Spelling suggestions: "subject:"bouncing"" "subject:"pouncing""
11 |
Week 06, Video 07: Bouncing Ball 1Marlow, Gregory 01 January 2020 (has links)
https://dc.etsu.edu/digital-animation-videos-oer/1046/thumbnail.jpg
|
12 |
Week 06, Video 08: Bouncing Ball 2Marlow, Gregory 01 January 2020 (has links)
https://dc.etsu.edu/digital-animation-videos-oer/1047/thumbnail.jpg
|
13 |
Week 06, Video 09: Bouncing Ball 3Marlow, Gregory 01 January 2020 (has links)
https://dc.etsu.edu/digital-animation-videos-oer/1048/thumbnail.jpg
|
14 |
Non-Newtonian Drop Impact on Textured Solid Surfaces: Bouncing and Filaments FormationAl Julaih, Ali 04 1900 (has links)
This work uses high-speed video imaging to study the formation of filaments,
during impact and rebounding of drops with polymer additives. We use PEO of
different concentrations from 10 to 1000 ppm and study how drops rebound from
various different surfaces: superhydrophilic, hydrophilic, hydrophobic, and
superhydrophobic. Bouncing occurs for all surfaces at low impact velocities. We
specifically focus on the phenomenon of the generation of polymer filaments, which are
pulled out of the free surface of the drop during its rebounding from micro-pillared or
rough substrates. We map the parameter regime, in terms of polymer concentration
and impact Weber number, where the filaments are generated in the most repeatable
manner. This occurs for regularly pillared surfaces and drops of 100 ppm PEO
concentrations, where numerous separated filaments are observed. In contrast, for
superhydrophobic coatings with random roughness the filaments tend to merge forming
a branching structure. Impacts on inclined surfaces are used to deposit the filaments on
top of the pillars for detailed study.
|
15 |
Drop-impact Singular Jets, Acoustic Sound and Bouncing with FilamentsYang, Zi Qiang 30 October 2022 (has links)
This dissertation talks about the dynamics of the drop impact in two parts, the impact of the drop on the deep liquid pool with singular jet and sound emission, and the bouncing drop with filaments on the superhydrophoic solid surface.
First, we use experiments and simulations to study drop impacts on a deep liquid pool, with a focus on fine vertical jetting and underwater sound emission from entrapped bubbles, during the rebounding of the hemispherical crater. The much larger parametric complexity introduced by the use of two immiscible liquids, compared to that for the same liquid, leads to an extended variety of compound-dimple shapes. The fastest jet occurs from the rebounding of a telescope dimple shape without bubble pinch-off, at around 45 m/s, which leaves a toroidal micro-bubbles from the air-cusp at the base of the dimple. The finest jets have diameter of only 12 µm. A new focusing mechanism for singular jetting from collapsing drop-impact craters is then proposed based on high-resolution numerical simulations. The fastest jet is confined in a converging conical channel with the entrained air sheet providing a free-slip outer boundary condition. Sound can be emitted from the oscillation of the entrapped dimple-bubble, while the tiny bubble from the initial impact is induced to oscillate with the entrapped bubble, triggering the double crest of the acoustic signal. We track the compression of the bubble volume from the high-speed imaging and relate it to the hydrophone signal.
In the second part, we investigate the impact of a polymeric drop on a superhydrophobic solid substrate with micropillar structure. The drop spreads on the substrate, wets the tops of the pillars, and rebounds out of the superhydrophobic soild surface. Numerous liquid filaments are stretched from the liquid drop to the attached adjacent pillars, and minuscule threads would be left on the top of the pillars using the inclined superhydrophobic solid surface. The well-organized exposed polymer threads are left on the top of the pillars after solvent evaporation. The thickness of the deposition of filament bundles using the bouncing method are thinner than those formed by drop evaporation or drop rolling from SEM (scanning electron microscope) observation.
