• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 240
  • 36
  • 20
  • 18
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 4
  • 2
  • 1
  • Tagged with
  • 376
  • 376
  • 376
  • 106
  • 84
  • 71
  • 60
  • 56
  • 47
  • 44
  • 30
  • 29
  • 27
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

A general global approximation method for the solution of boundary value problems

Mokhtarzadeh, M. R. January 1998 (has links)
A general global approximation scheme is developed and its generality is demonstrated by the derivation of classical Lagrange and Hermite interpolation and finite difference and finite element approximations as its special cases. It is also shown that previously reported general approximation techniques which use the idea of moving least square are also special cases of the present method. The combination of the developed general global approximation technique with the weighted residual methods provides a very powerful scheme for the solution of the boundary value problems formulated in terms of differential equations. Although this application is the main purpose of the this project, nevertheless, the power and flexibility of the developed approximation allows it to be used in many other areas. In this study the following applications of the described approximation are developed: 1- data fitting (including curve and surface fitting) 2- plane mapping (both in cases where a conformal mapping exists and for non-conformal mapping) 3- solution of eigenvalue problems with particular application to spectral expansions used in the modal representation of shallow water equations 4- solution of ordinary differential equations (including Sturm-Liouville equations, non-homogeneous equations with non-smooth right hand sides and 4th order equations) 5- elliptic partial differential equations (including Poisson equations with non-smooth right hand sides) A computer program which can handle the above applications is developed. This program utilises symbolic, numerical and graphical and the programming language provided by the Mathematica package.
332

Some innovative numerical approaches for pricing American options

Zhang, Jin. January 2007 (has links)
Thesis (M.Sc.-Res.)--University of Wollongong, 2007. / Typescript. Includes bibliographical references: leaf 77-80.
333

The method of moments solution of a nonconformal volume integral equation via the IE-FFT algorithm for electromagnetic scattering from penetrable objects

Ozdemir, Nilufer A., January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 114-118).
334

Optimal intercept guidance for multiple target sets.

January 1968 (has links)
Bibliography: p. 196-200. / M.I.T. Project DSR 76094. Contract no. NOW-66-0178-d.
335

Περιγραφή και μελέτη προβλημάτων συνοριακών τιμών

Πασχαλίδου, Μαρία 07 July 2010 (has links)
Σκοπός της παρούσας εργασίας είναι η ανάλυση προβλημάτων συνοριακών τιμών. Αρχικά αναφέρονται στοιχεία γραμμικής ανάλυσης και συγκεκριμένα εισάγεται η έννοια ενός τελεστή και τα είδη τελεστών που υπάρχουν, καθώς και η σημασία τους στη Φυσική. Επίσης, δίνεται ο ορισμός της διαφορικής εξίσωσης (Σ.Δ.Ε), ο ορισμός ενός προβλήματος αρχικών τιμών και ο ορισμός ενός προβλήματος συνοριακών τιμών. Έπειτα, αναλύεται η θεωρία Sturm-Liouville και περιγράφονται παραδείγματα συνοριακών τιμών τα οποία επιλύονται με αυτή. Ακόμη, μελετώνται οι συναρτήσεις Green και δίνονται παραδείγματα εφαρμογών τους. Στη συνέχεια εξάγεται η κυματική εξίσωση με τη βοήθεια του μοντέλου της ταλαντούμενης χορδής και επιλύεται με τη μέθοδο του χωρισμού των μεταβλητών για διάφορους τύπους αρχικών και συνοριακών τιμών. Κατόπιν, περιγράφονται μέθοδοι για την επίλυση προβλημάτων συνοριακών τιμών που συνδέονται με την εξίσωση της θερμότητας και μετά αναφέρονται εφαρμογές που προκύπτουν από την επίλυση προβλημάτων διάδοσης θερμότητας. Τέλος αναφέρεται η θεωρία Fredholm και η έννοια της κατανομής και δίνονται παραδείγματα λύσεων των διαφορικών εξισώσεων με την έννοια των κατανομών. Η θεωρία Fredholm είναι ιδιαίτερα σημαντική σε προβλήματα διαφορικών εξισώσεων που είναι μη ομογενή. / In the present project, the initial boundary value problems are analyzed. Firstly, elements of linear analysis are introduced. Particularly the concept of an operator and its types are introduced as well as the importance in the physics sector. Also, the definition of a differential equation and the initial boundary value problems are presented. Additionally, the theory of Sturm-Liouville and its example are described. Moreover, Green function and their applications are introduced. Furthermore, the wave equation was elicited with the basis of vibrating spring model and solved with the method of separating variables. Also with this method and by using Fourier series the heat equation was solved. Finally the theory of Fredholm and the concept of distribution are described. The theory of Fredholm is important in problems of not homogeneous differential equation problems.
336

Problemas de valor de contorno não clássicos : uma abordagem usando funções de Green /

