• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 161
  • 58
  • 33
  • 30
  • 9
  • 5
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 412
  • 177
  • 118
  • 95
  • 82
  • 68
  • 67
  • 60
  • 56
  • 54
  • 48
  • 45
  • 42
  • 40
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Estudo da ebulição convectiva de nanofluidos no interior de microcanais / Study of nanofluids convective boiling inside microchannels

Cabral, Francismara Pires 29 May 2012 (has links)
Este trabalho trata do estudo teórico do ebulição convectiva de nanofluidos em canais de diâmetro reduzido (denominados de microcanais). Ele aborda, primeiramente, uma análise da literatura sobre a ebulição convectiva de fluidos convencionais em microcanais, na qual são discutidos critérios para a transição entre macro e microcanais e os padrões de escoamentos observados em canais de reduzido diâmetro. Métodos para a previsão das propriedades de transporte de nanofluidos foram levantados da literatura e estudos experimentais da convecção forçada, da ebulição nucleada e da ebulição convectiva de nanofluidos foram discutidos. Um método para a previsão do coeficiente de transferência de calor de nanofluidos em microcanais durante a ebulição convectiva foi proposto baseado em modelos convencionais da literatura ajustados para nanofluidos. O ajuste dos modelos convencionais foi realizado através de análise regressiva de dados experimentais para ebulição nucleada e convecção forçada de nanofluidos levantados da literatura, e da análise crítica de adimensionais que capturassem a influência das nanopartículas no processo de transferência de calor. De maneira geral o método proposto neste estudo apresenta concordância razoável com dados experimentais independentes, referente ao acréscimo do coeficiente de transferência de calor com o incremento da concentração volumétrica de nanopartículas. No entanto, a escassez de estudos experimentais sobre a ebulição convectiva de nanofluidos, especialmente em microcanais, impossibilitou uma análise mais aprofundada do método proposto. / The present work aims the theoretical study of convective boiling of nanofluids in small diameter channels (called microchannel). It discusses an analysis of the literature on convective boiling of conventional fluids in microchannels which presents criteria for the transition between conventional and microchannels and the flow patterns observed in small diameter channels. Methods for predicting the transport properties of nanofluids were compiled from the literature and experimental studies of forced convection, nucleate boiling and convective boiling of nanofluids were discussed. A method for predicting the heat transfer coefficient of nanofluids in microchannels during convective boiling was proposed based on conventional models from literature adjusted to nanofluids. The conventional models fitting was performed by regression analysis of experimental data for nucleate boiling and forced convection of nanofluids compiled from the literature and by critical analysis of dimensionless numbers which enable to capture the influence of nanoparticles on heat transfer process. In general the proposed method in this work presents reasonable agreement with independent experimental data regarding the increase in heat transfer coefficient with increasing nanoparticles volume fraction. However the scarcity of experimental studies on the convective boiling of nanofluids, especially in microchannels, precluded further analysis of the proposed method.
92

The boiling of LNG gas on water : the foaming phenomena

Solis Quintero, Otto Johnny January 1978 (has links)
Thesis. 1978. M.S. cn--Massachusetts Institute of Technology. Dept. of Chemical Engineering. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Bibliography: leaves 124-131. / / by Otto J. Solis. / M.S.cn
93

Thermal boundary layer development in dispersed flow film boiling

Hull, Lawrence M January 1982 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Lawrence M. Hull. / Ph.D.
94

Post critical heat flux heat transfer to water in a vertical tube.

Kaufman, Jill McQuee. January 1977 (has links)
Thesis. 1977. M.S.--Massachusetts Institute of Technology. Dept. of Mechanical Engineering. / Includes bibliographical references. / Thesis. 1977. M.S.--Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
95

Tungsten is Essential for Long-Term Maintenance of Members of Candidate Archaeal Genus Aigarchaeota Group 4

