Spelling suggestions: "subject:"bracing"" "subject:"gracing""
81 |
Víceúčelová sportovní hala / Multi-purpose sports buildingVrátný, Martin January 2015 (has links)
This thesis describes the design of a multipurpose sports hall in Pribram. The sports hall is situated in the town of Pribram II. The aim of this work is to propose bearing structure with dimensions 49 x 28 halls has a background in the shape of L in the level of ± 0.000. Maximum height of the hall is 14 meters.Structure of the hall consists of arched trusses in 7 m grid supported by steel columns. This is a column support system. The building is based on the footings. Ensure stability bracing. Perimeter and roof cladding consists of sandwich panels.
|
82 |
Návrh založení polyfunkčního domu v Brně / Foundation design of multi-functional building in BrnoPospíšil, Jan January 2015 (has links)
The objective of thesis is to design and evaluate suitable foundation pit and in the establishment of multi-functional building on the street Smetanova 19 in Brno. The part of this thesis is also to describe the technological process of implementing the designed constructions and the preparation of relevant design documentation.
|
83 |
Nosná ocelová konstrukce zastřešení sportovního stadionu / Load bearing steel structure of the sport stadium roofingKerouš, Jakub January 2017 (has links)
This diploma thesis deals with design load bearing steel structure of the sport stadium roofing with 82,8 m length and 29,0 m width. Roofing structure is designed and examined in two versions. Variant A is designed like tubular truss girder with axis distance 4,6 m. Variant B is designed like welded solid-web girder with same axis distance. These versions are compared by weight, manufacturing complexity and appearance, prefeable version is processed in detail. Drawings contain layout of both versions and manufacturing drawings of truss.
|
84 |
Performance Based Seismic Design of Lateral Force Resisting SystemMichel, Kenan 06 October 2020 (has links)
Das seitliche Kraftwiderstandssystem, in diesem Fall Stahlbetonkernwände eines 10-stöckigen Gebäudes, das aus Schwerkraftstützen und Scherwänden besteht, wurde linear (unter der Annahme eines linearen elastischen Materialverhaltens von Beton) und nichtlinear gerissen (unter Berücksichtigung des Materialverhaltens von Beton) unter seismische Belastung analysiert. Erst wurde die grundlegenden Methode der äquivalenten Seitenkraft zur Schätzung der seismischen Belastungen benutzt, später wurde die aktuelle Methode The Performance Based Seismic Design verwendet, bei der reale seismische Aufzeichnungen verwendet werden und die Beschleunigungen mithilfe der Software ETABS auf das Gebäude angewendet werden. Nach dem Anwenden der Beschleunigungen wurden die maximal resultierenden Kräfte und Verformungen bewertet. Das Gebäude wurde dann für die maximal resultierenden Kräfte ausgelegt.Der Inhalt des Hauptberichts ist:
- Allgemeine Beschreibung des Gebäudes, seismische Standortinformationen, Standortantwortspektren, Belastung und seismische Kräfte einschließlich Analyse des modalen Antwortspektrums.
- Lineares Design des Modells für Schwerkraft und seismische Belastungen, P-M-Wechselwirkungsdiagramme für den U-Querschnitt aus Stahlbeton, Entwurf einer Längs- und Schubbewehrung der Scherwände und des Koppelbalkens.
- Zwei Varianten des nichtlinearen Modells, bei denen die Kernwand (Scherwände) gemäß jeder Variante entworfen wird, wobei der Einfluss des Dämpfungsmodells auf das nichtlineare dynamische Verhalten sowie der Einfluss des Kopplungsstrahlmodells auf das nichtlineare dynamische Verhalten untersucht werden.
- Entwurfsüberprüfung, erst mit der Definition der Leistungsobjekte und Modell für die Zeitverlaufsanalyse. Es wurden zwei Leistungsziele untersucht: Vollbetriebs- und Lebenssicherheitsprüfungen.
- In zwei Fällen wurde eine zusätzliche Studie zur Reaktion von nicht strukturellen Elementen aufgrund seismischer Belastung durchgeführt: Überprüfung des Vollbetriebs und der Lebenssicherheit.
