111 |
Influência da dieta vegetariana no estado nutricional, em parâmetros bioquímicos e na expressão de BDNF circulante em adultos na cidade São Paulo / The influence of vegetarian diets on the nutritional status, biochemical parameters and the expression of circulating brain-derived neurotrophic factor (BDNF) among adults in the city of São PauloPimentel, Carolina Vieira de Mello Barros 19 September 2014 (has links)
Introdução - Os efeitos na saúde de dietas vegetarianas (DV) apontam principalmente para a diminuição do risco de Doenças Crônicas Não Transmissíveis (DCNT), uma vez que modula positivamente parâmetros bioquímicos, particularmente aqueles relacionados ao controle da glicemia e lipemia, além de ser uma medida para o controle de peso. Estudos recentes em adultos demonstram que a dieta possa também modular parâmetros moleculares. Nesse cenário, atenta-se para o papel do Fator Neurotrófico Derivado do Encéfalo (BDNF) o qual parece estar relacionado com a DV em relação à redução de triglicerídeos e colesterol e aumento da sensibilidade à insulina. Objetivo - Avaliar adultos que adotaram uma DV, em relação ao estado nutricional, aos parâmetros bioquímicos e moleculares comparados aos adultos com dieta onívora. Métodos - A população avaliada foi constituída por 96 indivíduos, 56 vegetarianos e 40 onívoros, adultos e de ambos os sexos, em um estudo do tipo transversal. Para o levantamento dos dados sociodemográficos e de estilo de vida foi aplicado questionário e aferidas às medidas de peso corporal (PC) e altura, para posterior cálculo de Índice de Massa Corporal (IMC) e circunferência de cintura (CC). Foi realizada também coleta de sangue para estudos bioquímicos e expressão de BDNF plasmático. Os índices de Castelli 1 e 2 (razões lipídicas) são indicadores de risco cardiovascular (RCV) com maior valor preditivo do que parâmetros isolados, por isso, também foram calculados. A resistência à insulina (IR) foi avaliada pelo índice HOMA_IR. As análises foram conduzidas pelo software SPSS (Statistical Package for Social Sciences) versão 20.0 e para todas foi considerado um nível de significância de 5 por cento .Foi realizada análise de regressão logística para identificar se a DV e outros fatores podem prever a redução da chance de ter RCV, determinado pelos índices de Castelli 1 e 2.Resultados Em relação às variáveis de estilo de vida, os VEG têm uma tendência a praticar mais atividade física (64,3 por cento vs 42,5 por cento , p = 0,056) e ingerir suplementos alimentares (48,1 por cento vs 20,5 por cento , p = 0,012), embora o número de fumantes se apresente semelhante em ambos os grupos. Não houve diferença estatisticamente significante para as variáveis: idade, sexo, prática de fumar, triglicerídeos (TG), Colesterol Total (CT) e lipoproteína de baixa densidade (LDL- c) entre os dois grupos. Já os valores dos índices de Castelli 1 (3,23 ± 0,84 vs 3,90 ± 0,99, p =0,001)e 2 (1,91 ± 0,69 vs 2,42 ± 0,79, p = 0,001) foram menores em vegetarianos (VEG) do que em onívoros (ONV). O grupo VEG tinha significativamente menor PC (63,9 ± 10,4 vs 69,4 ± 14,6 kg, p = 0,032); IMC (22,5 ± 2,6 vs 25,0 ± 3,9 kg/m2, p = 0,001); CC( 81,8 ± 8,2 vs 87,8 ± 10,9 cm, p = 0,003 ) e maior lipoproteína de alta densidade (HDL-c) (54,88 ± 14,44 vs 47,30 ± 12,27 mg / dl , p = 0,008) . Os VEG também apresentaram menor HOMA-IR (1,17 ± 0,70 vs 1,48 ± 0,8, p = 0,02) em comparação com ONV. Quanto a variável BDNF, não houve diferença entre os grupos VEG