Spelling suggestions: "subject:"bovine serum"" "subject:"novine serum""
21 |
Heat-induced gelation of proteinsAdams, James David January 2012 (has links)
In this study the heat-induced gelation of two (readily available) proteins, which contain disulphide bonds, has been investigated over a range of protein concentrations in the presence and absence of the presence of the reductant, dithiothreitol at neutral pH. The proteins selected in this study were: β-Lactoglobulin and bovine serum albumin. These proteins have different number of disulphide bonds and possess different protein secondary structures. The influences of the reductant and protein concentration on their heat-induced gelation were explored to see whether the proteins were able to form protein hydrogels and that the mechanical properties of the resulting protein hydrogels were controllable. The tilting test tube method revealed that both proteins formed macroscopic hydrogels, at protein concentrations above the critical gelation concentration and that the critical gelation concentration was constantly lower in the presence of the reductant. Micro-DSC revealed that both proteins had completely denatured upon heating and that the denaturation temperature and enthalpy were significantly lower in the presence of the reductant. IR spectroscopy revealed that both proteins undergo major secondary structure transitions that resulted in the formation of fibers that are rich in β-sheet structure upon heating and that the protein lost some secondary structure before any heating and gained more β-sheet structure in the presence of the reductant. Both proteins had partially denatured before any heating in the presence of the reductant and that β-LG underwent aggregation that was accompanied by the loss of native β-sheet structure and the formation of intermolecular β-sheet structure, while that BSA underwent aggregation that was accompanied by the loss of native α-helix structure and the formation of intermolecular β-sheet structure. Cryo-TEM revealed that both proteins formed fibers (10 nm in diameter) that exist as single entities at low protein concentrations and become entangled into macroscopic networks, at protein concentrations above the critical gelation concentration and that more fibers and denser macroscopic networks were formed in the presence of the reductant. Oscillatory rheology revealed that both proteins formed macroscopic networks exhibit viscoelastic behaviour and that their elastic modulus had increased in the presence of the reductant and with increasing protein concentration.
|
22 |
Analýza umělého kyčelního kloubu z hlediska biotribologických vlastností / Analysis of biotribological properties of artificial hip jointLaštůvka, Jan January 2012 (has links)
The development of total hip arthroplasty has reached a state when quality prostheses are made, whose longevity is influenced significantly by material properties, design, component fixation and rate of wear of the articulating surfaces. It is the wear rate which is the most important factor influencing successful results for the use of total hip prostheses. The aim of this thesis is to perform a research on the various combinations of hip prostheses and its loading conditions. Also an experimental measurements of Bovine serum lubricating film thickness between the artificial femoral head and a glass disc are performed for different contact kinematic conditions.
|
23 |
Factors affecting in vitro maturation of alpaca <i>(Lama paco)</i> oocytesLeisinger, Chelsey Audra 01 October 2013 (has links)
No description available.
|
24 |
Applications of Capillary Electrophoresis for Studying Serum Albumin Enantioselection of D,L-Tryptophan AnalogsStinson, Jelynn A. 11 September 2012 (has links)
No description available.
|
25 |
Micro-injection moulded microneedles for drug delivery.Nair, Karthik Jayan January 2014 (has links)
The emergence of microneedle (MN) technologies offers a route for a pain free, straightforward and efficient way of transdermal drug delivery, but technological barriers still exist which pose significant challenges for manufacture of MN systems with high volume outputs at low cost. The main aim of this research was to develop new ways for MN manufacture primarily using micro-injection moulding processes with high performance engineering thermoplastics.
During the moulding process these polymeric melts will be subjected to extreme stress and temperature gradients and detailed material characterisation combined with in-line monitoring is desirable to optimise the moulding parameters and will help in achieving sharp microneedles with acceptable quality. Hence high shear rheology of these selected materials was performed at wall shear rates carried out in excess of 107 s-1 over a range of temperatures to predict the flow behaviour of polymer melts at such high shear strain rates. This information was fed into injection moulding simulation software tools (Moldflow) to assist the MN production process design. The optimal design was then used to produce a full 3D solid model of the injection mould and mould insert.