- Die Durchsetzungszeichnungen wurden fertiggestellt und dem Bericht beigefügt. Schlussfolgerung und Empfehlungen waren am Ende des Berichts. Dies ist wichtig für die Gesellschaft, da die verwendete Methode für die seismische Planung jedes Gebäudes verwendet werden kann. Es könnte ein Holzbau oder ein Mauerwerk sein. Die Gestaltung eines Mauerwerksgehäuses wird Gegenstand eines zukünftigen Forschungsprojekts sein.
Allgemeine Ziele: Lineare und nichtlineare seismische Bemessung von Stahlbetongebäuden unter Verwendung der 'seismischen Bemessung der Leistungsgrundlagen:Acknowledgement 4
PART I: General Information, Site and Loading 5
1. General Information About the Building 5
1.1. Specified Material Properties: 6
1.2. Site Information: 6
1.3. Geometry (Figure I.1): 7
2. Site Seismicity and Design Coefficients 7
2.1. USGS Results 7
2.2. Site Response Spectra 8
2.3. Design Coefficients And Factors For Seismic Force-Resisting Systems 8
3. Loading 9
3.1. Determination Of Seismic Forces 9
3.2. Modal Response Spectrum Analysis 9
3.3. Seismic Load Effects And Combinations 11
PART II: Core Wall Design - Linear Model 12
4. Model of ETABS 12
4.1. Geometry 12
4.2. Gravity Loads 13
4.3. Seismic Loads 15
4.4. Tabulated Selected Results From ETABS Analysis 16
5. P-M Interaction Diagrams 17
5.1. N-S Direction 17
5.2. E-W Direction 19
6. Lateral Force Resisting System, Linear 20
6.1. Longitudinal Reinforcement 20
6.2. Shear Reinforcement 22
6.3. Boundary Elements 24
6.3.1. Transverse Reinforcement Of Boundary Elements 26
6.4. Coupling Beams 27
7. Detailing 30
PART III: Site Response Spectra and Input Ground Motions 31
8. Performance Levels 31
8.1. ASCE 7-16 Target Spectra 31
8.2. Site Response Spectra 34
8.2.1. Ground Motion Conditioning 34
8.2.2. Amplitude Scaling 37
8.2.3. Pseudo Acceleration and Displacement Response Spectra 38
PART IV: Non-Linear Model 40
9. Variant 1 of Non-Linear Model 40
9.1. Complete Core Wall Design for Combined Axial-Flexure 40
9.2. Modal Analysis 43
9.3. Influence of the Damping Model on the Nonlinear Dynamic Response 49
10. Variant 2 of Non-Linear Model 57
10.1. Influence of the Coupling Beam Model on the Nonlinear Dynamic Response 57
10.2. Estimated Roof Displacement 68
PART V: Design Verification 70
11. General 70
11.1. Performance Objectives 70
11.2. Model For Time-History Analyses 71
11.3. Performance Level Verification 71
11.4. Fully Operational Performance Level Verification 71
11.5. Life Safety Performance Level Verification 78
PART VI: Capacity Design of Force Controlled Elements and Regions and Design of Acceleration-Sensitive Nonstructural Elements 87
12. General 87
12.1. Design Verification 87
12.1.1. Full Occupancy Case 87
12.1.2. Life Safety Case 91
12.1.3. Observations on Plots 93
12.2. Acceleration response spectra at roof level 94
12.2.1. Observations on Plots 95
12.3. Core Wall 97
12.4. Design Detail Comparison 103
12.5. Detailed Drawing 103
12.6. Diaphragm 104
12.7. Fire Sprinkler System 117
12.8. Overhanging Projector 119
PART VII: Conclusion 122 / Lateral Force Resisting System, in this case reinforced concrete core walls of a 10 story building consists of gravity columns and shear walls, has been analyzed in linear (assuming linear elastic material behavior of concrete) and nonlinear cracked (considering plastic material behavior of concrete) case, for seismic loading. Starting with the basic method of equivalent lateral force to estimate the seismic loads, then using the up to date method, The Performance Based Seismic Design, which uses real seismic records and apply the accelerations on the building using the software ETABS. After applying the accelerations, maximum resulted forces and deformations have been evaluated. The building then have been designed for the maximum resulted forces.
The contents of the main report are:
- General description of the building, site seismic information, site response spectra, loading and seismic forces including modal response spectrum analysis.
- Linear design of the model for gravity and seismic loads, P-M interaction diagrams developed for U cross section from reinforced concrete, designing longitudinal and shear reinforcement of the shear walls and coupling beam.