Verão, Glauce Barbosa. January 2011 (has links)
Orientador: German Jesus Lozada Cruz / Banca: Luiz Augusto Fernandes de Oliveira / Banca: José Marcio Machado / Resumo: O objetivo deste trabalho é estudar problemas de valor de contorno do tipo {ÿ + f(t) =0 y(0)=0˙ y(1)= ky(η), (1) onde η ∈ (0, 1), k ∈ R e f ∈C([0, 1],R). Para antingirmos nosso objetivo usamosas funções de Green G(t,s)que nos permitem escrever a solução do problema(1)na seguinte forma: w(t)= ∫ 1 0 G(t,s)f(s)ds. Usando esta solução, investigamos através do ponto fixo de Schauder a solvabilidade do problema não linear { y + f(t,y)=0 y(0)=0˙ y(1)= ky(η). / Abstract: The main goal of this work is study the following boundary value problems {ÿ + f(t) = 0 =0 y(0)=0˙ y(1)= ky(η), (1), where η ∈ (0, 1), k ∈ R e f ∈C([0, 1],R). To achieve our goal we use the Green's function G(t,s) which allow us to write the solution of the problem (2) in the form: w(t)= ∫ 1 0 G(t,s)f(s)ds. Using this solution and the Schauder point theory, also we study the solvability of a nonlinear problem { y + f(t,y)=0 y(0)=0˙ y(1)= ky(η). / Mestre
337

Funções de Green para problemas de valor de contorno com três pontos /

Barros, André Azevedo Paes de. January 2011 (has links)
Orientador: Germán Jesus Lozada Cruz / Banca: Marco Aparecido Queiroz Duarte / Banca: Juliana Conceição Precioso Pereira / Resumo: O objetivo desse trabalho é estudar problemas de valor de contorno com três pontos lineares e não ineares, também conhecidos como problemas não Isto é feito, usando as funções de Green, usadas para resolver problemas de valor de contorno com dois pontos. / Abstract: The aim of this work is to study boundary value problems with three points also known as non-classical problems. This is done using the Green's functions, which are used to solve two-point boundary value problems. / Mestre
338

Problèmes aux limites dispersifs linéaires non homogènes, application au système d’Euler-Korteweg / Non-homogeneous boundary value problems for linear dispersive equations and application to the Euler-Korteweg model

Audiard, Corentin 01 December 2010 (has links)
Le but principal de cette thèse est d'obtenir des résultats d'existence et d'unicité pour des équations aux dérivées partielles dispersives avec conditions aux limites non homogènes. L'approche privilégiée est l'adaptation de techniques issues de la théorie classique des problèmes aux limites hyperboliques (que l'on rappelle au chapitre 1, en améliorant légèrement un résultat). On met en évidence au chapitre 3 une classe d'équations linéaires qu'on peut qualifier de dispersives satisfaisant des critères “minimaux”, et des résultats d'existence et d'unicité pour le problème aux limites associé à celles-ci sont obtenus au chapitre 4.Le fil rouge du mémoire est le modèle d'Euler-Korteweg, pour lequel on aborde l'analyse du problème aux limites sur une version linéarisée au chapitre 2. Toujours pour cette version linéarisée, on prouve un effet Kato-régularisant au chapitre 3. Enfin l'analyse numérique du modèle est abordée au chapitre 5. Pour cela, on commence par utiliser les résultats précédents pour décrire une manière simple d'obtenir les conditions aux limites dites transparentes dans le cadre des équations précédemment décrites puis on utilise ces conditions aux limites pour le modèle d'Euler-Korteweg semi-linéaire afin d'observer la stabilité/instabilité des solitons, ainsi qu'un phénomène d'explosion en temps fini. / The main aim of this thesis is to obtain well-posedness results for boundary value problems especially with non-homogeneous boundary conditions. The approach that we chose here is to adapt technics from the classical theory of hyperbolic boundary value problems (for which we give a brief survey in the first chapter, and a slight generalization). In chapter 3 we delimitate a class of linear dispersive equations, and we obtain well-posedness results for corresponding boundary value problems in chapter 4.The leading thread of this memoir is the Euler-Korteweg model. The boundary value problem for a linearized version is investigated in chapter 2, and the Kato-smoothing effect is proved (also for the linearized model) in chapter 3. Finally, the numerical analysis of the model is made in chapter 5. To begin with, we use the previous abstract results to show a simple way of deriving the so-called transparent boundary conditions for the equations outlined in chapter 3, and those conditions are then used to numerically solve the semi-linear Euler-Korteweg model. This allow us to observe the stability and instability of solitons, as well as a finite time blow up.
339

Anisotropic mesh refinement in stabilized Galerkin methods

Apel, Thomas, Lube, Gert 30 October 1998 (has links) (PDF)
The numerical solution of the convection-diffusion-reaction problem is considered in two and three dimensions. A stabilized finite element method of Galerkin/Least squares type accomodates diffusion-dominated as well as convection- and/or reaction- dominated situations. The resolution of boundary layers occuring in the singularly perturbed case is accomplished using anisotropic mesh refinement in boundary layer regions. In this paper, the standard analysis of the stabilized Galerkin method on isotropic meshes is extended to more general meshes with boundary layer refinement. Simplicial Lagrangian elements of arbitrary order are used.
340

Non-homogeneous Boundary Value Problems of a Class of Fifth Order Korteweg-de Vries Equation posed on a Finite Interval

Sriskandasingam, Mayuran 04 October 2021 (has links)
No description available.

Page generated in 0.0674 seconds