• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 23
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 62
  • 62
  • 62
  • 24
  • 14
  • 13
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Hydrodynamics of Binary Bose-Einstein Condensates and Hydro-elasticity of the Inner Crust of Neutron Stars

Kobyakov, Dmitry January 2014 (has links)
In the present thesis, “Hydrodynamics of Binary Bose-Einstein Condensates and Hydro-elasticity of the Inner Crust of Neutron Stars”, the hydrodynamic effects, instabilities and superfluid turbulence in binary immiscible ultracold gases, and hydro-elastic macroscopic coupled modes and microscopic structure of the inner layers of the crust of neutron stars, are studied. The ultracold gas dynamics can be realized in the laboratory. The excitation modes of the inner crust determine a number of observable properties such as elasticity, thermal properties and mass transport properties. Here we focus on expanding the details, rather than repeating the results presented in the published articles. In the part of the thesis related to atomic ultracold gases, we utilize the physical parameters in the experimentally realizable parameter region. We numerically simulate the coupled non-linear Schrödinger equations, and calculate observable quantities, such as phase and modulus of the order parameter, conditions needed for observation of the Rayleigh-Taylor instability and for turbulence generation. The numerical calculations are accompanied by analytical description of the processes. The dispersion relation for capillary-gravitational waves at the interface between two ultracold gases, is derived straightforwardly from the superfluid Lagrangian. The equations of motion for centre-of-mass of the superfluids are derived, and then used in our model of the quantum swapping of immiscible superfluids pressed by a strong external force. By numerical simulation, we find that the Kelvin-Helmholtz instability which occurs at the non-linear stage of the Rayleigh-Taylor instability, can generate quantum turbulence with peculiar properties. We find that two-dimensional superfluid systems with weak inter-component repulsion are different from previously studied strongly repulsive binary superfluids, because the quantum Kelvin-Helmholtz instability in weakly repulsive superfluids rolls up the whole interface forming a vortex bundle, similarly to dynamics of the shear fluid layers in the classical hydrodynamics. Production of vortex bundles favours the Kolmogorov spectrum of turbulence, and we find that the Kolmogorov scaling indeed is present in a freely decaying turbulence. In the part of the thesis related to neutron stars, we study the inner crust of neutron stars, where the fully ionized atomic nuclei coexist with a superfluid of neutrons. The interaction between superfluid neutrons and the crystallized Coulomb plasma is due to the interaction between density perturbations (interaction of the scalar type), and between the current - the non-dissipative entrainment effect (interaction of the vector type). We calculate velocities of the collective modes of the crystal coupled to superfluid neutrons. As an input we use the results of microscopic nuclear calculations in the framework of the compressible liquid drop model (the Lattimer and Swesty equation of state), and more recent effective Thomas-Fermi calculations with shell corrections (N. Chamel, and the Brussels theoretical nuclear physics group). Knowledge of velocities as functions of the matter density in the inner crust is important for calculation of a number of dynamic and transport properties. The heat transport properties of the inner crust are directly observable in accreting binary systems (low-mass x-ray binaries). The mass transport properties of the inner crust are directly linked to the rotational evolution, being a key physical ingredient of the pulsar glitch phenomenon. The elastic properties are related to the vibrational modes of the star, and to the breaking stress of the crust. In the second part of our work on neutron stars we investigate the microscopic structure of the inner crust treating the structure as an anisotropic crystal coupled to s-wave superfluid neutron liquid. As we analyse dynamics of the elementary excitations at higher wavenumbers (smaller scales), we reach the edge of the first Brillouin zone. The Lattimer-Swesty data is applicable for wavenumbers much smaller than the edge of the first Brillouin zone. We extrapolate the data through the whole first Brillouin zone to calculate the fastest growth rate of the unstable modes. The crucial step is to calculate the mode velocities in anisotropic crystal incorporating both the induced neutron-proton interactions, and the electron screening properties. We find that the combined influence of these two effects leads to softening of the longitudinal phonon of the lattice above about the Thomas-Fermi screening wavenumber of the electrons. The critical wavenumber when the frequency becomes purely imaginary is about  1/5 - 2/3  of the reciprocal lattice vector, thus validating our assumption. The imaginary mode frequency implies instability at finite wavenumbers. Our calculations suggest that the mode at the first Brillouin zone edge is the most unstable, and thus the structure experiences a displacive phase transition when the central ion of a unit cell of the body-cubic-centred lattice, is displaced to the cube face. Thus, the electronic structure of matter at densities above the neutron drip [1], is richer than previously appreciated, and new microscopic calculations of nuclear structure are necessary which take into account the high-wavenumber physics. Such calculations will provide crucial input to models interpreting the quasi-periodic oscillations in Soft Gamma Repeaters as magnetar x-ray flares, and to the theory of glitches of neutron stars. [1] The neutron drip density is ~3×1011 g cm-3.
12

