• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 3
  • 2
  • Tagged with
  • 43
  • 43
  • 43
  • 22
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Driver Circuit for Body-Coupled Communication

Korishe, Abdulah January 2013 (has links)
The main concept of Body-Coupled Communication (BCC) is to transmit the electrical information through the human body as a communication medium by means of capacitive coupling. Nowadays the current research of wireless body area network are expanding more with the new ideas and topologies for better result in respect to the low power and area, security, reliability and sensitivity since it is first introduced by the Zimmerman in 1995. In contrast with the other existing wireless communication technology such as WiFi, Bluetooth and Zigbee, the BCC is going to increase the number of applications as well as solves the problem with the cell based communication system depending upon the frequency allocation. In addition, this promising technology has been standardized by a task group named IEEE 802.15.6 addressing a reliable and feasible system for low power in-body and on-body nodes that serves a variety of medical and non medical applications. The entire BAN project is divided into three major parts consisting of application layer, digital baseband and analog front end (AFE) transceiver. In the thesis work a strong driver circuit for BCC is implemented as an analog front end transmitter (Tx). The primary purpose of the study is to transmit a strong signal as the signal is attenuated by the body around 60 dB. The Driver circuit is cascaded of two single-stage inverter and an identical inverter with drain resistor. The entire driver circuit is designed with ST65 nm CMOS technology with 1.2 V supply operated at 10 MHz frequency, has a driving capability of 6 mA which is the basic requirement. The performance of the transmitter is compared with the other architecture by integrating different analysis such as corner analysis, noise analysis and eye diagram. The cycle to cycle jitter is 0.87% which is well below to the maximum point and the power supply rejection ratio (PSRR) is 65 dB indicates the good emission of supply noise. In addition, the transmitter does not require a filter to emit the noise because the body acts like a low pass filter. In conclusion the findings of the thesis work is quite healthy compared to the previous work. Finally, there is some point to improve for the driver circuit in respect to the power consumption, propagation delay and leakage power in the future.
12

An Input Amplifier for Body-Channel Communication

Maruf, Md Hasan January 2013 (has links)
Body-channel communication (BCC) is based on the principle of electrical field data transmission attributable to capacitive coupling through the human body. It is gaining importance now a day in the scenario of human centric communication because it truly offers a natural means of interaction with the human body. Traditionally, near field communication (NFC) considers as a magnetic field coupling based on radio frequency identification (RFID) technology. The RFID technology also limits the definition of NFC and thus reduces the scope of a wide range of applications. In recent years BCC, after its first origin in 1995, regain importance with its valuable application in biomedical systems. Primarily, KAIST and Philips research groups demonstrate BCC in the context of biomedical remote patient health monitoring system. BCC transceiver mainly consists of two parts: one is digital baseband and the other is an analog front end (AFE). In this thesis, an analog front end receiver has presented to support the overall BCC. The receiver (Rx) architecture consists of cascaded preamplifier and Schmitt trigger. When the signals are coming from the human body, they are attenuated around 60 dB and gives weak signals in the range of mV. A high gain preamplifier stage needs to amplify these weak signals and make them as strong signals. The preamplifier single stage needs to cascade for the gain requirement. The single stage preamplifier, which is designed with ST65 nm technology, has an open loop gain of 24.01 dB and close loop gain of 19.43 dB. A flipped voltage follower (FVF) topology is used for designing this preamplifier to support the low supply voltage of 1 V because the topology supports low voltage, low noise and also low power consumption. The input-referred noise is 8.69 nV/sqrt(Hz) and the SNR at the input are 73.26 dB. The Schmitt trigger (comparator with hysteresis) is a bistable positive feedback circuit. It builds around two stage OTA with lead frequency compensation. The DC gain for this OTA is 26.94 dB with 1 V supply voltage. The corner analyzes and eye diagram as a performance matrix for the overall receiver are also included in this thesis work.
13