Dimapilis, Joshua Robert Reyes 01 September 2019 (has links)
Aigarchaeota, a deeply branching archaeal lineage with no cultivated representatives, is found in geothermal and hydrothermal systems worldwide and consists of at least 9 genus-level groups, each predicted to have diverse metabolic capabilities. This candidate archaeal phylum is part of the TACK superphylum, members of which possess eukaryotic-signature proteins, thus suggesting that they may represent evolutionary steps along the way to the genesis of the first eukaryotic cells. Cultivating members of Aigarchaeota would elucidate how eukaryotes arose in evolutionary history and provide biotechnological applications. Aigarchaeota Group 4 (AigG4), one genus in Aigarchaeota, was previously found to be abundant in corn stover in situ enrichments in Great Boiling Spring (GBS). AigG4 has been maintained in mixed laboratory cultures, where it composes ~ 0.5-1% of the community. However, these cultures could only be maintained when GBS water, which contains ~300 nM tungsten, was included in the medium. In addition, AigG4 metagenome bins from the in situ enrichments and laboratory cultures contained multiple genes encoding putative tungsten-containing aldehyde:ferredoxin oxidoreductases (TAORs). These observations led to the hypothesis that tungsten was the key component in GBS water that allowed for growth of AigG4. The requirement of tungsten for AigG4 long-term maintenance in mixed culture was tested using three different approaches: (1) Assessing the phylogeny of tungsten transporters and TAORs across the Aigarchaeota lineage, followed by confirmation of transcription of hypothesized AigG4 tungsten-associated genes in lab cultures, (2) Measuring tungsten levels in Great Boiling Spring (GBS) using ICP-OES (Inductively coupled plasma-optical emission spectroscopy), and (3) determining minimum amount of tungsten for long-term AigG4 maintenance in corn stover and in a defined mix of sugars (1% glucose, 1% xylose, 1% D-arabinose, 1% L-arabinose, 1% mannose). In addition, FISH (Fluorescent in situ hybridization) probes were designed to target the AigG4 lineage in the hopes that in conjunction with nanometer-scale secondary ion mass spectroscopy (Nano-SIMS), this would test whether tungsten has indirect or direct effects on AigG4 to track carbon substrate intake. Most Aigarchaeota lineages possess a tungsten transporter complex (TTC). AigG4 TTC groups most closely with the Tup family while other Aigarchaeota group with the Wtp family. Group 4 and Group 5 Aigarchaeota contained TAORs that grouped to other hypothesized TAORs but not to characterized counterparts suggesting diverse functional capabilities. Group 4 and Group 5 TAORs clustered together suggesting that these are conserved within these lineages. Gene expression of predicted AigG4 tungsten-associated enzymes was detected in culture. Tungsten was detected in GBS water as previously observed in 2005. In both corn stover and sugar mix, 1 nM tungsten was sufficient for long term AigG4 maintenance. In corn stover, AigG4 decreased to levels below detection after three 3-week transfer periods in 0 nM and 20 nM tungsten. In sugar mix, AigG4 abundance levels varied wildly in 0 nM tungsten after the fifth transfer period suggesting tungsten contamination. Two newly designed FISH probes exhibited lower fluorescence signal intensity than the previously designed FISH probe suggesting issues with either target site accessibility or conjugation of the fluorescent moiety to oligonucleotide probes.
96

Boiling Water Reactor Core Simulation with Generalized Isotopic Inventory Tracking for Actinide Management

Galloway, Jack Douglas 01 August 2010 (has links)
The computational ability to accurately simulate boiling water reactor operation under the full range of standard steady-state operation, along with the capability to fully track the isotopic distribution of any fueled region in any location in the core has been developed. This new three-dimensional node-by-node capability can help designers track, for example, a full suite of minor and major actinides, fission products, and even light elements that result from depletion, decay, or transmutations. This isotopic tracking capability is not restricted to BWRs and can be employed in the modeling of PWRs, CANDUs, and other reactor types that can be modeled with the NESTLE code, the base core simulator employed in this research. To accurately simulate boiling water reactor operation, a major thermal-hydraulics upgrade was performed which involved the implementation of a drift-flux solution scheme to model steady-state boiling water flow. Sub-cooled boiling and bulk boiling are accurately modeled and a scheme for computing the correct flow distribution has been implemented. In addition, the incorporation of a nodal ORIGEN-based microscopic depletion solution has been included which allows for exceptional detail in tracking a large number of elements in every node of a core design, thus accounting for spectral dependencies such as moderator density effects, moderator temperature effects, fuel temperature effects, as well as controlled or uncontrolled conditions. The results of this study show the excellent fidelity of the two-phase solution for accurately predicting the boiling of water when compared to experimental results. Likewise, the isotopic inventory results show near-identical agreement with the well-established and validated ORIGEN-based SCALE/TRITON isotopic depletion sequence. The aim of these developments is to eventually produce a publicly available three-dimensional core simulator capable of assessing detailed isotopic inventories, a capability particularly valuable for the evaluation of recycling scenarios and actinide management in a variety of reactor types and fuel designs.
97