e ONV (662,8 + 276,5pg/ml vs 698,1 + 314,9 pg/ml, p=0,563). Conclusão - Sugere-se, portanto, que a DV pode ter efeitos protetores na saúde cardiovascular e no metabolismo desses indivíduos. / Introduction - The effects of vegetarian diets (VD) on health points out mainly to a decrease in the risk for noncomunnicable chronic disease (NCDs) once it positively modulates the biochemical parameters, particularly those related to the control of glicemic and lipemia being also a way of controlling weight. Recent studies have shown that diet can also modulate molecular parameters. In this scenario, one must pay attention to the role of the brain-derived neurotrophic factor (BDNF) which seems to be related to the VG in what regards the reduction of triacylglycerol and cholesterol, and the increase of insulin sensitivity. Objective - To assess adults that adopted a VD in what regards their nutritional status, biochemical and molecular parameters, in comparison to adults that adopted an omnivorous diet. Methods- A cross-sectional study assessed a population composed of 96 individuals, 56 vegetarians and 40 omnivores, adults of both genders. A questionnaire was administered in order to gather sociodemographic and life-style related data, body weight (BW), height and waist circumference (WC) were surveyed. In order to carry out the biochemical study and the expression of plasmatic BDNF, blood was collected. The Castelli indexes 1 and 2 (lipid ratios) are indicators of cardiovascular risk (CVR) with a higher predictive value than isolated parameters and therefore were calculated. Insulin resistance (IR) was calculated by the HOMA_IR index. The analyses were carried out through the SPSS (Statistical Package for Social Sciences) software, 20.0 version, taking into account a 5 per cent significance level. An analysis of logistic regression was done in order to identify if the VD and other factors are able to prevent the reduction of CVR, determined by the Castelli indexes 1 and 2. Results - There was no statistically significant difference between both groups regarding the following variables: age, gender, smoking habits, triglyceride (TG), Total Cholesterol (TC) low-density lipoprotein cholesterol (LDL- col). On the other hand, the values of the Castelli indexes 1 (3,23 ± 0,84 vs 3,90 ± 0,99, p =0,001) and 2 (1,91 ± 0,69 vs 2,42 ± 0,79, p = 0,001) were lower in vegetarians (VEG) than in omnivores (OMV). The VEG-groups showed significant lower BW (63,9 ± 10,4 vs 69,4 ± 14,6 kg, p = 0,032); BMI (22,5 ± 2,6 vs 25,0 ± 3,9 kg/m2, p = 0,001); WC ( 81,8 ± 8,2 vs 87,8 ± 10,9 cm, p = 0,003 ) and more high-density lipoprotein cholesterol (HDL col) (54,88 ± 14,44 vs 47,30 ± 12,27 mg / dl , p = 0,008). The VEG-group also presented lower HOMA-IR (1,17 ± 0,70 vs 1,48 ± 0,8, p = 0,02) in comparison to the OMV-group. Regarding life-style parameters, the individuals of the VEG-group displayed a tendency for practicing more physical activity (64,3 per cent vs 42,5 per cent , p = 0,056) and for ingesting food supplement (48,1 per cent vs 20,5 per cent , p = 0,012), although the number of smokers was quite similar between both groups. Regarding the BDNF variable, there was no difference between the VEG-group and the OMVGroup (662,8 + 276,5 pg/ml vs 698,1 + 314,9 pg/ml, p=0,563).Conclusion - In relation to these results it is to be suggested that a VD may exert protective effects on cardiovascular health and on the metabolism of the individuals that adopt it.
