• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards Climate Based Early Warning and Response Systems for Malaria

Sewe, Maquins Odhiambo January 2017 (has links)
Background: Great strides have been made in combating malaria, however, the indicators in sub Saharan Africa still do not show promise for elimination in the near future as malaria infections still result in high morbidity and mortality among children. The abundance of the malaria-transmitting mosquito vectors in these regions are driven by climate suitability. In order to achieve malaria elimination by 2030, strengthening of surveillance systems have been advocated. Based on malaria surveillance and climate monitoring, forecasting models may be developed for early warnings. Therefore, in this thesis, we strived to illustrate the use malaria surveillance and climate data for policy and decision making by assessing the association between weather variability (from ground and remote sensing sources) and malaria mortality, and by building malaria admission forecasting models. We further propose an economic framework for integrating forecasts into operational surveillance system for evidence based decisionmaking and resource allocation.  Methods: The studies were based in Asembo, Gem and Karemo areas of the KEMRI/CDC Health and Demographic Surveillance System in Western Kenya. Lagged association of rainfall and temperature with malaria mortality was modeled using general additive models, while distributed lag non-linear models were used to explore relationship between remote sensing variables, land surface temperature(LST), normalized difference vegetation index(NDVI) and rainfall on weekly malaria mortality. General additive models, with and without boosting, were used to develop malaria admissions forecasting models for lead times one to three months. We developed a framework for incorporating forecast output into economic evaluation of response strategies at different lead times including uncertainties. The forecast output could either be an alert based on a threshold, or absolute predicted cases. In both situations, interventions at each lead time could be evaluated by the derived net benefit function and uncertainty incorporated by simulation.  Results: We found that the environmental factors correlated with malaria mortality with varying latencies. In the first paper, where we used ground weather data, the effect of mean temperature was significant from lag of 9 weeks, with risks higher for mean temperatures above 250C. The effect of cumulative precipitation was delayed and began from 5 weeks. Weekly total rainfall of more than 120 mm resulted in increased risk for mortality. In the second paper, using remotely sensed data, the effect of precipitation was consistent in the three areas, with increasing effect with weekly total rainfall of over 40 mm, and then declined at 80 mm of weekly rainfall. NDVI below 0.4 increased the risk of malaria mortality, while day LST above 350C increased the risk of malaria mortality with shorter lags for high LST weeks. The lag effect of precipitation was more delayed for precipitation values below 20 mm starting at week 5 while shorter lag effect for higher precipitation weeks. The effect of higher NDVI values above 0.4 were more delayed and protective while shorter lag effect for NDVI below 0.4. For all the lead times, in the malaria admissions forecasting modelling in the third paper, the boosted regression models provided better prediction accuracy. The economic framework in the fourth paper presented a probability function of the net benefit of response measures, where the best response at particular lead time corresponded to the one with the highest probability, and absolute value, of a net benefit surplus.  Conclusion: We have shown that lagged relationship between environmental variables and malaria health outcomes follow the expected biological mechanism, where presentation of cases follow the onset of specific weather conditions and climate variability. This relationship guided the development of predictive models showcased with the malaria admissions model. Further, we developed an economic framework connecting the forecasts to response measures in situations with considerable uncertainties. Thus, the thesis work has contributed to several important components of early warning systems including risk assessment; utilizing surveillance data for prediction; and a method to identifying cost-effective response strategies. We recommend economic evaluation becomes standard in implementation of early warning system to guide long-term sustainability of such health protection programs.
2

Quantitative Retrieval of Organic Soil Properties from Visible Near-Infrared Shortwave Infrared (Vis-NIR-SWIR) Spectroscopy Using Fractal-Based Feature Extraction.