Furthermore various design of experiments were conducted considering input parameters such as injection pressure, injection speed, melt temperature, filling time and mould cavity temperature. Response variables including product quality and data acquired from the cavity pressure and temperature transducers were used to optimise the manufacturing process. The moulded MNs were geometrically assessed using a range of characterisation techniques such as atomic force microscopy, confocal microscopy and scanning electron microscopy. An attempt to make hollow MNs was performed and encountered many challenges like partial cavity filling and part ejection during processing. Studies were carried out to understand the problem and identified the major problem was in tool design and improvements to the moulding tool design were recommended.
Plasma treatment and mechanical abrasion were employed to increase the surface energy of the moulded polymer surfaces with the aim of enhancing protein adsorption. Sample surface structures before and after treatment were studied using AFM and surface energies have been obtained using contact angle measurement and calculated using Owens-Wendt theory. Adsorption performance of bovine serum albumin and release kinetics for each sample set was assessed using a Franz diffusion cell. Results indicate that plasma treatment significantly increases the surface energy and roughness resulting in better adsorption and release of BSA.
To assist design-optimisation and to assess performance, a greater understanding of MN penetration behaviour is required. Contact stiffness, failure strength and creep behaviour were measured during compression tests of MN against a steel surface, and in-vitro penetration of MNs into porcine skin. The MN penetration process into porcine skin was imaged using optical coherence tomography. Finally, a finite element model of skin was established to understand the effect of tip geometry on penetration.
The output of findings from this research will provide proof of concept level development and understanding of mechanisms of MN penetration and failure, facilitating design improvements for micro-injection moulded polymeric MNs.
|
26 |
Effects of Fetal Bovine Serum on the Proteome and Secretome of Pichia PastorisNguyen, Kenneth L. 01 January 2024 (has links) (PDF)
Komagataella pastoris, formerly known as Pichia pastoris, and hereafter referred to as Pichia, is a methylotrophic yeast widely employed as a recombinant protein factory for biotechnical and industrial purposes. P. pastoris boasts the ability to thrive at high cell densities, executes numerous post-translational modifications, and exhibits minimal secretion of endogenous proteins, thus greatly facilitating the expression and purification of recombinant proteins. Despite these advantages, Pichia still presents certain challenges as an expression system. Occasionally, recombinant proteins are retained within the cell and subject to degradation. Furthermore, Pichia falls short in matching the production capabilities of more widely used systems like Escherichia coli in terms of sheer numbers of recombinant proteins generated. When incubating a strain of Pichia expressing reporter protein enhanced green fluorescent protein (eGFP) (yJC100:pDT300) with fetal bovine serum (FBS), western blot analysis revealed a novel, higher molecular band in addition to the expected band, suggesting that FBS was altering recombinant protein expression. The alterations to this higher molecular weight variant were confirmed to happen intracellularly, but the molecular mechanisms behind it remain unclear. To elucidate the intracellular molecular mechanisms behind the production of the novel recombinant protein variant, our lab utilized site-directed mutagenesis and mass spectrometry. Through site-directed mutagenesis, we were able to localize the alteration facilitated by FBS to the C-terminus of eGFP, demonstrating that post-translational modifications incurred by FBS incubation occur at the C-terminus. Analysis of intracellular lysate of yJC100:pDT300 revealed proteomic alteration caused by treating P. pastoris with fetal bovine serum, presenting possible key players in FBS’s interaction with yJC100:pDT300. LC-MS was also used to analyze the extracellular media of FBS-treated yJC100:pDT300, revealing peptide discrepancies in the C-terminus of eGFP between FBS-treated and FBS-untreated samples. These results confirm that FBS’s interaction with yJC100:pDT300 significantly affects secretion through interaction with eGFP’s C-terminus. Our research serves to characterize the FBS’s interaction with yJC100:pDT300 and set precedence for future work in further characterization and optimization of the novel mechanism occurring due to FBS’s presence in growth media.