Connected Me : Hardware for high speed BCC

Babu, Bibin January 2012 (has links)
Body coupled communication (BCC) is a hot topic in personal networking domain. Many works arepublished suggesting different architectures for BCC since its inception in 1995 by Zimmerman. The number ofelectronic gadgets used by a single person increases as time pass by. Its a tedious job to transfer data betweenthen from a user point of view. Many of these gadgets can share their resources and save power and money.The existing wired or wireless networks does not meet the requirements for this network like scalable data rate,security etc. So here comes the novel idea of using human body as communication medium. The aim of thisthesis is to realize a hardware for BCC based on wide band signaling as part of a big project.The human body consists of 70% of water. This property makes the human body a fairly good conductor.By exploiting this basic property makes the BCC possible. A capacitance is formed if we place a metal platenear to the human body with the skin as a dielectric. This capacitance forms the interface between the humanbody and the analog front-end of the BCC transceiver. Any other metal structures near to the human body canattenuate the signal.A first-order communication link is established in software by the human body model and the transceiver inthe loop along with noise and interference. This communication link is used to verify the human body modeland the base band model done as part of the same big project. Based on the results a hardware prototype isimplemented. Measurements are taken in different scenarios using the hardware setup. The trade-off betweendesign parameters are discussed based on the results. At the end, it suggests a road map to take the projectfurther.
14

Geometrical theory, modeling and applications of channel polarization

Kwon, Seok Chul 12 January 2015 (has links)
Long-term evolution (LTE) standard has been successfully stabilized, and launched in several areas. However, the required channel capacity is expected to increase significantly as the explosively increasing number of smart-phone users implies. Hence, this is already the time for leading researchers to concentrate on a new multiple access scheme in wireless communications to satisfy the channel capacity that those smart users will want in the not-too-distant future. The diversity and multiplexing in a new domain - polarization domain - can be a strong candidate for the solution to that problem in future wireless communication systems. This research contributes largely to the comprehensive understanding of polarized wireless channels and a new multiple access scheme in the polarization domain - polarization division multiple access (PDMA). The thesis consists of three streams: 1) a novel geometrical theory and models for fixed-to-mobile (F2M) and mobile-to-mobile (M2M) polarized wireless channels; 2) a new wireless body area network (BAN) polarized channel modeling; and 3) a novel PDMA scheme. The proposed geometrical theory and models reveal the origin and mechanism of channel depolarization with excellent agreement with empirical data in terms of cross-polarization discrimination (XPD), which is the principal measure of channel depolarization. Further, a novel PDMA scheme utilizing polarization-filtering detection and collaborative transmitter-receiver-polarization (Tx-Rx-polarization) adjustment, is designed considering cellular orthogonal frequency division multiplexing (OFDM) systems. The novel PDMA scheme has large potential to be utilized with the conventional time, frequency, and code division multiple access (TDMA, FDMA, and CDMA); and spatial multiplexing for next-generation wireless communication systems.
15

Secure Key Agreement for Wearable Medical Devices

Kasparek, Alexander J 05 December 2019 (has links)
In this thesis we explore if a proposed random binary sequence generation algorithm can be combined with a separately proposed symmetric key agreement protocol to provide usable security for communications in Wireless Body Area Networks (WBAN). Other previous works in this area fall short by only considering key generation between two of the same signals or allowing for key generation between two different types of signals but with the cost of a significant signal collection time requirement. We hoped to advance this area of research by making secure key generation more efficient with less signal collection time and allowing keys to be generated between two sensors that measure two different physiological signals. However, while the binary sequence generation algorithm and key agreement protocol perform well separately, they do not perform well together. The combined approach yields keys that have good properties for use in a WBAN, but the generation rate is low.
16

NON-CONTACT WEARABLE BODY AREA NETWORK FOR DRIVER HEALTH AND FATIGUE MONITORING

Sun, Ye 02 September 2014 (has links)
No description available.
17

Dielectric Resonator Antennas (DRA) for satellite and body area network applications / Étude et réalisation de antennes diélectriques pour les applications satellitaires et corps (BAN)