- Two variants of Nonlinear model, designing the core wall (shear walls) according to each variant, studying the influence of damping model on the nonlinear dynamic response, as well as the influence of the coupling beam model on the nonlinear dynamic response.
- Design verification, starting with defining the performance objects, and model for time history analysis. Two performance objectives have been studied: Fully operational and Life safety level verifications.
- Additional study was performed for the response of non-structural elements due to seismic loading in two cases: Fully operational and Life safety level verifications.
- Reinforcement Drawings have been finalized and attached to the report.
- Conclusion and recommendations was at the end of the report.
It is important for the society, because the used method could be used for the seismic design of any building. It could be wood building or masonry building. Designing a masonry building case will be the subject of future research project.
Overall objectives: Linear and Nonlinear seismic design of reinforced concrete building using the performance bases seismic design.:Acknowledgement 4
PART I: General Information, Site and Loading 5
1. General Information About the Building 5
1.1. Specified Material Properties: 6
1.2. Site Information: 6
1.3. Geometry (Figure I.1): 7
2. Site Seismicity and Design Coefficients 7
2.1. USGS Results 7
2.2. Site Response Spectra 8
2.3. Design Coefficients And Factors For Seismic Force-Resisting Systems 8
3. Loading 9
3.1. Determination Of Seismic Forces 9
3.2. Modal Response Spectrum Analysis 9
3.3. Seismic Load Effects And Combinations 11
PART II: Core Wall Design - Linear Model 12
4. Model of ETABS 12
4.1. Geometry 12
4.2. Gravity Loads 13
4.3. Seismic Loads 15
4.4. Tabulated Selected Results From ETABS Analysis 16
5. P-M Interaction Diagrams 17
5.1. N-S Direction 17
5.2. E-W Direction 19
6. Lateral Force Resisting System, Linear 20
6.1. Longitudinal Reinforcement 20
6.2. Shear Reinforcement 22
6.3. Boundary Elements 24
6.3.1. Transverse Reinforcement Of Boundary Elements 26
6.4. Coupling Beams 27
7. Detailing 30
PART III: Site Response Spectra and Input Ground Motions 31
8. Performance Levels 31
8.1. ASCE 7-16 Target Spectra 31
8.2. Site Response Spectra 34
8.2.1. Ground Motion Conditioning 34
8.2.2. Amplitude Scaling 37
8.2.3. Pseudo Acceleration and Displacement Response Spectra 38
PART IV: Non-Linear Model 40
9. Variant 1 of Non-Linear Model 40
9.1. Complete Core Wall Design for Combined Axial-Flexure 40
9.2. Modal Analysis 43
9.3. Influence of the Damping Model on the Nonlinear Dynamic Response 49
10. Variant 2 of Non-Linear Model 57
10.1. Influence of the Coupling Beam Model on the Nonlinear Dynamic Response 57
10.2. Estimated Roof Displacement 68
PART V: Design Verification 70
11. General 70
11.1. Performance Objectives 70
11.2. Model For Time-History Analyses 71
11.3. Performance Level Verification 71
11.4. Fully Operational Performance Level Verification 71
11.5. Life Safety Performance Level Verification 78
PART VI: Capacity Design of Force Controlled Elements and Regions and Design of Acceleration-Sensitive Nonstructural Elements 87
12. General 87
12.1. Design Verification 87
12.1.1. Full Occupancy Case 87
12.1.2. Life Safety Case 91
12.1.3. Observations on Plots 93
12.2. Acceleration response spectra at roof level 94
12.2.1. Observations on Plots 95
12.3. Core Wall 97
12.4. Design Detail Comparison 103
12.5. Detailed Drawing 103
12.6. Diaphragm 104
12.7. Fire Sprinkler System 117
12.8. Overhanging Projector 119
PART VII: Conclusion 122
|
85 |
Beräkningsmall för vind- och snölast enligt Eurokoderna : Jämförelse mellan Stomstabiliseringssystem av en industribyggnad / Calculation model for wind- and snow load according to Eurocode : Comparison of lateral stability system in an industrial buildingKlinga, Niloofar, Selvad, Tomas January 2015 (has links)
Examensarbetet kom som en förfrågan från företaget Northpower stålhallar AB som var i behov av en beräkningsmall för vind- och snölast. Beräkningsmallen utformas i Microsoft Excel och den ska möta de önskemål och krav som tillkommer vid projektering av en hallbyggnad. Beräkningsmallen grundas på en litteraturstudie av vind- och snölast kapitlen i Eurokoderna som inleder den teoretiska delen av rapporten. För att se skillnader mellan stomstabiliseringssystem som vanligen används i hallbyggnader, utfördes en litteraturstudie på vanligt förekommande systemen. En kraftanalys vid olika placeringar av företagets nuvarande stomstabiliseringssystem gjordes med hjälp av den tillverkade beräkningsmallen. Litteraturstudien och analysen sammanställdes till jämförelse av de olika stomstabiliseringssystemen. / The subject of this bachelor thesis was a query from Northpower stålhallar AB that was in need of a calculation model for wind- and snow loads. The Calculation model was created in Microsoft Excel and shall satisfy the requirements for the design of an industrial building. The calculation model is founded on a literature study of Eurocodes wind- and snow load chapters, which initializes the theoretical part of the report. To gain a better understanding of the differences between the different types of bracing systems that is normally used in industrial buildings, we performed a literature study on a selection of the usual systems. Using the calculation model, a force analysis on different placing’s of the current lateral stability system the company use was carried out. The thesis ends with a comparison of the study and analysis of the different lateral stability systems that’s been studied.