Preparation and Fast Quantum Control of 87Rb Bose-Einstein Condensates

Vithanage, Denuwan Kaushalya Attiligoda 31 July 2020 (has links)
No description available.
13

Spin dynamics in two-component Bose-Einstein condensates

Farolfi, Arturo 14 April 2021 (has links)
Bose-Einstein condensates (BECs) of ultra-cold atoms have been subjects of a large research effort, that started a century ago as a purely theoretical subject and is now, since the invention of evaporative cooling thirty years ago, a rich research topic with many experimental apparatuses around the world. A deep knowledge of its underlying physics has been now acquired, for example on the thermodynamics of the gas, superfluidity, topological excitations and many-body physics. However, many topics are still open for investigation, thanks to the flexibility and the high degree of control of these systems. During the course of my PhD, I developed and realized a new experimental apparatus for the realization of coherently-coupled mixtures of sodium BECs. The highly stable and low-noise magnetic environment of this apparatus enables the experimental investigation of a previously inaccessible regime, where the energy of the coupling becomes comparable to the energy of spin excitations of the mixture. With this apparatus, I concluded two experimental investigations: I produced and investigated non-dispersive spin-waves in an two-component BEC and I experimentally observed the quantum spin-torque effect on a elongated bosonic Josephson junction.The research activity in multi-component BECs of alkali atoms begun shortly after the first realization of a condensate, thanks to the low energy splitting between the internal sub-states of the electronic ground state. These internal states can be coherently coupled with an external electromagnetic field and can interact via mutual mean-field interaction, generating interestinc effects such as ground states with different magnetic ordering depending on their interaction constants, density as well as spin dynamics and internal Josephson effects. The research interest on mixtures of sodium atoms sparks from the peculiar characteristic of the system: in the $ket{F = 1, m_F = pm 1}$ states, the interaction constants are such that the ground state has anti-ferromagnetic ordering and the system is perfectly symmetric for exchanges of the two species. In these peculiar system, density- and spin-excitations have very different energetic cost, with the latter being much less energetic, and can be completely decoupled. Moreover, spin-excitations, that are connected to excitations in the relative-phase between the components, change drastically in nature when a coupling of comparable energy is added between the states. The presence of the coupling effectively locks the relative-phase in the bulk and spin excitations become localized. While extensive theoretical predictions on the spin dynamics of this system has been already performed, experimental confirmation was still lacking because of the high sensitivity to external forces (due to the very low energy of the spin excitations) and the impossibility of realizing a low-energy coupling between these states in the presence of environmental magnetic noise. During my PhD, I realized an experimental apparatus where magnetic noises are suppressed by five orders of magnitude using a multi-layer magnetic shield made of an high-permeability metal alloy (μ-metal), that encases the science chamber. In this apparatus, I developed a protocol, compatible with the technical limitations of the magnetic shield, to produce BECs in a spin-insensitive optical trapping potential. I then characterized the residual magnetic noise and found it compatible with the requirements for observing spin-dynamics effects. Finally, I realized a system and a set of protocols for the manipulation of the internal state of the sample allowing arbitrary preparation of the sample while maintaining the long coherence times necessary to observe the spin dynamics, that have been used in the subsequent experimental observations. The first experimental result discussed in this thesis, is the production of magnetic solitons and the observation of their dynamic in a trapped sample. Waves in general spread during their propagation in a medium, however this tendency can be counterbalanced by a self-focusing effect if dispersion of the wave is non-linear, generating non-dispersive and long-lived wavepackets commonly named solitons. These have been found in many fields of physics, such as fluid dynamics, plasma physics, non-linear optics and cold-atoms BECs, attracting interest because of their ability to transport information or energy unaltered over long distances, as they are robust against the interaction with in-homogeneities in the medium. Of these systems, cold-atoms can be widely manipulated to generated different kinds of solitons, both in single and in multi-components systems. A new kind of them, named magnetic solitons, has been predicted in a balanced mixture of BECs of sodium in $ket{F = 1, m_F = pm 1}$, however experimental observation was still lacking. I deterministically produced magnetic solitons via phase engineering of the condensate using a spin-sensitive optical potential. I then developed a tomographic imaging technique to semi-concurrently measure the densities of both components and the discontinuities in their relative phase, allowing for the reconstruction of all the relevant quantities of the spinor wavefunction. This allowed to observe the dispersionless dynamics of the solitons as they perform multiple oscillation in the trapped sample in a timescale of the order of the second. Moreover, I engineered collisions between different kinds of magnetic solitons and observed their robustness to mutual interaction. The second experimental results presented in this thesis is the observation of the breaking of magnetic hetero-structures in BECs due to the quantum spin torque effect, an effect with strong analogies with electronic spins traveling through magnetic devices. Spins in magnetic material precess around the axis of the effective magnetic field, and their dynamics must take into account the external field as well as non-linear magnetization and the inhomogeneity of the material. These effects are commonly described by the Landau-Lifshitz equation and have been mainly studied for electronic spins in magnetic hetero-structures, where the inhomogeneity in the material at the interfaces enhances the exchange effects between spins. For homogeneous materials, this description reduces to the Josephson system, a closely related effect that is more known in cold-atoms systems. The Josephson effect arises when a macroscopic number of interacting bosonic particles are distributed in two possible states, weakly tunnel-coupled together, with the average energy of particles occupying each of the states depending on the occupation number itself. In these conditions, the dynamics of the system depends on the difference in occupation numbers, the relative phase between the states and the self-interaction to tunneling ratio, giving raise to macroscopic quantum effects such as oscillating AC and DC Josephson currents and self-trapping. While these phenomena has been historically studied in junctions between superconducting systems, they can be also realized with cold-atoms systems, allowing the study of Josephson junctions with finite dimensions and in regimes that are hard to reach for superconducting systems. In this thesis, I realized a magnetic hetero-structure in a two-component elongated BECs thanks to the simultaneous presence of self-trapped (ferromagnetic) and oscillating (paramagnetic) regions in the sample. While the dynamics at short times is correctly described by the Josephson effects, at the interface between the regions the particle nature of the gas creates a strong exchange effect, named the quantum spin torque, that produces magnetic excitations that spread trough the sample and break the local Josephson behaviour. I experimentally studied the spread and nature of these magnetic excitations, while numerical simulations confirmed the dominant role played by the quantum spin torque effect. The structure of this thesis is the following: in the first chapter is given a review of theoretical concepts and existing literature. In the second chapter is described the experimental apparatus and the protocols developed to prepare the ultra-cold atoms sample. In the third chapter is presented the experimental observation of magnetic solitons. In the fourth chapter is presented the experimental investigation of the quantum spin torque effect in magnetic heterostructures. The last chapter is devoted to conclusions and outlook of this work.
14

