electro-quasistatic (EQS) HBC has been explored in significant detail, including a complete theoretical formulation of return path capacitance, as well as a study of inter-body coupling for interference and security management in EQS-HBC. Magnetic modes of HBC have also been analyzed, and compared with its electric counterparts. Finally, a novel HBC technique, GSW-HBC, has been proposed. GSW-HBC or a Goubau line inspired surface wave based HBC, is shown to be a viable, secure and energy efficient alternative to RF wireless communication, leading the search for Gbps communication around the body.</p><p>In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Purdue University's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to <a href="http://www.ieee.org/publications_standards/publications/rights/rights_link.html" rel="noreferrer" target="_blank">http://www.ieee.org/publications_standards/publications/rights/rights_link.html</a> to learn how to obtain a License from RightsLink.</p>
13

Life time improvement of Wireless Body Area Networks using Clustered Voronoi Tessellation

Motukupalli Ravindranath, Swathi January 2015 (has links)
No description available.
14

Channel modeling for 60 GHz Body Area Networks

Mavridis, Theodoros 28 August 2015 (has links) (PDF)
The smart environments and the connected human seems to be the future of wireless communications. The development of new frequency bands in the millimeter range will allow us to create high data rate communications which will led to the Wireless Body Environment Networks. In this kind of scenarios, it is expected that the user and the environment will interact. In order to develop such new applications, it is necessary to first study the propagation mechanisms and then, the communication channel underlying body centric environments. This thesis treats of channel models for 60 GHz Body Area Networks and more particularly of three kinds of scenarios: (i) the communication between an external base station and a worn node (off-body); (ii) the communication between two worn nodes (on-body); the communication between an external base station and a hand-held device (near-body). An indoor off-body channel model is numerically proposed and implemented. The model is based on the IEEE 802.11ad indoor standard channel at 60 GHz and a fast computation solution of the scattering of a plane wave by a circular cylinder. The model is developed for two orthogonal polarizations and the communications performances are studied. The on-body propagation is studied for two different configurations: line-of-sight and non-line-of-sight communications on the body. These scenarios led to different solutions for the channel knowing as, respectively, Norton’s equations and creeping formulations. These solutions are obtained using simplified geometries which has been experimentally validated. Further, in order to improve the propagation on the human body, a technique using metallic plates has been proposed. This technique has been theoretically studied using Milligton’s equations and experimentally assessed on a flat phantom with the properties of the human skin. The proposed method allows to save up to 20 dB. Finally, the near-body communication scenario has been introduced and studied. The near-body region is extended from 5 to 30 cm away of the user body which corresponds to the arm’s reach and models a handheld device. A numerical algorithm has been proposed to model indoor near-body environments. Also, a special has been given to statistical body shadowing. It has been shown that the fading follows a Two-Wave Diffuse Power distribution. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
15

A Testbed for Design and Performance Evaluation of Visual Localization Technique inside the Small Intestine

Mi, Liang 01 May 2014 (has links)
Wireless video capsule endoscopy (VCE) plays an increasingly important role in assisting clinical diagnoses of gastrointestinal (GI) diseases. It provides a non-invasive way to examine the entire small intestine, where other conventional endoscopic instruments can barely reach. Existing examination systems for the VCE cannot track the location of a endoscopic capsule, which prevents the physician from identifying the exact location of the diseases. During the eight hour examination time, the video capsule continuously keeps taking images at a frame rate up to six frame per sec, so it is possible to extract the motion information from the content of the image sequence. Many attempts have been made to develop computer vision algorithms to detect the motion of the capsule based on the small changes in the consecutive video frames and then trace the location of the capsule. However, validation of those algorithms has become a challenging topic because conducting experiments on the human body is extremely difficult due to individual differences and legal issues. In this thesis, two validation approaches for motion tracking of the VCE are presented in detail respectively. One approach is to build a physical testbed with a plastic pipe and an endoscopy camera; the other is to build a virtual testbed by creating a three-dimensional virtual small intestine model and simulating the motion of the capsule. Based on the virtual testbed, a physiological factor, intestinal contraction, has been studied in terms of its influence on visual based localization algorithm and a geometric model for measuring the amount of contraction is proposed and validated via the virtual testbed. Empirical results have made contributions in support of the performance evaluation of other research on the visual based localization algorithm of VCE.
16