|
86 |
Montovaná železobetonová hala s jeřábovou dráhou / Prefabricated reinforced concrete hallJakubcová, Hana January 2022 (has links)
The main work of the diploma thesis is a draft and a static judgement of chosen horizontal and vertical parts of prefab hall with a crane runway. The chosen parts are the girder, the column, the bracing, the foundation beam, and the foundation pad. The model for gathering of intern forces is made by the program SCIA Engineer 18.1 with the use of a bar 3D model of the whole project. The parts were judged on the ultimate limit state. The prestressed girder was judged on the ultimate limit state and the serviceability limit state.
|
87 |
An Investigation of External Support Choices and Behaviours During One-Handed Exertions with Constrained ReachesLiebregts, Julian H. January 2014 (has links)
Introduction: External support behaviours, which include leaning (supporting with the non-task hand) or bracing (supporting with the body), are frequently employed by workers in manufacturing settings. However, current ergonomic assessment tools are limited by our limited understanding of these behaviours. Recent studies have investigated these behaviours, however, the designs of these studies are limited in their applicability to real-world scenarios. The purpose of this study was to assess how different task parameters affect the prediction of external support behaviours, as well as the effect of support on task hand, and body, kinematics and kinetics, in a minimally constrained experimental design. Methods: Female participants (n = 18) performed a series of one-handed maximal exertions (in the six orthogonal directions), and one precision task, in four hand Locations. Trials either featured support (as chosen by the participant), or no support. Results & Discussion: Three logistic regression models were developed, with inputs from individual and task characteristics, and they correctly predicted the occurrence of leaning, bracing, or simultaneous leaning and bracing, 74-86% of the time. Leaning and/or bracing were found to provide: 1) oppositional forces to increase task hand force generation, 2) balance, by countering destabilizing moments about the feet, and 3) a reduction in moment arm of the task hand force, with respect to the upper body joints, by bringing the shoulder closer to the task hand. Participants were able to exert 64.8% more force at the task hand as a result of support. Leaning hand placement depended on the task force direction and location. However, the positioning of the leaning hand varied very little. Finally, the precision condition showed that fine motor demands may also affect external support choice. / Thesis / Master of Science in Kinesiology
|
88 |
Evaluation of Non-invasive Treatment Options for Children and Adolescents with Pectus Carinatum : An Evaluation of Patient Satisfaction, Adherence and an Exploration of the Social and Psychological Impact of Non-invasive Treatment Options - A Systematic Review / Evaluation of Non-invasive Treatment Options for Children and Adolescents with Pectus Carinatum : An Evaluation of Patient Satisfaction, Adherence and an Exploration of the Social and Psychological Impact of Non-invasive Treatment Options - A Systematic ReviewPettersson, Karin January 2023 (has links)
This review aimed to evaluate orthotic treatments for children and adolescents with pectus carinatum, primarily focusing on patient satisfaction with the treatment. Secondary outcomes of interest were adherence and psychological and social factors following the treatment period. A literature search was performed in the databases CINHAL, Medline, Web of Science and Scopus. Following predetermined eligibility criteria, articles were included and excluded. Next, criticala ppraisal was performed for the included articles. Following this, relevant data were extracted, analysed, and presented to aid in answering the research questions. Six articles with 402 patients were included in the final review. Patient satisfaction was good or improved following the treatment period, and the combined non-adherence rate for the included orthosis was 37.7 %. Patients adhering to the treatment protocol showed increased self-esteem and decreased interference with social activity following orthotic correction. Moreover, they displayed significantly higher patient satisfaction than patient's non-adherent to the treatment protocol. The findings were displayed and discussed in the Bio-Psycho-Social model. Due to their connection, patient satisfaction and adherence were placed together in the middle and surrounded bypsychological and social factors. The model displayed that a combination of many aspects determines patient satisfaction and adherence, demonstrating that treatment is complex and challenging. In conclusion, adherence was deemed one of the most important aspects to achieve high patient satisfaction. Moreover, due to psychological and social factors, a patient-centred approach with professional collaboration is necessary to achieve successful outcomes. To make reliable conclusions, research of higher quality with long follow-up periods including standardised patient satisfaction and adherence measures is needed.