Creating a Bose-Einstein condensate of stable molecules using photoassociation and Feshbach resonance

Phou, Pierre January 2014 (has links)
Quantum degenerate molecular gases are of interest for the unique level of control they offer over chemical interactions and processes. To reach the quantum degenerate regime, these molecular gases must be cooled to ultracold temperatures, typically on the order of 100 nanoKelvins. Unlike atoms, with a few-level system that facilitates cooling, molecules represent a many-level system, which makes these temperatures experimentally difficult to achieve. As a result, experiments have turned to photoassociation and Feshbach resonance as shortcuts to form ultracold molecules from already ultracold atoms. Photoassociation and Feshbach resonance have been utilized to successfully create stable quantum degenerate molecules, but not on a routine basis, and only for a small range of molecular species. The primary focus of this thesis will be to study photoassociation and Feshbach resonance, and investigate possible routes to more efficient long-lived quantum degenerate molecule formation. We will also investigate realistic limiting conditions to open the possibility to more routine molecules, and to molecular species that are currently inaccessible. Overall, we find combined photoassociation and Feshbach resonance are viable schemes for efficiently creating quantum degenerate molecules, under realistic restrictions such as low laser intensity, narrow Feshbach resonance, and strong elastic collisions. As the techniques to create quantum degenerate molecules become more robust and experimentally available, the creation of colder, larger, and more long-lived samples will facilitate study of these molecules, and spur development into new applications. / Physics
15