|
112 |
O estudo de polimorfismos da via dopaminérgica na epilepsia do lobo temporal causada por esclerose hipocampal / The study of dopaminergic pathway polymorphisms in temporal lobe epilepsy caused by hippocampal sclerosisJuliana Andrade Alcantara 04 October 2017 (has links)
Estudos clínicos nos pacientes com epilepsia mostram a importância da neurotransmissão modulada pela dopamina na epilepsia. Múltiplos fatores genéticos predispõem à epilepsia e há evidências de uma relação direta entre a epilepsia e as variações nos genes que codificam proteínas envolvidas na neurotransmissão dopaminérgica. O objetivo do nosso estudo foi investigar se os polimorfismos da via dopaminérgica e o Val66Met do BDNF estavam associados à ocorrência de epilepsia do lobo temporal causada por esclerose hipocampal. Para este fim, avaliamos 119 pacientes com epilepsia do lobo temporal causada por esclerose hipocampal e 113 voluntários saudáveis. Os participantes foram genotipados para os polimorfismos do gene DAT (3\'UTR e Intron 8), receptores dopaminérgicos (DRD2 e DRD4), COMT, MAO e BDNF (Val66Met). Não houve diferença entre pacientes e controles para os polimorfismos relacionados ao DAT, Íntron 8 VNTR (p 0,395) e 3\'UTR VNTR (p 0,614) e para a análise dos haplótipos (3\'UTR e Intron 8) (p 0.205). Não houve diferença entre pacientes e controles para os polimorfismos dos receptores dopaminérgicos DRD2 rs1800497 (p 0.440), DRD4 rs1800955 (p 0.548) e DRD4 VNTR (p 0.318). Não observamos diferença entre pacientes e controles quanto aos polimorfismos COMT rs4680 (p 0.482) e MAOA_uVNTR (p 0.753), metabolizadores de DA. Não observamos diferença na distribuição genotípica do polimorfismo Val66Met (rs6265) do BDNF (p 0,636) e a distribuição alélica (p 0.471) no grupo de pacientes com epilepsia do lobo temporal causada por esclerose do hipocampo. Nossos achados demonstraram que os polimorfismos da via dopaminérgica e BDNF Val66Met analisados neste estudo não parecem estar associados à epilepsia de lobo temporal causada por esclerose de hipocampo / Clinical studies in patients with epilepsy showed the role of neurotransmission modulated by dopamine in epilepsy. Multiple genetic factors predispose to epilepsy; there is evidence for a direct relationship between epilepsy and variations in genes encoding proteins involved in dopaminergic neurotransmission. The aim of our study was to investigate if the polymorphism related to the dopaminergic pathway and BDNF polymorphism Val66Met were associated with the occurrence of temporal lobe epilepsy caused by hippocampal sclerosis. We assessed 119 patients with unequivocal temporal lobe epilepsy caused by hippocampal sclerosis and 113 healthy volunteers. Individuals were genotyped for DAT gene polymorphisms (3\'UTR and Intron 8), dopaminergic receptors (DRD2 and DRD4), COMT, MAO and BDNF. There was no difference between patients and controls considering the polymorphisms related to DAT, Intron 8 VNTR (p 0,395) and 3\'UTR VNTR (p 0.614) and for the analysis of haplotypes (3\'UTR and Intron 8) (p 0.205). There was no difference between patients and controls considering the dopaminergic receptor polymorphisms DRD2 rs1800497 (p 0.440), DRD4 rs1800955 (p 0.548) and DRD4 VNTR (p 0.318). We observed no difference between patients and controls regarding COMT polymorphisms rs4680 (p 0.482) and MAOA_uVNTR (p 0.753), of dopaminergic metabolizers. We did not observe difference in the genotypic distribution of BDNF Val66Met polymorphism (rs6265) (p 0.636) and in the allelic distribution (p 0.4711) in the group with temporal lobe epilepsy caused by hippocampal sclerosis. Our findings suggest that the polymorphisms of the dopaminergic pathway evaluated in this study and BDNF Val66Me do not appear to be associated with temporal lobe epilepsy caused by hippocampal sclerosis
|
113 |
Effect of intermittent hypoxia on hippocampal long-term synaptic plasticity in mouse.January 2008 (has links)