|
89 |
Seismic analysis and retrofitting of an existing multi-storey building in StockholmMuca, Matilda, Haikal, Celine January 2018 (has links)
Throughout the years earthquakes are a huge concern for structures; causing losses of peoples’ lives, damages and collapse of homes. Usually, most of the buildings that collapse or have serious damages are mostly old buildings that do not fulfil any longer the updated regulations and building codes concerning seismic design. The purpose of this Master’s thesis is to analyse and strengthen an existing building given by the company Sweco, by using proper and innovative retrofitting techniques; considering Eurocode 8 and collected data from previous studies. The selected building is a seven-storey structure in Stockholm; consists of prefabricated concrete and steel elements and is tested under seismic loading to investigate the global behaviour of the structure using the software MIDAS GEN. Two analyses are performed; assessment analysis which includes modelling of the given structure where the structural capacities are studied. The second analysis is the seismic analysis which includes two secondary analyses; before seismic retrofitting and after seismic retrofitting respectively. In the seismic analysis before the seismic retrofitting is applied, the main scope is to identify the most critical positions of the building where it behaves abnormally and the displacements are high enough in order to modify the structure to decrease displacements. Moreover, the frequencies were obtained and examined. The second seismic analysis includes the modified structure; where it was tested with different alternative methods of seismic retrofitting in order to identify which technique is the most proper one to optimise the strength and the structural performance of the given building. Finally, it appeared that a combination of seismic retrofitting methodologies was the most suitable selection. The selected combination consists of steel bracings and prefabricated reinforced concrete walls (shear walls). After performing the seismic retrofitting analysis, results of the frequencies and displacements of the structure were acquired and compared with the un-retrofitted analysis. The obtained results displayed that using this structural modification improved by increasing the frequency in the transverse direction (y) by 57.2%, in the longitudinal direction (x) by 27.6% and rotational along the z-axis by 12.9%; lastly, by decreasing the displacements in the x- and y-direction remarkably. Consequently, a combination of innovative seismic retrofitting methods appeared to be more effective, achieving a more resistant building under seismic hazards, by improving the stability and ductility of the structure. This gives rise to further researches and investigations for future solutions regarding seismic retrofitting applications and methodologies. / Jordbävningar är skakningar i marken som orsakar förluster av människors liv och leder till skador och kollaps av byggnader. Vanligtvis är de flesta byggnader som har allvarligt skadats eller kollapsat, äldre byggnader som inte längre uppfyller de uppdaterade byggreglerna för seismisk design. Syftet med detta examensarbete är att analysera och stärka en befintlig byggnad som har distribuerats av konsult företaget Sweco; lämpliga och innovativa seismisk eftermonteringsmetoder har använts för att förbättra byggnadens tillstånd med hjälp av insamlat vetenskapliga artiklar, tidskrifter och tidigare examensarbete samt svensk standard (Eurokod 8 - för dimensionering av bärverk med avseende på jordbävning). Den utdelade byggnaden är sju våningar hög och ligger i Stockholm. Den består av prefabricerade betong- och stålelement. Byggnaden kommer att testas under seismisk belastning med hjälp av programvaran MIDAS GEN, för att sedan examinera byggnadens globala beteende. Två analyser har utförts; en bedömningsanalys som innefattar granskning av den givna byggnadens kapacitet. Den andra analysen är den seismiska analysen som omfattar två sekundära analyser; en ’före applikation av seismisk eftermonteringsmetod’ och en ’efter applikation av seismisk eftermonteringsmetod’. I den första seismiska analysen, identifieras de mest kritiska positionerna där byggnadens beteende är avvikande med höga förskjutningar och låga frekvenser; således, är behovet av att modifiera och förbättra byggnadens prestanda betydande. Den