Liu, Lanfa, Buchroithner, Manfred, Ji, Min, Dong, Yunyun, Zhang, Rongchung 27 March 2017 (has links) (PDF)
Visible and near-infrared diffuse reflectance spectroscopy has been demonstrated to be a fast and cheap tool for estimating a large number of chemical and physical soil properties, and effective features extracted from spectra are crucial to correlating with these properties. We adopt a novel methodology for feature extraction of soil spectroscopy based on fractal geometry. The spectrum can be divided into multiple segments with different step–window pairs. For each segmented spectral curve, the fractal dimension value was calculated using variation estimators with power indices 0.5, 1.0 and 2.0. Thus, the fractal feature can be generated by multiplying the fractal dimension value with spectral energy. To assess and compare the performance of new generated features, we took advantage of organic soil samples from the large-scale European Land Use/Land Cover Area Frame Survey (LUCAS). Gradient-boosting regression models built using XGBoost library with soil spectral library were developed to estimate N, pH and soil organic carbon (SOC) contents. Features generated by a variogram estimator performed better than two other estimators and the principal component analysis (PCA). The estimation results for SOC were coefficient of determination (R2) = 0.85, root mean square error (RMSE) = 56.7 g/kg, the ratio of percent deviation (RPD) = 2.59; for pH: R2 = 0.82, RMSE = 0.49 g/kg, RPD = 2.31; and for N: R2 = 0.77, RMSE = 3.01 g/kg, RPD = 2.09. Even better results could be achieved when fractal features were combined with PCA components. Fractal features generated by the proposed method can improve estimation accuracies of soil properties and simultaneously maintain the original spectral curve shape.
3

Quantitative Retrieval of Organic Soil Properties from Visible Near-Infrared Shortwave Infrared (Vis-NIR-SWIR) Spectroscopy Using Fractal-Based Feature Extraction.

Liu, Lanfa, Buchroithner, Manfred, Ji, Min, Dong, Yunyun, Zhang, Rongchung 27 March 2017 (has links)
Visible and near-infrared diffuse reflectance spectroscopy has been demonstrated to be a fast and cheap tool for estimating a large number of chemical and physical soil properties, and effective features extracted from spectra are crucial to correlating with these properties. We adopt a novel methodology for feature extraction of soil spectroscopy based on fractal geometry. The spectrum can be divided into multiple segments with different step–window pairs. For each segmented spectral curve, the fractal dimension value was calculated using variation estimators with power indices 0.5, 1.0 and 2.0. Thus, the fractal feature can be generated by multiplying the fractal dimension value with spectral energy. To assess and compare the performance of new generated features, we took advantage of organic soil samples from the large-scale European Land Use/Land Cover Area Frame Survey (LUCAS). Gradient-boosting regression models built using XGBoost library with soil spectral library were developed to estimate N, pH and soil organic carbon (SOC) contents. Features generated by a variogram estimator performed better than two other estimators and the principal component analysis (PCA). The estimation results for SOC were coefficient of determination (R2) = 0.85, root mean square error (RMSE) = 56.7 g/kg, the ratio of percent deviation (RPD) = 2.59; for pH: R2 = 0.82, RMSE = 0.49 g/kg, RPD = 2.31; and for N: R2 = 0.77, RMSE = 3.01 g/kg, RPD = 2.09. Even better results could be achieved when fractal features were combined with PCA components. Fractal features generated by the proposed method can improve estimation accuracies of soil properties and simultaneously maintain the original spectral curve shape.
4

How Certain Are You of Getting a Parking Space? : A deep learning approach to parking availability prediction / Maskininlärning för prognos av tillgängliga parkeringsplatser

Nilsson, Mathias, von Corswant, Sophie January 2020 (has links)
Traffic congestion is a severe problem in urban areas and it leads to the emission of greenhouse gases and air pollution. In general, drivers lack knowledge of the location and availability of free parking spaces in urban cities. This leads to people driving around searching for parking places, and about one-third of traffic congestion in cities is due to drivers searching for an available parking lot. In recent years, various solutions to provide parking information ahead have been proposed. The vast majority of these solutions have been applied in large cities, such as Beijing and San Francisco. This thesis has been conducted in collaboration with Knowit and Dukaten to predict parking occupancy in car parks one hour ahead in the relatively small city of Linköping. To make the predictions, this study has investigated the possibility to use long short-term memory and gradient boosting regression trees, trained on historical parking data. To enhance decision making, the predictive uncertainty was estimated using the novel approach Monte Carlo dropout for the former, and quantile regression for the latter. This study reveals that both of the models can predict parking occupancy ahead of time and they are found to excel in different contexts. The inclusion of exogenous features can improve prediction quality. More specifically, we found that incorporating hour of the day improved the models’ performances, while weather features did not contribute much. As for uncertainty, the employed method Monte Carlo dropout was shown to be sensitive to parameter tuning to obtain good uncertainty estimates.

Page generated in 0.2289 seconds