|
16 |
Dynamique d'un contact glissant rugueux-rugueux sous faible charge : expériences et modélisationZouabi, Chaïma 16 December 2016 (has links)
Résumé Ce travail de thèse concerne le frottement et la dynamique d’un contact glissant entre deux plans secs et rugueux soumis à une faible charge normale. La vibration normale, et le bruit qui en résulte, sont associés à l’excitation induite au cours du glissement par les deux topographies aléatoires des solides en regard. Des mesures expérimentales de l’accélération verticale d’un patin rugueux soumis à son propre poids et en glissement stationnaire sur une piste rugueuse ont permis d’identifier et de caractériser une transition entre deux régimes : un régime de contact ininterrompu entre les solides à basses vitesses et un régime de sauts pour des vitesses plus élevées. Pour ce dernier, la dynamique est gouvernée par de très nombreux impacts entre aspérités que nous avons caractérisés sur le plan statistique (nombre de chocs, durées entre chocs, forces d’impact, etc.). Ces deux régimes conduisent à des comportements en frottement bien distincts. Une des originalités de cette recherche a été de confirmer les scénarios suggérés par les mesures accélérométriques à l’aide d’une mesure haute fréquence des variations temporelles de la résistance électrique de contact au cours du glissement. En améliorant la résolution temporelle des chocs, ces mesures apportent un éclairage dynamique sur la problématique du contact électrique rugueux. Pour interpréter ces résultats expérimentaux, nous avons revisité le modèle standard du Bouncing Ball. Il décrit une bille soumise à la gravité, et rebondissant sur une table animée d’un mouvement vertical aléatoire, représentatif de l’excitation stochastique induite par les topographies de surfaces en glissement. Nous avons introduit pour la première fois dans le modèle un temps de corrélation pour l’excitation aléatoire et montré son influence sur la dynamique des rebonds. Ce temps de corrélation est directement relié aux longueurs de corrélations des surfaces en contact et à la vitesse de glissement. Ce modèle revisité permet in fine une bonne prédiction de la vitesse de transition entre les deux régimes observés expérimentalement. / This work deals with the friction and dynamics of a sliding contact between two dry and rough surfaces subjected to a low normal load. The normal vibration and the resulting noise are associated with the excitation induced during slip by the random topographies of both solids. Experimental measurements of the vertical acceleration of a rough slider subjected to its own weight and steadily sliding on a rough plate enabled identification and characterization of a transition between two regimes: An uninterrupted contact regime at low speeds and a regime of jumps at higher speeds. For the latter, the dynamics are governed by many impacts between asperities that we have characterized statistically (number of shocks, duration between shocks, impact forces, etc.). These two regimes lead to distinct frictional behaviors. One of the originalities of this research was to confirm the scenarii suggested by the accelerometric measurements through high-frequency monitoring of the temporal evolution of the electrical contact resistance during sliding. By improving the temporal resolution of shocks, these measurements provide a dynamics picture of the problem of rough electrical contact. To interpret these experimental results, we have revisited the standard Bouncing Ball model. It describes a ball subjected to gravity, and bouncing on a table animated by a random vertical motion, representative of the stochastic excitation induced by the topographies of sliding surfaces. We improved the model by introducing a correlation time for the random excitation and showed its influence on the dynamics of the bounces. This correlation time is directly related to the correlation lengths of the surfaces in contact and to the sliding velocity. This revisited model enables a good prediction of the speed at which the transition between the two regimes is observed experimentally.
|
17 |
[en] ANALYSIS AND MODELING OF TORSIONAL VIBRATIONS AND STICK-SLIP PHENOMENON IN SLENDER STRUCTURE SYSTEMS: EXPERIMENTAL INVESTIGATIONS AND NONLINEAR IDENTIFICATION / [pt] ANÁLISE E MODELAGEM DE VIBRAÇÃO TORCIONAL E STICK-SLIP EM SISTEMAS DE ESTRUTURAS ESBELTAS: INVESTIGAÇÕES EXPERIMENTAIS E IDENTIFICAÇÃO NÃO LINEARINGRID PIRES MACEDO OLIVEIRA DOS SANTOS 31 October 2023 (has links)
[pt] Durante a perfuração de poços de petróleo, a coluna de perfuração apresenta um comportamento dinâmico complexo, esta tese foca no estudo experimental e na modelagem matemática deste comportamento. Neste trabalho,
destaca-se as vibrações autoexcitadas axiais, laterais e torcionais, que podem
levar a efeitos como o bit bouncing, o whirling e stick-slip torcional.