Imagem por contraste de fase próximo à ressonância / Phase contrast imaging near resonance

Santos, Cora Castelo Branco de Francisco Reynaud dos 18 July 2014 (has links)
Tendo em vista experimentos envolvendo o estudo da dinâmica de gases quânticos aprisionados, visando a simulação quântica de sistemas complexos, este trabalho discute a implementação e o estudo da técnica de imagem dispersiva, por contraste de fase, e a compara com o método de imagem por absorção óptica. A implementação da nova técnica foi feita em um regime não convencional de dessintonia, explorando a região proxima da ressonância atômica, onde se deve levar em conta o efeito da absorção, além da mudança de fase, do campo elétrico do laser de prova, após interagir com os átomos. Portanto, este trabalho apresenta não só a implementação de uma nova técnica experimental, mas também um modelo simples para interpretar os dados obtidos nesse novo regime. / Envisioning experiments involving the dynamics of trapped quantum gases, towards the quantum simulation of complex systems, this work presents the implementation and study of a dispersive imaging technique, by phase contrast, and compares it to absorption imaging. The implementation of this new technique in our laboratory was done in a non conventional range of detunings, exploring the region near atomic resonance, where absortion effecs need to be taken into account, in addition to the phase shift, introduced in the electric field of the probing laser, after interacting with the atoms. Therefore, this work presents not only the implementation of a new experimental technique, but also a simple model to interpret the dada obtained in this new regime.
16

Formulação hidrodinâmica para a equação de Schrödinger não-linear e não-local em condensados de Bose-Einstein

Vidmar, Rodrigo January 2017 (has links)
Será explorada a versão hidrodinâmica da equação de Schrödinger não-linear e não-local, descrevendo condensados de Bose-Einstein com auto-interações de longo alcance. Tais sistemas têm despertado interesse tendo em vista a busca da realização da condensação de Bose-Einstein sem necessidade de um potencial externo confinante e nos quais as interações atômicas locais não são suficientes. Para obter a descrição hidrodinâmica, a transformação de Madelung para a função de onda será utilizada, reduzindo o problema a uma equação da continuidade e a uma equação de transporte de momentum. Esta última é similar à equação de Euler em fluidos ideais, porém contendo um potencial quântico efetivo e um termo não local, o qual advém da interação atômica. Tais equações de fluido traduzem, respectivamente, a conservação da probabilidade e do momentum total. O método hidrodinâmico permitirá o estudo de excitações elementares, entre os quais os modos de Bogoliubov, segundo uma abordagem macroscópica. / The hydrodynamic version of the Schrödinger equation nonlinear and nonlocal will be explored, describing Bose-Einstein condensates with long-range self-interactions. Such systems have aroused interest with a view to pursuing the realization of Bose-Einstein condensation without an external confining potential and in which local atomic interactions are not enough. For the hydrodynamic description, the eikonal decomposition of the wave function is used, reducing the problem to one equation of continuity and to a transport of momentum equation. The latter is similar to the Euler equation in ideal fluid but containing an effective quantum potential and a nonlocal term, which comes from the atomic interaction. Such fluid equations translate, respectively, conservation of probability and total momentum. The hydrodynamic method will allow the study of elementary excitations, including Bogoliubov modes according to a macroscopic approach.
17

Estado fundamental e excitações coletivas de condensados de Bose-Einstein espinoriais / Ground state and collective excitations od spinor Bose-Einstein condensates