|
27 |
Investigation of Plasma Treatment on Micro-Injection Moulded Microneedle for Drug DeliveryNair, Karthik Jayan, Whiteside, Benjamin R., Grant, Colin A., Patel, Rajnikant, Tuinea-Bobe, Cristina-Luminita, Norris, Keith, Paradkar, Anant R 2015 October 1922 (has links)
Yes / Plasma technology has been widely used to increase the surface energy of the polymer surfaces for many industrial applications; in particular to increase in wettability. The present work was carried out to investigate how surface modification using plasma treatment modifies the surface energy of micro-injection moulded microneedles and its influence on drug delivery. Microneedles of polyether ether ketone and polycarbonate and have been manufactured using micro-injection moulding and samples from each production batch have been subsequently subjected to a range of plasma treatment. These samples were coated with bovine serum albumin to study the protein adsorption on these treated polymer surfaces. Sample surfaces structures, before and after treatment, were studied using atomic force microscope and surface energies have been obtained using contact angle measurement and calculated using the Owens-Wendt theory. Adsorption performance of bovine serum albumin and release kinetics for each sample set was assessed using a Franz diffusion cell. Results indicate that plasma treatment significantly increases the surface energy and roughness of the microneedles resulting in better adsorption and release of BSA.
|
28 |
Estudos conformacionais da proteína Albumina de Soro Bovino (BSA) e sua interação com o polímero NAFION® em diferentes condições físico-químicas por espectroscopias de dicroísmo circular e fluorescência / Bovine Serum Albumin (BSA) conformational studies and interaction with the NAFION® polymer under different physicochemical conditions by circular dichroism and fluorescence spectroscopyResende, Luiz Filipe Tsarbopoulos de 12 April 2019 (has links)
Estudos anteriores mostram que o polímero Nafion® pode causar deslocamento do equilíbrio conformacional de proteínas em valores de pH que não o fisiológico. Nesse sentido, o Nafion® não só pode ser utilizado como uma sonda interessante para estudos estruturais de proteínas, mas, também, é importante entender seu papel na conformação da proteína. Portanto, a Albunina do Soro Bovino (BSA) foi escolhida como modelo para o estudo dos efeitos do Nafion® na conformação helicoidal de proteínas. A finalidade deste trabalho é entender as alterações na conformação e vizinhanças aromáticas da BSA, na faixa de pH de 2 a 12, na presença e ausência de Nafion®, que pode também revelar o papel do polímero na exposição dos aromáticos e nos processos de transferência de energia. As alterações da estrutura secundária foram medidas por Dicroísmo Circular e os espectros de fluorescência no estado estacionário foram usados para analisar as mudanças nas vizinhanças dos aromáticos. Os resultados mostraram a diminuição discreta do conteúdo helicoidal da conformação da BSA na região extremamente básica, pH 11 em relação à conformação em pH 7. Já na região ácida, pH 2, embora haja considerável diminuição do conteúdo helicoidal, a BSA ainda mantém quase 50% de sua conformação secundária regular. Em relação aos ambientes dos aromáticos triptofano e tirosina, a eficiência quântica da emissão de fluorescência diminui em regiões ácidas e básicas, indicando que, nessas estruturas, os aromáticos encontram-se em restrição conformacional em relação ao observado na proteína nativa. Estes resultados apontam para a mudanças na conformação da BSA em ambas as regiões: ácidas e básicas, incluindo mudanças das estruturas secundárias e nas vizinhanças dos aromáticos. A adição do Nafion®, por outro lado, acentua o deslocamento para o azul e diminuição da exposição dos aminoácidos, tanto em solução quanto em estado sólido. A estrutura secundária da proteína é completamente modificada pelo polímero na região ácida, e esta conformação é mantida nas regiões neutra e básica, sugerindo que o Nafion® não estabiliza estruturas helicoidais / Previous studies have shown that Nafion® can disturb the conformational equilibrium of some proteins when at pH other than physiological ones. In this sense, Nafion® can used to study protein conformation, but is also important to understand its interaction with the proteins. In this work, Bovine Serum Albimun (BSA) was chosen as a model to understand the modifications caused by Nafion® at helicoidal proteins conformation. More specifically, the aim encloses the understanding of changes in BSA secondary conformation and aromatic vicinities, at pH range from 2 to 12, in the Nafion®s presence and absence. Secondary changes were measured by Circular Dichroism and steady-state fluorescence was used to study the aromatic vicinities. Results have shown small differences at helix content in the extremely basic pH (pH 11) when compared to BSA conformation at pH 7 (native one). At pH 2, on the other hand, although a decreasing in helical content was observed, BSA was able to keep almost 50% of secondary regular conformation. Regarding the aromatic vicinities (tryptophans and tyrosines) the fluorescence emission quantum eficience decreased in both regions (acid and basic), suggesting that the aromatics in these conformations are found in a more restrict environment. Nafion®, when added, promoted a decreasing in aromatic exposition, both in solution and solid state, while the secondary structure is completelu modified by its presence in all pH range, suggesting that helical conformations are not stabilized by Nafion®