On the Performance of In-Body RF Localization Techniques

Swar, Pranay P 01 June 2012 (has links)
"Localization inside the human body using Radio Frequency (RF) transmission is gaining importance in a number of applications such as Wireless Capsule Endoscopy. The accuracy of RF localization depends on the technology adopted for this purpose. The two most common RF localization technologies use Received Signal Strength (RSS) and Time-Of-Arrival (TOA). This research first provides bounds for accuracy of localization of a Endoscopy capsule inside the human body as it moves through the gastro-Intestinal track with and without randomness in transmit power using RSS based localization with a triangulation algorithm. It is observed that in spite of presence of a large number of anchor nodes; the localization error is still in range of few cm, which is quite high; hence we resort to TOA based localization. Due to lack of a widely accepted model for TOA based localization inside human body we use a computational technique for simulation inside and around the human body, named Finite Difference Time Domain (FDTD). We first show that our proprietary FDTD simulation software shows acceptable results when compared with real empirical measurements using a vector network analyzer. We then show that, the FDTD method, which has been used extensively in all kinds of electromagnetic modeling due to its versatility and simplicity, suffers seriously because of its demanding requirement on memory storage and computation time, which is due to its inherently recursive nature and the need for absorbing boundary conditions. In this research we suggest a novel computationally efficient technique for simulation using FDTD by considering FDTD as a Linear Time Invariant (LTI) system. Then we use the software to simulate the TOA of the narrowband and wideband signals propagated inside the human body for RF localization to compare the accuracies of the two using this method. "
17

Wireless graphene-based electrocardiogram (ECG) sensor including multiple physiological measurement system

Celik, Numan January 2017 (has links)
In this thesis, a novel graphene (GN) based electrocardiogram (ECG) sensor is designed, constructed and tested to validate the concept of coating GN, which is a highly electrically conductive material, on Ag substrates of conventional electrodes. The background theory, design, experiments and results for the proposed GN-based ECG sensor are also presented. Due to the attractive electrical and physical characteristics of graphene, a new ECG sensor was investigated by coating GN onto itself. The main focus of this project was to examine the effect of GN on ECG monitoring and to compare its performance with conventional methods. A thorough investigation into GN synthesis on Ag substrate was conducted, which was accompanied by extensive simulation and experimentation. A GN-enabled ECG electrode was characterised by Raman spectroscopy, scanning electron microscopy along with electrical resistivity and conductivity measurements. The results obtained from the GN characteristic experimentation on Raman spectroscopy, detected a 2D peak in the GN-coated electrode, which was not observed with the conventional Ag/AgCl electrode. SEM characterisation also revealed that a GN coating smooths the surface of the electrode and hence, improves the skin-to-electrode contact. Furthermore, a comparison regarding the electrical conductivity calculation was made between the proposed GN-coated electrodes and conventional Ag/AgCl ones. The resistance values obtained were 212.4 Ω and 28.3 Ω for bare and GN-coated electrodes, respectively. That indicates that the electrical conductivity of GN-based electrodes is superior and hence, it is concluded that skin-electrode contact impedance can be lowered by their usage. Additional COMSOL simulation was carried out to observe the effect of an electrical field and surface charge density using GN-coated and conventional Ag/AgCl electrodes on a simplified human skin model. The results demonstrated the effectiveness of the addition of electrical field and surface charge capabilities and hence, coating GN on Ag substrates was validated through this simulation. This novel ECG electrode was tested with various types of electrodes on ten different subjects in order to analyse the obtained ECG signals. The experimental results clearly showed that the proposed GN-based electrode exhibits the best performance in terms of ECG signal quality, detection of critical waves of ECG morphology (P-wave, QRS complex and T-wave), signal-to-noise ratio (SNR) with 27.0 dB and skin-electrode contact impedance (65.82 kΩ at 20 Hz) when compared to those obtained by conventional a Ag/AgCl electrode. Moreover, this proposed GN-based ECG sensor was integrated with core body temperature (CBT) sensor in an ear-based device, which was designed and printed using 3D technology. Subsequently, a finger clipped photoplethysmography (PPG) sensor was integrated with the two-sensors in an Arduino based data acquisition system, which was placed on the subject's arm to enable a wearable multiple physiological measurement system. The physiological information of ECG and CBT was obtained from the ear of the subject, whilst the PPG signal was acquired from the finger. Furthermore, this multiple physiological signal was wirelessly transmitted to the smartphone to achieve continuous and real-time monitoring of physiological signals (ECG, CBT and PPG) on a dedicated app developed using the Java programming language. The proposed system has plenty of room for performance improvement and future development will make it adaptabadaptable, hence being more convenient for the users to implement other applications than at present.
18