Alam, Muhammad Faiz 02 July 2012 (has links)
Dans cette thèse, on vise deux types d'applications de l’antenne à résonateur diélectrique (DRA): 1) La réalisation d’un élément rayonnant pour un réseau phasé embarqué sur un véhicule terrestre ou un avion. Cet élément de base requiert une couverture en élévation supérieure à celle des éléments imprimés pour permettre une poursuite typique comprise entre ±70°. La couverture dans un cône large est assurée avec une bonne pureté de polarisation circulaire en alimentant l’antenne à travers deux ouvertures à fente en H orthogonales parfaitement découplées en bande X. 2) La deuxième structure est destinée à la diversité d’antennes dans le contexte des réseaux corporels embarqués ou Body Area Network (BAN). L’antenne à diversité combine une antenne fente en boucle avec un DRA ce qui permet dans un espace compact de réaliser des diagrammes de type “broadside” et “endfire” respectivement. Les alimentations considérées sont de 2 types; Soit purement planaire (microruban et coplanaire) soit mixte en combinant une alimentation coaxiale et une alimentation coplanaire. Caractéristiques principales des antennes à résonateur diélectrique (DRA): Pour répondre aux attentes des utilisateurs en termes de débit, les systèmes de communication sans fils se tournent vers des fréquences de plus en plus élevées. La conséquence de cette montée en fréquence est notamment l’augmentation des pertes au niveau des éléments conducteurs et donc une diminution de l’efficacité globale des systèmes de communication. Dans ces circonstances, les DRA offre de meilleurs résultats par rapport à d'autres familles d'antennes à base d’éléments métalliques. De plus, les DRA offrent des pertes diélectriques négligeables, elles sont peu sensibles aux variations de température et s’intègrent facilement sur des technologies de fabrication planaires / Technologies such as direct broad cast satellite system (DBSS), Geosynchronous Earth Orbit (GEO) and Low Earth Orbit (LEO) satellite communications , global positioning system (GPS), high accuracy airborne navigation system and a large variety of radar systems demand for high level of antenna performance. Similar is the requirement for upcoming land based wireless systems such as cellular and indoor communication systems that is needed some more specific and additional features added to the antenna to compensate for the deficiencies encountered in system's performance. Though metallic antennas are capable enough to fulfil all the operational requirements, however at very high frequencies and under hostile temperature conditions they are constrained to face certain limitations. To avoid these constraints the performance of Dielectric Resonator Antennas (DRAs) is evaluated and their new applications are proposed. In the thesis, two types of antenna applications are sought :-First is for tracking and satellite applications that needs a larger aperture coverage in elevation plane. This coverage is realized with a good CP purity by proposing two ports dual linearly polarized DRA working at X-band. The DRA is excited by two orthogonal H-shaped aperture slots yielding two orthogonal polarizations in the broadside direction. A common impedance bandwidth of 5.9% and input port isolation of -35 dB are obtained. The broadside radiation patterns are found to be highly symmetric and stable with cross polarization levels -15dB or better over the entire matching frequency band. The maximum measured gain is found to be 2.5dBi at 8.4 GHz.- The 2nd type of antenna is a dual pattern diversity antenna to be used in the Body Area Network (BAN) context. This antenna combines a slot loop and DRA yielding broadside and end-fire radiation patterns respectively. Based upon the feeding techniques, the DG antenna is further divided into two categories one with planar feeds and the other with non-planar feeds (slot loop excited by planar CPW but DRA excited by vertical monopole) .Both types are successfully designed and measured upon body when configured into different propagation scenarios. The non-planar feeds antenna allows wider common impedance bandwidths than the planar feeds (4.95% vs 1.5%).In both cases, a maximum value of DG=9.5dB was achieved when diversity performance tests were carried out in rich fading environments. This value is close to the one (10 dB) theoretically reached in a pure Rayleigh environment and was obtained with efficiencies of 70% and 85% for the slot loop and the DRA respectively. Therefore, we conclude that these antennas could be used on the shoulders or the chest of professional clothes (firemen, policemen, soldier) where full planar integration is not a key issue but where the communication must be efficient in harsh environments and for various gestures, positions and scenarios
18

Multi-channel security protocols in personal networks

Huang, Xin January 2014 (has links)
Personal computing devices are becoming more and more popular. These devices are able to collaborate with each other using wireless communication technologies, and then support many applications. Some interesting examples of these are healthcare, context-aware computing, and sports training. In any such applications, security is of vital importance. Firstly, sensitive personal data is always collected in these applications, thus confidentiality is usually required. Secondly, authenticity and integrity of data or instructions are always critical; incorrect data or instructions are not only useless, but also harmful in some cases. This thesis analyses the security requirements of personal networks, and develops a number of multi-channel security protocols. With the help of out-of-band channels, especially no-spoofing and no-blocking out-of-band channels, these protocols can bootstrap security in personal networks. In particular, three kinds of security protocols have been studied: protocols that use human-controlled channels, protocols that use visible light communications, and protocols that use intra-body communications. Interesting trade-offs have been discovered among communication, computation and security, resulting from different channel implementations and protocols.
19