|
29 |
Study on the thermodynamics of bovine serum albumin aqueous solutions: experiments, modeling and molecular simulations. / Estudo sobre a termodinâmica de soluções aquosas contendo albumina de soro bovino: experimentos, modelagem e simulação molecular.Franco, Luís Fernando Mercier 27 November 2015 (has links)
The interaction between two proteins into salt aqueous solutions is investigated throughout this thesis. Experiments, modeling and molecular simulations were carried out to get a better understanding of the phenomenon. Bovine serum albumin was used as a model protein. An analytical expression for the structure factor for globular proteins in aqueous solution is presented in this work. This expression was obtained considering an intermolecular potential given by the sum of a hard core, a van der Waals attractive and a screened Coulomb contribution. Experimental data of Small Angle X-Ray Scattering for bovine serum albumin in aqueous solutions containing sodium salts at different protein concentrations and pH values are also presented. The expression developed for the structure factor describes accurately these experimental data provided a dependence of the attractive parameter on protein concentration is established. An expression for the osmotic pressure was derived from the structure factor. With attractive parameters adjusted from X-ray scattering data, the osmotic pressure of bovine serum albumin aqueous solutions could be predicted with very good agreement with experimental data. A derivation of the thermodynamic potentials, such as the chemical potential, using the new osmotic equation of state is presented. Applying the phase equilibrium criterion, the fluid-fluid phase equilibrium for bovine serum albumin in salt aqueous solution was calculated. Although such separation was not experimentally observed at the isoelectric point, it was indeed experimentally observed for a pH value below the isoelectric point. The predictions seem to be valuable to discuss how ion specificity affects the phase diagram of proteins. To apply molecular dynamic techniques to simulate how proteins interact to each other in salt aqueous solutions, two new coarse-grained force fields are proposed. The first one, meant for sodium sulfate aqueous solution, avoids the unphysical association observed for non-polarizable atomistic force fields; and allows the prediction of thermodynamic and dynamic properties. The second one, meant for bovine serum albumin in aqueous solution, is used as a new strategy to evaluate the scattering form factor of proteins as a low resolution technique for protein structure prediction. / Nesta tese apresenta-se uma investigação sobre a interação entre duas proteínas em soluções aquosas salinas. Experimentos, modelagem e simulações moleculares foram realizadas para conseguir um melhor entendimento do fenômeno. Albumina de soro bovina foi usada como proteína modelo. Uma expressão para o fator de estrutura de proteínas globulares em solução aquosa é apresentada neste trabalho. Esta expressão foi obtida considerando-se um potencial intermolecular dado pela soma de um núcleo duro, uma contribuição atrativa tipo vander Waals e uma contribuição de potencial coulômbico blindado. Dados experimentais de espalhamento de raios-X a baixos ângulos para a albumina de soro bovino em soluções aquosas contendo sais de sódio com diferentes concentrações de proteína e valores de pH também são apresentados. A expressão desenvolvida para o fator de estrutura descreve com precisão estes dados experimentais, desde que uma dependência entre o parâmetro atrativo com a concentração de proteína seja estabelecida. Uma expressão para a pressão osmótica foi derivada do fator de estrutura. Com parâmetros atrativos ajustados aos dados de espalhamento de raios-X, a pressão osmótica da albumina de soro bovino em solução aquosa pôde ser predita com grande correlação com os dados experimentais. Uma derivação dos potenciais termodinâmicos usando a nova equação osmótica de estado é apresentada. Aplicando o critério de equilíbrio de fases, foi possível calcular o equilíbrio fluido-fluido para a albumina de soro bovino em solução aquosa. Embora tal separação não tenha sido observada experimentalmente em um pH igual ao ponto isoelétrico, ela foi de fato observada experimentalmente para um valor de pH menor do que o ponto isoelétrico. As predições parecem ser valiosas para discutir como a especificidade iônica afeta o diagrama de fases de proteínas. De modo a avaliar como proteínas interagem umas com as outras usando técnicas de dinâmica molecular, dois novos campos de força coarse-grained são propostos. O primeiro, para o sulfato de sódio em solução aquosa, evita a associação não-física que é observada para campos de força atomísticos não-polarizáveis. Este modelo é capaz de prever propriedades dinâmicas e termodinâmicas. O segundo, para a albumina de soro bovino em solução aquosa, é usado como uma nova estratégia para avaliar o fator de forma de espalhamento de proteínas como uma ferramenta de baixa resolução na predição de estruturas proteicas.