Contribution to deterministic simulation of Body area network channels in the context of group navigation and body motion analysis / Contribution à la simulation déterministe du canal Body area network dans le contexte de la navigation du groupe et analyse du mouvement du corps

Mhedhbi, Meriem 02 October 2015 (has links)
Les progrès récents dans les technologies et les systèmes de communications sans fil soutenus par la miniaturisation de dispositifs ont donné naissance une nouvelle génération de réseaux personnels permettant des communications autour du corps humain: les réseaux corporels. Cette thèse étudie les différents types du canal de propagation des réseaux corporels en environnement intérieur dans le contexte de l’analyse du mouvement et de la navigation de groupe. Dans ce travail, une approche de simulation pour le cala de propagation est présenté. Le simulateur de canal de propagation est basé sur les techniques de tracé de rayons et l’approche de simulation est basée sur l’utilisation d’antennes perturbées et l’utilisation des données de capture de mouvement pour la modélisation de la mobilité humaine. Premièrement, nous étudions la question de l’antenne et l’influence de la proximité du corps humain sur diagramme de rayonnement de l’antenne. En outre, un modèle simple utilisé pour prédire le diagramme de rayonnement d’une antenne placée à proximité d’un corps humain. Deuxièmement, le simulateur physique est présenté et l’approche de simulation est introduite. Afin de vérifier l’approche proposée, des simulations préliminaires ont été effectuées et une première comparaison avec des donnes de mesures disponibles est faite. Enfin, une campagne de mesure spécifique joignant les données radio et les données de capture de mouvement a été exploitée pour valider et évaluer les résultats de la simulation. / Recent advances in wireless technologies and system, empowered by the miniaturization of devices, give rise to a new generation of Personal Area Networks allowing communications around the human body : Body Area networks. This thesis studies the Body Area Network channels in indoor environment in the context of motion analysis and group navigation. In this work a simulation approach for BAN channels is presented. The propagation channel simulator is based on ray tracing and the simulation approach is based on using perturbed antennas and the use of motion capture data for modelling the human mobility. Firstly, we investigate the antenna issue and the influence of the human body prox- imity on antenna radiation pattern. Besides, a simple model used to predict the antenna radiation pattern placed in proximity to a human body. Secondly, the physical sim- ulator is presented and the simulation approach is introduced. In order to check the proposed approach, preliminary simulations were carried out and a first comparison with available measurement data is made. Finally, a specific measurement campaign jointing radio data and motion capture data was exploited to validate and evaluate the simulation results.
19

Design and Performance of Diversity based Wireless Interfaces for Sensor Network Nodes