Development of Micro/Nano-Scale Sensors for Investigation of Heat Transfer in Multi-Phase Flows

Jeon, Sae Il 2011 August 1900 (has links)
The objective of this investigation was to develop micro/nano-scale temperature sensors for measuring surface temperature transients in multi-phase flows and heat transfer. Surface temperature fluctuations were measured on substrates exposed to phase change processes. Prior reports in the literature indicate that these miniature scale surface temperature fluctuations can result in 60-90 percent of the total heat flux during phase change heat transfer. In this study, DTS (Diode Temperature Sensors) were fabricated with a doping depth of ~100 nm on n-type silicon to measure the surface temperature transients on a substrate exposed to droplet impingement cooling. DTS are expected to have better sensor characteristics compared to TFTs (Thin Film Thermocouples), due to their small size and faster response (which comes at the expense of the smaller operating temperature range). Additional advantages of DTS include the availability of robust commercial micro fabrication processes (with diode and transistor node sizes currently in the size range of ~ 30 nm), and that only 2N wire leads can be used to interrogate a set of N x N array of sensors (in contrast thermocouples require 2 N x N wire leads for N x N sensor array). The DTS array was fabricated using conventional semi-conductor processes. The temperature response of the TFT and DTS was also calibrated using NIST standards. Transient temperature response of the DTS was recorded using droplet impingement cooling experiments. The droplet impingement cooling experiments were performed for two different test fluids (acetone and ethanol). An infrared camera was used to verify the surface temperature of the substrate and compare these measurements with the temperature values recorded by individual DTS. PVD (Physical Vapor Deposition) was used for obtaining the catalyst coatings for subsequent CNT synthesis using CVD (Chemical Vapor Deposition) as well as for fabricating the thin film thermocouple (TFT) arrays using the "lift-off" process. Flow boiling experiments were conducted for three different substrates. Flow boiling experiments on bare silicon wafer surface were treated as the control experiment, and the results were compared with that of CNT (Carbon Nano-Tube) coated silicon wafer surfaces. Similar experiments were also performed on a pure copper surface. In addition, experiments were performed using compact condensers. Micro-scale patterns fabricated on the refrigerant side of the compact heat exchanger were observed to cause significant enhancement of the condensation heat transfer coefficient.
98

Jet impingement boiling heat transfer at low coiling temperatures

Chan, Phillip 05 1900 (has links)
The production of advanced high strength steels (AHSS) for use in the automotive and construction industries requires complex control of runout table (ROT) cooling. Advanced high strength steels require coiling at temperatures below 500 °C in order to produce a complex multi-phase microstructure. The research described here will investigate the boiling conditions that occur for moving plate experiments when steel is cooled towards low coiling temperatures. Experiments were performed on a pilot-scale ROT located at the University of British Columbia using industrially supplied steel plates. Tests were performed for four different speeds (0.3, 0.6, 1.0 and 1.3 m/s) and three different initial plate temperatures(350, 500 and 600 °C). Each plate was instrumented with thermocouples in order to record the thermal history of the plate. The results show that cooling is more effective at slower speeds within the stagnation zone for surface temperatures over 200 °C. Outside the stagnation zone regardless of speed cooling is primarily governed by air convection and radiation with minor effects from latent heat caused by splashing water. The maximum peak heat flux value increases with decreasing speed and occurs at a surface temperature of approximately 200 °C, regardless of speed. Below a surface temperature of 200 °C, speed has a negligible effect on peak heat flux. The maximum integrated heat flux seems to vary with speed according to a second order polynomial.
99