Romano, Dimas Rodrigues 04 May 2007 (has links)
No contexto da teoria de Bogoliubov determinamos as configurações de equilíbrio e as excitações coletivas de um condensado de Bose-Einstein espinorial homogêneo com spin hiperfino S = 1, na presença e na ausência de um campo magnético externo. Na tese mapeamos as configurações de equilíbrio em função dos parâmetros e m, onde q está relacionado com a intensidade do termo quadrático da energia de Zeeman, c2 é a intensidade do termo da interação átomo-átomo dependente do spin, p é a densidade do condensado e m é a magnetização por partícula. Pelo exame do comportamento dos ramos de energia das excitações coletivas como função do momento determinamos as configurações de equilíbrio estáveis e mostramos que é possível classificá-las pela miscibilidade das componentes a = O e a = f 1, que é uma consequência direta da simetria axial no espaço de spin. O exame do diagrama de fase do sistema indica que ele depende crucialmente do caráter antiferromagnético ou ferromagnético dos átomos. No limite antiferromagnético o estado fundamental é imiscível e de fase indeterminada. Por outro lado no limite ferromagnético o estado fundamental pode ser miscível e de fase determinada. Em contrapartida verificamos a dominância do termo quadrático da energia de Zeeman em ambos os casos, no limite antiferromagnético quando e no limite ferromagnético quando & > 2. Fenômenos tais como o colpaso do condensado e transições de fase são também possíveis. Este trabalho se diferencia dos demais pelo fato de levar em conta explicitamente a conservação da magnetizaçáo do sistema, que nos permitiu fazer um estudo sistemático das configurações de equilíbrio, o que pode servir de guia para futuros estudos de efeitos que ocorrem tanto nas regiões estáveis quanto nas instáveis. / In the framework of the Bogoliubov theory, we determined the equilibrium configurations and the collective excitations of a homogeneous Bose-Einstein S = 1 spinor condensate, in the presence and absence of an externa1 magnetic field. In this thesis we found the equilibrium configurations as function of the parameters and m, where q is the intensity of the quadratic term of the Zeeman energy, ca is the intensity of the spin dependent atom-atom interaction term, p is the condensate density and m the magnetization per particle. By the study of the behaviour of the collective excitation energies as function of the moment, we found the stable equilibrium configurations and we show that they can be classified by the miscibility of the components a = O and a f 1, which is a direct consequence of the axial symmetry in the spin space. Examining the phase diagram, we see that it depends on the antiferromagnetic or ferromagnetic character of the atoms. In the antiferromagnetic limit, the ground state is imiscible and with an undetermined phase. However in the ferromagnetic limit the ground state can be miscible and with a fixed phase. On the other hand, we see in both cases the dominance of the quadratic term of the Zeeman energy, wlien & > O in the antiferromagnetic limit and wlien A- > 2 in the ferromagnetic limit. Phenomena such as condensate collapse and phase transition is also possible. This work differs from others by taking explicitly into account the conservation of the magnetization of the system, wich allowed us to perform a sistematic study of the equilibrium configurations, that can be a guide to future studies of effects that occur not only at the stable as also in the unstable regions
18

Classical and Quantum Field Theory of Bose-Einstein Condensates

Wuester, Sebastian, sebastian.wuester@gmx.net January 2007 (has links)
We study the application of Bose-Einstein condensates (BECs) to simulations of phenomena across a number of disciplines in physics, using theoretical and computational methods. ¶ Collapsing condensates as created by E. Donley et al. [Nature 415, 39 (2002)] exhibit potentially useful parallels to an inflationary universe. To enable the exploitation of this analogy, we check if current quantum field theories describe collapsing condensates quantitatively, by targeting the discrepancy between experimental and theoretical values for the time to collapse. To this end, we couple the lowest order quantum field correlation functions to the condensate wavefunction, and solve the resulting Hartree-Fock-Bogoliubov equations numerically. Complementarily, we perform stochastic truncated Wigner simulations of the collapse. Both methods also allow us to study finite temperature effects. ¶ We find with neither method that quantum corrections lead to a faster collapse than is predicted by Gross-Pitaevskii theory. We conclude that the discrepancy between the experimental and theoretical values of the collapse time cannot be explained by Gaussian quantum fluctuations or finite temperature effects. Further studies are thus required before the full analogue cosmology potential of collapsing condensates can be utilised. ¶ As the next project, we find experimental parameter regimes in which stable three-dimensional Skyrmions can exist in a condensate. We show that their stability in a harmonic trap depends critically on scattering lengths, atom numbers, trap rotation and trap anisotropy. In particular, for the Rb87 |F=1,m_f=-1>, |F=2,m_f=1> hyperfine states, stability is sensitive to the scattering lengths at the 2% level. We find stable Skyrmions with slightly more than 2*10^6 atoms, which can be stabilised against drifting out of the trap by laser pinning. ¶ As a stepping stone towards Skyrmions, we propose a method for the stabilisation of a stack of parallel vortex rings in a Bose-Einstein condensate. The method makes use of a ``hollow'' laser beam containing an optical vortex, which realises an optical tunnel for the condensate. Using realistic experimental parameters, we demonstrate numerically that our method can stabilise up to 9 vortex rings. ¶ Finally, we focus on analogue gravity, further exploiting the analogy between flowing condensates and general relativistic curved space time. We compare several realistic setups, investigating their suitability for the observation of analogue Hawking radiation. We link our proposal of stable ring flows to analogue gravity, by studying supersonic flows in the optical tunnel. We show that long-living immobile condensate solitons generated in the tunnel exhibit sonic horizons, and discuss whether these could be employed to study extreme cases in analogue gravity. ¶ Beyond these, our survey indicates that for conventional analogue Hawking radiation, simple outflow from a condensate reservoir, in effectively one dimension, has the best properties. We show with three dimensional simulations that stable sonic horizons exist under realistic conditions. However, we highlight that three-body losses impose limitations on the achievable analogue Hawking temperatures. These limitations vary between the atomic species and favour light atoms. ¶ Our results indicate that Bose-Einstein condensates will soon be useful for interdisciplinary studies by analogy, but also show that the experiments will be challenging.
19