Xie, Hui. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 91-116). / Abstracts in English and Chinese. / CONTENTS --- p.I / ACKNOWLEDGEMENTS --- p.i / ABSTRACT --- p.ii / 中文摘要 --- p.v / Chapter CHAPTER 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Overview of the Study --- p.1 / Chapter 1.2 --- Obstructive Sleep Apnea --- p.4 / Chapter 1.2.1 --- Epidemiology --- p.5 / Chapter 1.2.1.1 --- Prevalence --- p.5 / Chapter 1.2.1.2 --- Risk Factors --- p.6 / Chapter 1.2.2 --- Pathogenesis --- p.8 / Chapter 1.2.3 --- Pathophysiologic Consequences --- p.9 / Chapter 1.2.4 --- Diagnosis --- p.12 / Chapter 1.2.5 --- Treatment --- p.13 / Chapter 1.3 --- Memory and Long-term Potentiation --- p.15 / Chapter 1.3.1 --- Memory --- p.15 / Chapter 1.3.1.1 --- Classification of Memory --- p.15 / Chapter 1.3.1.1 --- Physiology of Memory --- p.17 / Chapter 1.3.2 --- Hippocampus --- p.18 / Chapter 1.3.2.1 --- Anatomy --- p.18 / Chapter 1.3.2.2 --- Hippocampus and Memory --- p.20 / Chapter 1.3.3 --- Long-term Potentiation (LTP) --- p.20 / Chapter 1.3.3.1 --- Discovery of LTP --- p.21 / Chapter 1.3.3.2 --- Types of LTP --- p.22 / Chapter 1.3.3.3 --- Properties of NMDA-LTP --- p.23 / Chapter 1.3.3.4 --- Early Phase LTP and Mechanism --- p.24 / Chapter 1.3.3.5 --- Late Phase LTP and Mechanism --- p.28 / Chapter 1.3.3.6 --- Important Factors in Long-term Potentiation --- p.29 / Chapter 1.4 --- Brain-derived Neurotrophic Factor (BDNF) --- p.33 / Chapter 1.4.1 --- Neurotrophins --- p.33 / Chapter 1.4.2 --- Structure and Expression of BDNF --- p.36 / Chapter 1.4.3 --- BDNF and Synaptic Plasticity --- p.37 / Chapter 1.4.3.1 --- BDNF and E-LTP --- p.38 / Chapter 1.4.3.2 --- BDNF and L-LTP --- p.39 / Chapter CHAPTER 2 --- METHODS --- p.43 / Chapter 2.1 --- Animal model of Obstructive Sleep Apnea --- p.43 / Chapter 2.1.1 --- Chronic Intermittent Hypoxia --- p.43 / Chapter 2.1.2 --- Bodyweight During Hypoxia Treatment --- p.47 / Chapter 2.2 --- Electrophysiological Experiments --- p.47 / Chapter 2.2.1 --- Brain Slice Preparation --- p.47 / Chapter 2.2.2 --- Multi-electrode Recording Setup (MED64) --- p.48 / Chapter 2.2.3 --- Slice Superfusion --- p.51 / Chapter 2.3.4 --- Field Potential Recordings --- p.53 / Chapter 2.3.5 --- LTP Induction Protocol --- p.55 / Chapter 2.3 --- Stereotaxic Surgery --- p.57 / Chapter 2.4 --- Drugs and Data Analysis --- p.58 / Chapter CHAPTER 3 --- RESULTS --- p.59 / Chapter 3.1 --- Validation of the OSA model --- p.59 / Chapter 3.2 --- Optimization for Studies of Early and Late-phase LTP by MED64 --- p.60 / Chapter 3.2.1 --- Optimization of Brain Slices --- p.60 / Chapter 3.2.2 --- Optimization of Field Potential Recording --- p.62 / Chapter 3.2.3 --- Optimization for LTP Study --- p.65 / Chapter 3.3 --- Effect of Intermittent Hypoxia on Hippocampal LTP --- p.68 / Chapter 3.3.1 --- Early-phase LTP (E-LTP) --- p.68 / Chapter 3.3.2 --- Late-phase LTP (L-LTP) --- p.71 / Chapter 3.4 --- Effect of BDNF on Intermittent Hypoxia-induced LTP Impairment --- p.75 / Chapter 3.4.1 --- BDNF Rescues LTP Impairment --- p.75 / Chapter 3.4.2 --- BDNF prevents LTP Impairment --- p.78 / Chapter CHAPTER 4 --- DISCUSSION --- p.80 / Chapter 4.1 --- Chronic Intermittent Hypoxia Model of OSA in Mice --- p.80 / Chapter 4.2 --- Impairment of LTP Induced by Intermittent Hypoxia --- p.82 / Chapter 4.3 --- The role of BDNF in IH-induced Impairment in Hippocampal Synaptic Plasticity --- p.84 / Chapter 4.4 --- Future Studies --- p.89 / REFERENCE --- p.91
|
114 |
The Effects of Nicotine in the Neonatal Quinpirole Rodent Model of Psychosis: Neural Plasticity Mechanisms and Nicotinic Receptor ChangesPeterson, Daniel J., Gill, Wesley Drew, Dose, John M., Hoover, Donald B., Pauly, James R., Cummins, Elizabeth D., Burgess, Katherine C., Brown, Russell W. 15 May 2017 (has links)
Neonatal quinpirole (NQ) treatment to rats increases dopamine D2 receptor sensitivity persistent throughout the animal’s lifetime. In Experiment 1, we analyzed the role of α7 and α4β2 nicotinic receptors (nAChRs) in nicotine behavioral sensitization and on the brain-derived neurotrophic factor (BDNF) response to nicotine in NQ- and neonatally saline (NS)-treated rats. In Experiment 2, we analyzed changes in α7 and α4β2 nAChR density in the nucleus accumbens (NAcc) and dorsal striatum in NQ and NS animals sensitized to nicotine. Male and female Sprague-Dawley rats were neonatally treated with quinpirole (1mg/kg) or saline from postnatal days (P)1-21. Animals