Selected methods for WBAN communications:FM-UWB and SmartBAN PHY

Viittala, H. (Harri) 05 December 2017 (has links)
Abstract The value of wearable market is booming, especially in the healthcare application segment. This segment is driven by an increasing need for regular monitoring and early diagnosis of patients with growing prevalence of chronic diseases. Wireless communications worn in the close proximity of the body, the variety of applications, and their requirements set design considerations and challenges. In addition to the technical requirements, coexistence with adjacent wireless body area networks (WBANs) and other wireless systems need to be taken into account. A WBAN system needs to be highly reliable, low power, fast, and interference-immune. This thesis studies the performance of two different PHY layer implementations in interfered fading channels. The systems are the frequency modulated ultra wideband (FM-UWB), defined in the IEEE 802.15.6 standard, and narrowband SmartBAN physical layer. The performance of the systems was analyzed by using software simulators developed in Matlab. The author developed the SmartBAN simulator for the ETSI Technical Committee (TC) SmartBAN to study the performance of the new SmartBAN system. This is the first physical layer performance study of the SmartBAN system. In addition, the open literature does not offer similar results on the FM-UWB as presented in this thesis. Based on the results, it can be concluded that the FM-UWB is performing well in situations where high reliability and high interference tolerance is needed. In addition, the simplicity of the FM-UWB transceiver makes it more suitable than the direct sequence UWB (DS-UWB) for applications with data rates of hundreds of kbps. SmartBAN has the best performance in cases where more relaxed requirements for reliability and interference tolerance can be applied. Nevertheless, it became obvious that both systems need proper coexistence and interference mitigation mechanisms to ensure reliability in all scenarios. / Tiivistelmä Puettavien laitteiden markkina-arvo on voimakkaassa kasvussa erityisesti terveydenhuollon sovellusalueella. Tämän sovellusalueen kiihdyttimenä toimii yhä suurempi tarve potilaiden kunnon jatkuvalle tarkkailulle sekä kroonisille taudeille alttiimpien potilaiden varhaiselle diagnosoinnille. Langattoman kehoverkon (WBAN) suunnittelun suurimpia haasteita ovat langaton tiedonsiirto kehon läheisyydessä, erilaiset sovellustyypit sekä niiden vaatimukset. Teknisten vaatimusten lisäksi on myös huomioitava rinnakkaiset kehoverkot sekä muut langattomat järjestelmät. Kehoverkkojärjestelmän on oltava todella luotettava, matalatehoinen, nopea ja häiriösietoinen. Väitöskirjassa tutkitaan kahta kehoverkon fyysisen kerroksen toteutusta häipyvissä ja häirityissä kanavissa. Nämä toteutukset ovat IEEE 802.15.6 -standardissa määritelty taajuusmoduloitu ultralaajakaista (FM-UWB) sekä kapeakaistainen SmartBAN. Järjestelmien suorituskykyä analysoitiin Matlab-ohjelmistosimulaattoreiden avulla. Työssä kehitettiin SmartBAN-simulaattori ETSI Technical Committee (TC) SmartBAN -työryhmälle järjestelmän suorityskykytutkimukseen. Tässä työssä esitetään SmartBAN-järjestelmän fyysisen kerroksen suorituskykytulokset, jotka ovat ensimmäiset laatuaan. Lisäksi kirjallisuudesta ei löydy vastaavia tuloksia FM-UWB:n osalta, kuten tässä työssä on esitetty. Tuloksien pohjalta voidaan päätellä, että FM-UWB suoriutuu hyvin tilanteissa, joissa vaaditaan suurta luotettavuutta sekä suurta häiriönsietokykyä. Lisäksi yksinkertainen lähetin-vastaanotinrakenne tekee siitä kiinnostavamman vaihtoehdon kuin suorahajotettu UWB (DS-UWB) sovelluksille, jotka vaativat satojen kbps:n tiedonsiirtonopeutta. SmartBAN toimii hyvin tilanteissa, joissa näistä vaatimuksista voidaan hieman joustaa. Kuitenkin on selvää, että molemmat järjestelmät tarvitsevat sopivan rinnakkais- ja häiriönvaimennustekniikan taatakseen luotettavuuden kaikissa tapauksissa.
20

Wireless Body Area Network in Real-time Monitoring Application

Chakraborty, Suryadip January 2013 (has links)
No description available.

Page generated in 0.1083 seconds