|
30 |
Efeito da liofilização sobre a estrutura e mudanças de fase da albumina bovina modificada por reação com metoxi-polietilenoglicol / Effect of lyophilization on the structure and phase changes of PEGylated-bovine serum albumin.Tattini Junior, Virgilio 02 April 2004 (has links)
A conjugação por polietilenoglicol (PEG) mascara a superfície das proteínas e aumenta o tamanho molecular do polipeptídio, reduzindo assim sua ultrafiltragem renal, impedindo a aproximação de células processadoras de antígenos ou anticorpos e reduzindo a degradação por enzimas proteolíticas. O PEG transfere para as moléculas suas propriedades físico-químicas e, conseqüentemente, modifica também a biodistribuição e a solubilidade de drogas peptídicas e não peptídicas. As soluções de proteínas são facilmente desnaturadas (muitas vezes irreversivelmente) pelo aparecimento de numerosos eventos que podem afetar a estabilidade das soluções, tais como: aquecimento, agitação, congelamento, mudanças no pH e exposição a interfaces ou agentes desnaturantes, resultando geralmente na perda da eficácia clínica e aumento do risco de efeitos colaterais adversos. A solução prática para o dilema da estabilidade da proteína é a remoção da água. A liofilização é o método mais comumente utilizado para a preparação de proteínas desidratadas, as quais, teoricamente, devem apresentar uma estabilidade adequada por um longo período de armazenagem em temperaturas ambientes. A proteína utilizada neste estudo foi a albumina sérica bovina (BSA), amplamente estudada no campo da bioquímica. Através da espectroscopia Raman associada com análise térmica por DSC, análise colorimétrica, e a determinação do teor de umidade, verificou-se que o congelamento rápido (30 °C/min.) favoreceu a manutenção da estrutura conformacional da proteína após a liofilização, porém aumentou o tempo de secagem primária em sete horas em relação ao congelamento lento (2,5 °C/min.). Após a modificação da albumina bovina por reação com o metoxi-PEG verificou-se que a BSA-PEG (1:0,25) apresentou um menor grau de alteração estrutural e conseqüentemente uma menor variação das características físico-químicas, além de otimizar as condições de liofilização e armazenamento da proteína quando comparada com a BSA-PEG (1:0,5) . / PEG conjugation masks the proteins surface and increases the molecular size of the polypeptide, thus reducing its renal ultrafiltration, preventing the approach of antibodies or antigen processing cells and reducing the degradation by proteolytic enzymes. The PEG conveys to molecules its physico-chemical properties and therefore modifies also biodistribution and solubility of peptide and non-peptide drugs. This property opens new techniques in biocatalysis and in pharmaceutical technology where many insoluble drugs are solubilized by PEG conjugation and thus more easily administered. Aqueous protein solutions are readily denatured (often irreversibly) by numerous stresses arising in solution, e.g., heating, agitation, freezing, pH changes, and exposure to interfaces or denaturants, usually resulting in lost of clinical efficacy and increase the risk of adverse side effects. Even if its physical stability is maintained, a protein can be degraded by chemical reactions (e.g., hydrolysis and deamidation), many of which are mediated by water. The practical solution to the protein stability dilemma is to remove the water. Lyophilization is most commonly used to prepare dehydrated proteins, which, theorecally, should have the desired long-term stability at ambient temperatures. The protein used in this study was the bovine serum albumin (BSA), largely studied in the biochemical field. Through Raman spectroscopy associated with thermal analysis using DSC, Colorimetric analysis and the determination of water content It was observed that the fast freezing (30 °C/min.) favored the maintenance of the conformational structure in the protein after lyophilization, however increased the primary drying in seven hours with regard to the slow freezing (2,5 °C/min.). After the modification of bovine serum albumin with methoxy-PEG it was observed that the BSA-PEG (1:0,25) showed a lower degree of structural alterations and consequently a lower variation on the physical-chemical characteristics, moreover optimized the conditions during the lyophilization process and storage of the protein when it was compared to BSA-PEG (1:0,5).
|
Page generated in 0.0523 seconds