Estudio experimental del proceso de calentamiento de medios porosos saturados hasta ebullición-"Dryout" de su fase líquida

Carbonell Ventura, Montserrat 04 February 2000 (has links)
La experimentación y posterior modelización de los procesos de transporte y transferencia de calor y de masa en medios poroso saturados encuentra un gran número de dificultades que se derivan fundamentalmente de la heterogeneidad del propio medio, de la metodología de su parametrización estructural y física para asimilarlo a un medio continuo.Los objetivos planteados en la presente tesis se han orientado hacia un mejor conocimiento de la influencia de diversos parámetros estructurales del medio poroso, así como de las propiedades de las substancias que constituyen la matriz sólida y la fase fluida saturante, en las características de ebullición de un medio poroso inicialmente saturado, calentado por su frontera inferior y limitado por una capa superior del mismo líquido saturante.A tal fin, se ha estudiado la influencia de la estructura del medio poroso (granular o fibrilar) y de la naturaleza de la sustancia que constituye la matriz sólida sobre la permeabilidad del medio poroso al agua y a una solución acuosa de tensioactivo, de baja concentración. Así mismo se ha estudiado la influencia respecto a la conductividad y difusividad térmicas efectivas en régimen no estacionario. Por último, utilizando la misma variedad de medios porosos saturados, se estudia el proceso de ebullición hasta que se alcanzan condiciones de "dryout", y se analizan las consecuencias que resultan de la variación de la estructura física del medio poroso, de la naturaleza de la sustancia que constituye su matriz sólida y de las propiedades del fluido saturante.En lo referente a las características fluidodinámicas y térmicas de los medios porosos estudiados se ha podido concluir:- La adición de un tensioactivo al agua saturante del medio poroso produce un comportamiento diferente según la naturaleza del sólido: en caso de inorgánica (arena) ocasiona un aumento de la permeabilidad intrínseca, mientras que en caso de orgánica (fibras de algodón) produce una reducción tanto mayor cuanto menor es la porosidad del medio poroso. Las causas de este diferente comportamiento, son las notables diferencias de absorción del tensioactivo según el tipo de sólido (orgánico o inorgánico) y la mejora substancial de la humectación de la superficie del sólido inorgánico por el fluido lo que activa la eficacia de desplazamiento de toda fase no acuosa adsorbida o retenida entre partículas.- La difusividad térmica efectiva promediada espacialmente tiende al valor de la difusividad del componente del medio poroso de menor difusividad térmica a medida que transcurre el tiempo de calentamiento.- La difusividad térmica efectiva de los medios porosos saturados en los que &#61548;s / &#61548;l < 1 se aproxima a la de la fase líquida; en los medios para los que &#61548;s / &#61548;l >> 1, dicha difusividad térmica efectiva es un grado de orden superior a la de la fase líquida.- La adición de tensioactivo a la fase líquida saturante provoca la disminución de la conductividad térmica efectiva de medio poroso saturado en aquellos en que la fase sólida es granular e inorgánica.En lo referente al proceso de calentamiento de un medio poroso saturado hasta ebullición-"dryout" de su fase líquida se ha descrito un modelo físico de comportamiento de los diferentes medios porosos que comporta las siguientes fases:i) Calentamiento del medio hasta la temperatura de saturación de su fase líquida, con evidente aumento de volumen de las fases sólida y líquida por dilatación térmica.ii) Proceso de evaporación con formación de una capa bifásica cuya frontera superior se desplaza a la velocidad del frente de vapor. Simultáneamente se produce una disminución de la presión fluidoestática en la frontera de la capa bifásica, lo que se traduce en una reducción del reflujo de líquido hacia la placa calefactora.iii) Total desaturación de la entrefase medio poroso-placa calefactora al recibir por reflujo menos líquido del que es capaz de evaporar la placa calefactora. Aparición del "dryout" y elevación progresiva de la temperatura de la placa.iv) Aparición, en algún caso, de un fenómeno de basculamiento de la fase líquida desde la capa subenfriada a la zona desaturada del medio poroso. / A large number of difficulties are found in the experimentation and later modelization of transport and transfer heat and mass process in saturated porous media, which basically derive from the heterogeneity of the medium, the methodology of structural and physic parameterization to assimilate it to a continuous medium.The raised aims in this doctoral thesis have been directed towards a better knowledge of the influence of several