were given ip injections of either saline or nicotine (0.5mg/kg free base) every second day from P33 to P49 and tested on behavioral sensitization. Before each injection, animals were ip administered the α7 nAChR antagonist methyllycaconitine (MLA; 2 or 4mg/kg) or the α4β2 nAChR antagonist dihydro beta erythroidine (DhβE; 1 or 3mg/kg). Results revealed NQ enhanced nicotine sensitization that was blocked by DhβE. MLA blocked the enhanced nicotine sensitization in NQ animals, but did not block nicotine sensitization. NQ enhanced the NAcc BDNF response to nicotine which was blocked by both antagonists. In Experiment 2, NQ enhanced nicotine sensitization and enhanced α4β2, but not α7, nAChR upregulation in the NAcc. These results suggest a relationship between accumbal BDNF and α4β2 nAChRs and their role in the behavioral response to nicotine in the NQ model which has relevance to schizophrenia, a behavioral disorder with high rates of tobacco smoking.
|
115 |
Time-related Aspects of Otoprotection : Experimental Studies in RatLidian, Adnan January 2013 (has links)
Intratympanic injection of various otoprotectants through the round window membrane (RWM) might become available in the near future as an alternative to the currently available medical and surgical methods used to treat several inner ear diseases. The most common outcome of such diseases is sensorineural hearing loss (SNHL). Two examples of these otoprotectants are Edaravone and Brain-Derived Neurotrophic Factor (BDNF), both of which have already proved effective against noise-induced hair cell loss, barotrauma and ototoxicity caused by cisplatin. In four different studies we used two electrophysiological methods, auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE), to study the effects of tobramycin and Pseudomonas aeruginosa exotoxin A (PaExoA) on the inner ears of 129 male Sprague-Dawley rats. In two investigations, not only the otoprotective effects of Edaravone on tobramycin-induced ABR threshold shifts and PaExoA-induced DPOAE threshold changes, were studied but even different application times, in order to establish in which interval it was still possible to achieve effective otoprotection.We found that Edaravone gave otoprotection from tobramycin when injected simultaneously or within 7 days, but it had only a limited effect on the changes in DPOAE thresholds caused by PaExoA when injected 1, 2, or 4 hours after the exotoxin. The effect of BDNF on PaExoA-induced ABR threshold shifts was investigated in two studies, where different doses of intratympanically injected PaExoA were used and where BDNF was applied simultaneously, 12 or 72 hours efter exotoxin instillation. We found that BDNF had an otoprotective effect on SNHL induced by different doses PaExoA when injected simultaneously or with no more than 12 hours delay.
|
116 |
Reversal of Morphine-induced Locomotion in M5 Muscarinic Receptor Knockout Mice with Food Deprivation but not Bilateral Infusions of VTA BDNFLee, Esther 07 January 2011 (has links)
Cholinergic inputs from mesopontine tegmentum activate midbrain dopamine (DA) neurons via M5 muscarinic receptors. The M5 receptor is important for mesopontine stimulation-induced accumbal or striatal DA efflux, brain stimulation reward or morphine-induced conditioned place preference (CPP). M5 receptor knockout (KO) mice show 40-50% less morphine-induced locomotion. Pedunculopontine tegmental nucleus (PPT) lesions in rodents block morphine CPP, but are ineffective after 18 hours food deprivation, opiate dependence, or intra-VTA BDNF. Based on these findings, we investigated whether acute food deprivation or intra-VTA BDNF alters morphine-induced locomotion (3 and 10 mg/kg, i.p.) in C57BL/6 M5 KO mice. Non-deprived M5 KOs showed reduced morphine-induced locomotion, suggesting M5 receptors partly mediate morphine-induced locomotion. Morphine-induced locomotion was reversed in food-deprived mice, suggesting the stimulant effects of morphine were altered to bypass the PPT. Unexpectedly, intra-VTA BDNF infusions were ineffective in altering morphine-induced locomotion. Additionally, M5 KOs receiving intra-VTA saline showed no deficits in morphine-induced locomotion.