A primeira contribuição desta tese é a análise experimental de um
bancada de testes, que fornece informações sobre a dinâmica de sistemas
torcionais. A influência dos parâmetros de controle não lineares na resposta
do sistema é investigada, identificando as condições sob as quais o fenômeno
stick-slip ocorre.
Em segundo lugar, a tese propõe estratégias de identificação de sistemas
para sistemas não lineares, utilizando a mesma bancada de testes supracitada.
Uma abordagem híbrida para a identificação é proposta, onde técnicas de modelagem de caixa cinza e caixa preta são combinadas para calibrar os parâmetros do sistema, particularmente aqueles associados ao atrito. Essa abordagem
aumenta a precisão das estimativas em comparação com os métodos tradicionais de caixa cinza, mantendo a interpretabilidade. Além disso, a pesquisa
emprega physics-informed deep learning para estimar os parâmetros mecânicos
e de atrito do modelo de dois graus de liberdade. A calibração usando dados
experimentais obtidos de uma bancada de testes fornece informações sobre o
comportamento de sistemas de perfuração.
Finalmente, a tese apresenta investigações experimentais sobre o acoplamento entre oscilações torcionais e axiais utilizando uma bancada experimental
de perfuração em escala de laboratório modificada e adaptada equipada com
brocas e amostras de rocha reais.
Em resumo, esta tese aumenta a compreensão da dinâmica de colunas
de perfuração e apresenta aplicações úteis para técnicas de identificação de
sistemas na análise de oscilações torcionais e axiais. / [en] During drilling for oil extraction purposes, the drill string experiences
complex dynamic behavior, and this work delves into the experimental study
and the mathematical modeling of such behavior. Self-excited vibrations, such
as axial, lateral, and torsional vibrations, which can lead to detrimental effects
such as bit bouncing, whirling, and torsional stick-slip are highlighted in this
thesis.
Distinct aspects of drilling dynamics are considered in this investigation
to enhance the understanding of various phenomena. Initially, an experimental
analysis of a lab-scale rig is conducted, providing valuable insights into the
dynamics of such systems. And the influence of control parameters on the
system’s response is examined, particularly in identifying the conditions under
which the stick-slip phenomenon is likely to occur.
Secondly, the thesis proposes system identification strategies for nonlinear systems, specifically focusing on the same laboratory test rig. An innovative ensemble approach is proposed, which combines gray and black-box
modeling techniques to effectively calibrate the parameters of a dynamical
system, particularly those associated with friction. This approach improves
prediction accuracy compared to traditional gray-box methods while maintaining interpretability in the dynamic responses. Furthermore, the research
employs physics-informed deep learning to estimate the low-dimensional model
mechanical and friction parameters. Calibration using experimental data obtained from a specialized setup provides insights into the drill-string system s
behavior.
Finally, the thesis involves experimental investigations on the coupling
between torsional and axial oscillations using a modified and adapted lab-scale
drilling rig equipped with real drill bits and rock samples.
In summary, this thesis advances our understanding of drill-string dynamics and presents helpful applications for system identification techniques.
|
18 |
Liquid Interaction with Non-wettable Surfaces Structured with Macroscopic RidgesAbolghasemibizaki, Mehran 01 January 2018 (has links)
Self-cleaning, anti-corrosion, anti-icing, dropwise-condensation, and drag-reduction are some applications in which superhydrophobic surfaces are implemented. To date, all the studies associated with superhydrophobic surfaces have been dedicated to understanding the liquid interaction with surfaces that are macroscopically smooth. The current study investigates the solid-liquid interaction of such surfaces which are fully decorated with macroscopic ridges (ribbed surfaces). In particular, the drop motion and impact on our newly designed non-wettable ribbed surface have been investigated in this work. Our experimental investigations have shown that liquid drops move faster on the ribbed surfaces due to lower friction induced by such a surface pattern. Moreover, an impacting droplet shows shorter contact time on ribbed surfaces. This concludes that ribbed surface pattern can be an efficient alternative design for the related applications.