structural parameters of the porous medium, as well as of the properties of the solid matrix and the saturating fluid phase, in the characteristics of boiling of an initially saturated porous medium, heated by its lower boundary and limited by an upper layer of the same saturating liquid.For this, the influence of the structure of the porous medium (granular or fibrous) and the nature of the solid matrix on the permeability to water and to a surfactant solution of lower concentration have been studied. The influence in relation to effective thermal conductivity and diffusivity in unstationary regime has also been studied. Finally, the boiling process until to achieve dryout conditions has been studied, and the consequences result from the variation of the physical structure of the porous medium, the nature of the solid matrix and the properties of the saturating fluid have been analyzed.About the fluid dynamic and thermal characteristics of the porous media studied, the thesis concludes that:- The addition of a surfactant to the saturating water of the porous medium produces a different behaviour depending on the nature of the solid: in inorganic matrix (sand) occasions an increase in the intrinsic permeability, whereas in organic matrix (cotton fibres) produces a decrease as greater as smaller is the porosity of the porous medium. The reasons of this different behaviour are the notable differences of absorption of the surfactant depending on the sort of solid matrix (organic or inorganic) and the important increase of the wetting of the inorganic solid's surface by the fluid activating the displacement of all adsorbed or retained not watery phase between particles.- The spatially averaged effective thermal diffusivity tends to the value of the diffusivity of the component of the porous medium with lower thermal diffusivity throughout the boiling process.- The effective thermal diffusivity of the saturated porous media which have &#61548;s / &#61548;l < 1 approaches to of the liquid phase; in the media with &#61548;s / &#61548;l >> 1, the effective thermal diffusivity is a grade of upper order to the of liquid phase.- The addition of surfactant to the saturating liquid phase gives rise to the decrease of the effective thermal conductivity of the saturated porous medium with granular and inorganic solid phase. A physical model of behaviour of the different saturated porous media concerning heating process until to achieve dryout conditions has been described considering the next phases:i) Heating of the medium until the saturation temperature of its liquid phase, with evident increase of volume of the solid and liquid phases by thermal dilatation.ii) Evaporation process with creation of a biphasic layer whose upper boundary displaces to the velocity of the vapour front. Simultaneously a decrease of the fluid static pressure in the boundary of the biphasic layer is produced, what result in a reduction of the reflux of liquid towards the heating plate.iii) Total unsaturation of the porous medium-heating plate interphase caused by to receive less liquid by reflux that the heating plate is capable of evaporating.iv) Appearance, in some case, of a fast phenomenon of turn upside down of the liquid phase from subcooled layer to the unsaturated zone of the porous medium.
100

Boiling in Mini and Micro-Channels

Olayiwola, Nurudeen Oladipupo 23 June 2005 (has links)
Cooling systems that consist of mini-channels (hydraulic diameters in the 0.5 mm to 2.0 mm range) and micro-channels (hydraulic diameters in the 100 m-500 m range) can dispose of extremely large volumetric thermal loads that are well beyond the feasible operating range of conventional cooling methods. Mini/micro-channel systems that utilize boiling fluids are particularly useful due to the superiority of boiling heat transfer mode over single-phase flow convection. Although forced flow boiling in mini and micro-channels has been investigated by several research groups in the past, a verified and reliable predictive method is not yet available. In this study, the capability of a large number of forced flow boiling heat transfer correlations for application to mini channels is examined by comparing their predictions with three experimental data sets. The data all represent recently-published experiments with mini-channels The tested correlations include well-established methods for forced-flow boiling in conventional boiling systems, as well as correlations recently proposed for mini-channels. Based on these comparisons, the most accurate existing predictive methods for mini-channel boiling are identified. The deficiencies of the predictive methods and the potential causes that underlie these deficiencies are also discussed.

Page generated in 0.0371 seconds