andra seismiska analysen innefattar den modifierade byggnaden, som har testats med olika alternativa seismiska eftermonteringsmetoder för att identifiera vilken teknik som är mest passande för att optimera byggnadens hållfasthet, elasticitet och prestanda. Efter många experimentella försök, framgick det att en kombination av varierande seismiska eftermonteringsmetoder var det mest lämpliga urvalet. Den valda kombinationen består av stålfackverk och skjuvväggar. Efter genomförandet av den seismiska eftermonteringsanalysen erhölls resultat av frekvensen och förskjutningarna av byggnaden som sedan jämfördes med den första seismiska analysen, innan en eftermonteringsmetod var tillämpad. De erhållna resultaten visade att valet av denna modifikation har förbättrat byggnadens prestanda genom att öka frekvensen i tvärriktningen (y) med 57,2%, i längdriktningen (x) med 27.6% och rotationsfrekvensen längs z-axeln med 12.9%; slutligen, genom att minska förskjutningarna i x- och y-riktningen anmärkningsvärt. Följaktligen, verkade en kombination av varierande seismiska eftermonteringsmetoder vara effektiv, vilket resulterade i en seismisk resistent byggnad med avsevärt god hållfasthet, elasticitet och stabilitet. Denna forskning ger upphov till ytterligare efterforskningar och undersökningar för framtida lösningar avseende seismiska eftermonteringsapplikationer och metoder.
|
90 |
Seismic Retrofit of Reinforced Concrete Frame Buildings with Tension Only BracesKhosravi, Sadegh 13 October 2021 (has links)
Reinforced concrete buildings built prior to the enactment of modern seismic codes are often seismically deficient. These buildings may have inadequate strength and ductility to withstand strong earthquakes. Conventional retrofit techniques for such frame buildings involve adding reinforced concrete shear walls or structural bracing systems to the existing bays. These techniques can be intrusive and result in lengthy down times and expensive structural interventions. An alternative to conventional techniques is the use of high-strength prestressing strands or cables, diagonally placed as tension elements. This technique was researched and used in a limited manner after the 1985 Mexico City Earthquake. It has since been further investigated at the University of Ottawa through experimental and analytical research (Shalouf and Saatcioglu (2006), Carrière (2008), Molaei (2014)). While the use of steel strands as tension bracing elements proves to be an effective technique, the resulting stiffening effects on the frames lead to increased seismic force demands and higher based shear, as well as increased axial forces on the attached columns, potentially generating net tension, foundation uplift and excessive compression. Relatively low elongation characteristics of high-strength cables and slack caused by yielding strands and associated pinching of hysteresis curves reduce potential energy dissipation capacity. The current research aims to improve the previously observed deficiencies of the system. One of the improvements involve the use of shape memory alloys (SMA) in the middle of the cables, which reduce/eliminate residual deformations upon yielding and associated pinching of the hysteresis curves. SMA allows energy dissipation in the system while forcing the structure to recover from its inelastic deformations because of the flag-shape hysteretic characteristics of the material. The feasibility of the cable-SMA assembly as tension brace elements is illustrated through dynamic analyses of selected prototype buildings. The other improvement is the development of progressively engaging, initially loose multiple strands as tension cables. These cables are placed loosely to engage in seismic resistance at pre-determined drift levels, thereby eliminating premature increase in seismic force demands until their participation is required as the frame capacity is reached. Tests of a large-scale reinforced concrete frame, designed following the requirements of the 1965 National Building Code of Canada NRC (1965) as representative of existing older frame buildings in Canada, are conducted under simulated seismic loading to assess the effectiveness of the proposed system. The verification of the concept is extended analytically to prototype buildings and the effectiveness of the system is demonstrated for mid-rise and low-rise frame buildings.
|
Page generated in 0.0761 seconds