Formulação hidrodinâmica para a equação de Schrödinger não-linear e não-local em condensados de Bose-Einstein

Vidmar, Rodrigo January 2017 (has links)
Será explorada a versão hidrodinâmica da equação de Schrödinger não-linear e não-local, descrevendo condensados de Bose-Einstein com auto-interações de longo alcance. Tais sistemas têm despertado interesse tendo em vista a busca da realização da condensação de Bose-Einstein sem necessidade de um potencial externo confinante e nos quais as interações atômicas locais não são suficientes. Para obter a descrição hidrodinâmica, a transformação de Madelung para a função de onda será utilizada, reduzindo o problema a uma equação da continuidade e a uma equação de transporte de momentum. Esta última é similar à equação de Euler em fluidos ideais, porém contendo um potencial quântico efetivo e um termo não local, o qual advém da interação atômica. Tais equações de fluido traduzem, respectivamente, a conservação da probabilidade e do momentum total. O método hidrodinâmico permitirá o estudo de excitações elementares, entre os quais os modos de Bogoliubov, segundo uma abordagem macroscópica. / The hydrodynamic version of the Schrödinger equation nonlinear and nonlocal will be explored, describing Bose-Einstein condensates with long-range self-interactions. Such systems have aroused interest with a view to pursuing the realization of Bose-Einstein condensation without an external confining potential and in which local atomic interactions are not enough. For the hydrodynamic description, the eikonal decomposition of the wave function is used, reducing the problem to one equation of continuity and to a transport of momentum equation. The latter is similar to the Euler equation in ideal fluid but containing an effective quantum potential and a nonlocal term, which comes from the atomic interaction. Such fluid equations translate, respectively, conservation of probability and total momentum. The hydrodynamic method will allow the study of elementary excitations, including Bogoliubov modes according to a macroscopic approach.
20

Dinâmica da condensação de Bose-Einstein em gases fracamente interagentes / Dynamic of Bose-Einstein condensate in weakly interacting gases

Valéria de Carvalho Souza 27 May 2010 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A presente dissertação estuda com detalhes a evolução temporal fora do equilíbrio de um condensado de Bose-Einstein homogêneo diluído imerso em um reservatório térmico. Nós modelamos o sistema através de um campo de Bose escalar complexo. É apropriado descrever o comportamento microscópico desse sistema por meio da teoria quântica de campos através do formalismo de Schwinger-Keldysh. Usando esse formalismo, de tempo real a dinâmica do condensado é solucionada por um grupo de equações integro-diferencial auto consistente, essas são solucionadas numericamente. Estudamos também o cenário quench, e como a densidade do gás e as interações entre as flutuações tem o efeito de provocar as instabilidades nesse sistema. Aplicamos esse desenvolvimento para estudar o comportamento de duas espécies homogêneas de um gás de Bose diluído imerso em um reservatório térmico. / This Dissertation study the detailed out of equilibrium time evolution of a homogeneous diluted Bose-Einstein condensate in thermal bath. We modeled the system by means of one bosonic complex scalar field. The microscopic behavior of such an environment can be appropriately described by the non-equilibrium Schwinger-Keldysh formalism in a quantum field theory approach. Using this formalism, real-time dynamics of the condensate is encoded in a set of self-consistent integral-differential equations that we solved numerically. We studied, in the quench scenario, how the role of the interactions in the generation of the initial instability and the subsequent time evolution of the condensate. We also applied this technique to the study of a two-species homogeneous diluted Bose gas in a thermal bath.

Page generated in 0.0787 seconds