Jobs, Magnus January 2013 (has links)
The main focus of the work presented in this licentiate thesis concerns antenna design, adaptive antenna control and investigation on how the performance of small wireless nodes can be increased by inclusion of multiple antennas. In order to provide an end-user suitable solution for wireless nodes the devices require both small form factor and good performance in order to be competitive on the marked and thus the main part of this thesis focuses on techniques developed to achieve these goals. Two prototype systems have been developed where one has been used by National Defence Research Agency (FOI) to successfully monitor a test-subject moving in an outdoor terrain. The other prototype system shows the overall performance gain achievable in a wireless sensor node when multiple antennas and antenna beam steering is used. As an example of how to include multiple antennas in a wireless node the concept of using dual conformal patch antennas for wireless nodes is presented. The proposed antenna showed an excess of 10 dB gain when using a single driven antenna element as would be the case in a system utilizing antenna selection combining. When used as a 2-element phased array, up to 19 dB gain was obtained in a multiscattering environment. Using the second order resonance the proposed antenna structure achieves low mutual coupling and a reflection coefficient lower than -15 dB. The presented antenna design shows how a dual antenna wireless node can be designed using discrete phase control with passive matching which provides a good adaptive antenna solution usable for wireless sensor networks. The inclusion of discrete phase sweep diversity in a wireless node has been evaluated and shown to provide a significant diversity gain. The diversity gain of a discrete phase sweep diversity based system was measured in both a reverberation chamber and a real life office environment. The former environment showed between 5.5 to 10.3 dB diversity gain depending on the detector architecture and the latter showed a diversity gain ranging from 1 to 5.4 dB. Also the performance of nodes designed to be placed in a high temperature and multiscattering environment (the fan stage of a jet engine) has been evaluated. The work was carried out in order to verify that a wireless sensor network is able to operate in such a multiscattering environment. It was shown that the wireless nodes are able to operate in an emulated turbine environment based on real-life measured turbine fading data. The tested sensor network was able to transmit 32 byte packages using cyclic redundancy check at 2 Mbps at an engine speed of 13.000 rpm. / WISENET / WISEJET
20

A Driver Circuit for Body-Coupled Communication

Korishe, Abdulah January 2013 (has links)
The main concept of Body-Coupled Communication (BCC) is to transmit the electrical information through the human body as a communication medium by means of capacitive coupling. Nowadays the current research of wireless body area network are expanding more with the new ideas and topologies for better result in respect to the low power and area, security, reliability and sensitivity since it is first introduced by the Zimmerman in 1995. In contrast with the other existing wireless communication technology such as WiFi, Bluetooth and Zigbee, the BCC is going to increase the number of applications as well as solves the problem with the cell based communication system depending upon the frequency allocation. In addition, this promising technology has been standardized by a task group named IEEE 802.15.6 addressing a reliable and feasible system for low power in-body and on-body nodes that serves a variety of medical and non medical applications. The entire BAN project is divided into three major parts consisting of application layer, digital baseband and analog front end (AFE) transceiver. In the thesis work a strong driver circuit for BCC is implemented as an analog front end transmitter (Tx). The primary purpose of the study is to transmit a strong signal as the signal is attenuated by the body around 60 dB. The Driver circuit is cascaded of two single-stage inverter and an identical inverter with drain resistor. The entire driver circuit is designed with ST65 nm CMOS technology with 1.2 V supply operated at 10 MHz frequency, has a driving capability of 6 mA which is the basic requirement. The performance of the transmitter is compared with the other architecture by integrating different analysis such as corner analysis, noise analysis and eye diagram. The cycle to cycle jitter is 0.87% which is well below to the maximum point and the power supply rejection ratio (PSRR) is 65 dB indicates the good emission of supply noise. In addition, the transmitter does not require a filter to emit the noise because the body acts like a low pass filter. In conclusion the findings of the thesis work is quite healthy compared to the previous work. Finally, there is some point to improve for the driver circuit in respect to the power consumption, propagation delay and leakage power in the future.

Page generated in 0.0701 seconds