|
117 |
Reversal of Morphine-induced Locomotion in M5 Muscarinic Receptor Knockout Mice with Food Deprivation but not Bilateral Infusions of VTA BDNFLee, Esther 07 January 2011 (has links)
Cholinergic inputs from mesopontine tegmentum activate midbrain dopamine (DA) neurons via M5 muscarinic receptors. The M5 receptor is important for mesopontine stimulation-induced accumbal or striatal DA efflux, brain stimulation reward or morphine-induced conditioned place preference (CPP). M5 receptor knockout (KO) mice show 40-50% less morphine-induced locomotion. Pedunculopontine tegmental nucleus (PPT) lesions in rodents block morphine CPP, but are ineffective after 18 hours food deprivation, opiate dependence, or intra-VTA BDNF. Based on these findings, we investigated whether acute food deprivation or intra-VTA BDNF alters morphine-induced locomotion (3 and 10 mg/kg, i.p.) in C57BL/6 M5 KO mice. Non-deprived M5 KOs showed reduced morphine-induced locomotion, suggesting M5 receptors partly mediate morphine-induced locomotion. Morphine-induced locomotion was reversed in food-deprived mice, suggesting the stimulant effects of morphine were altered to bypass the PPT. Unexpectedly, intra-VTA BDNF infusions were ineffective in altering morphine-induced locomotion. Additionally, M5 KOs receiving intra-VTA saline showed no deficits in morphine-induced locomotion.
|
118 |
The Effect of Teneurin C-terminal Associated Peptide-1 (TCAP-1): Protection Against Hypoxic-stress and Regulation of Brain-derived Neurotrophic Factor (BDNF) in Immortalized Hypothalamic N38 CellsNg, Tiffany 12 January 2011 (has links)
Teneurin C-terminal associated peptide-1 (TCAP-1) is a recently characterized peptide that may act as one potential neuroprotective agent as it has been shown to regulate several stress-associated behaviours in rodents and possesses a number of protective actions on cells, however the mechanism remains unknown. Brain-derived neurotrophic factor (BDNF) is a neurotrophin recognized for mediating survival, differentiation, and proliferation. TCAP-1 may act, in part, via BDNF to provide neuroprotection via modulation of BDNF expression. The aim of this research was to further investigate the mechanism of TCAP’s neuroprotective actions. I show that TCAP-1 is neuroprotective and a potent enhancer of cell numbers under varying levels of oxygen. I also establish that TCAP-1 is able to influence neuronal behaviour by differentially regulating neurite growth. In addition, I indicate that TCAP-1 is able to regulate BDNF expression in immortalized mouse hypothalamic N38 cells, which suggests that TCAP-1’s neuroprotective mechanism may involve BDNF.
|
119 |
The Effect of Teneurin C-terminal Associated Peptide-1 (TCAP-1): Protection Against Hypoxic-stress and Regulation of Brain-derived Neurotrophic Factor (BDNF) in Immortalized Hypothalamic N38 CellsNg, Tiffany 12 January 2011 (has links)
Teneurin C-terminal associated peptide-1 (TCAP-1) is a recently characterized peptide that may act as one potential neuroprotective agent as it has been shown to regulate several stress-associated behaviours in rodents and possesses a number of protective actions on cells, however the mechanism remains unknown. Brain-derived neurotrophic factor (BDNF) is a neurotrophin recognized for mediating survival, differentiation, and proliferation. TCAP-1 may act, in part, via BDNF to provide neuroprotection via modulation of BDNF expression. The aim of this research was to further investigate the mechanism of TCAP’s neuroprotective actions. I show that TCAP-1 is neuroprotective and a potent enhancer of cell numbers under varying levels of oxygen. I also establish that TCAP-1 is able to influence neuronal behaviour by differentially regulating neurite growth. In addition, I indicate that TCAP-1 is able to regulate BDNF expression in immortalized mouse hypothalamic N38 cells, which suggests that TCAP-1’s neuroprotective mechanism may involve BDNF.
|
120 |
Molecular factors influencing nerve growth : studies on the developing rodent trigeminal ganglion and tooth pulp /Lillesaar, Christina, January 2003 (has links) (PDF)
Diss. (sammanfattning) Linköping : Univ., 2003. / Härtill 4 uppsatser.
|
Page generated in 0.0994 seconds