Besides the experimental studies, the theoretical analyses done in this work have led to, firstly a scaling model to predict descent velocity of a rolling viscous drops on an inclined non-wettable surface more accurately. Secondly, for curved superhydrophobic surfaces a scaling model which correlates the contact time of the impacting drop to its impact velocity has been developed. At the end, the knowledge obtained from this work has led to a special surface design which exhibits a contact time shorter than the inertial-capillary time scale, an unprecedented phenomenon.
|
19 |
An Analysis of Infant Bouncing at Different Spring FrequenciesHabib Perez, Olinda D 19 April 2011 (has links)
Infants explore environments through repetitive movements which are constrained or facilitated by the environmental context. The current studies analyzed how typically developing infants bounced in four environments that differed by system natural frequency. Four pre-walking infants (age 9.7 months ±1.8) were placed in four spring conditions with natural spring frequencies of 0.9, 1.15, 1.27 and 1.56 Hz. All infants bounced above the natural spring frequency in all conditions suggesting that they do not solely behave like a mass-spring system. Two patterns of bouncing adaptations were identified. Three infants regulated bounce frequency, while one infant regulated the percentage of time on the ground. When infants matched their bounce frequency to the natural frequency, trunk vertical displacement and joint ranges of motion decreased across conditions and demonstrated a shift from non-spring like to circular spring-like phase planes. Moderate to high correlations were found for inter- and intra-limb coordination. Conversely, when an infant regulated time on the ground, trunk vertical displacement and joint ranges of motion remained the same across conditions and inter- and intra-limb correlations were low to moderate. Phase planes remained circular spring-like for this infant. Asymmetrical loading patterns and decreasing vertical ground reaction forces were found in all infants suggesting that a timing component is always regulated. The difference in bouncing pattern may be indicative of different bouncing skill level.
|
20 |
Computation Of Radar Cross Sections Of Complex Targets By Shooting And Bouncing Ray MethodOzgun, Salim 01 September 2009 (has links) (PDF)
In this study, a MATLAB® / code based on the Shooting and Bouncing Ray (SBR)
algorithm is developed to compute the Radar Cross Section (RCS) of complex
targets. SBR is based on ray tracing and combine Geometric Optics (GO) and
Physical Optics (PO) approaches to compute the RCS of arbitrary scatterers. The
presented algorithm is examined in two parts / the first part addresses a new
aperture selection strategy named as &ldquo / conformal aperture&rdquo / , which is proposed and
formulated to increase the performance of the code outside the specular regions,
and the second part is devoted to testing the multiple scattering and shadowing
performance of the code. The conformal aperture approach consists of a
configuration that gathers all rays bouncing back from the target, and calculates
their contribution to RCS. Multiple scattering capability of the algorithm is
verified and tested over simple shapes. Ray tracing part of the code is also used as
v
a shadowing algorithm. In the first instance, simple shapes like sphere, plate,
cylinder and polyhedron are used to model simple targets. With primitive shapes,
complex targets can be modeled up to some degree. Later, patch representation is
used to model complex targets accurately. In order to test the whole code over
complex targets, a Computer Aided Design (CAD) format known as Stereo
Lithography (STL) mesh is used. Targets that are composed in CAD tools are
imported in STL mesh format and handled in the code. Different sweep
geometries are defined to compute the RCS of targets with respect to aspect
angles. Complex targets are selected according to their RCS characteristics to test
the code further. In addition to these, results are compared with PO, Method of
Moments (MoM) and Multilevel Fast Multipole Method (MLFMM) results
obtained from the FEKO software. These comparisons enabled us to improve the
code as possible as it is.
|
Page generated in 0.0497 seconds