• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 6
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 16
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Models and algorithms for network design problems

Poss, Michael 22 February 2011 (has links)
Dans cette thèse, nous étudions différents modèles, déterministes et stochastiques, pour les problèmes de dimensionnement de réseaux. Nous examinons également le problème du sac-à-dos stochastique ainsi que, plus généralement, les contraintes de capacité en probabilité. Dans une première partie, nous nous consacrons à des modèles de dimensionnement de réseaux déterministes, possédant de nombreuses contraintes techniques s'approchant de situations réalistes. Nous commençons par étudier deux modèles de réseaux de télécommunications. Le premier considère des réseaux multi-couches et des capacités sur les arcs, tandis que le second étudie des réseaux mono-couche, sans capacité, où les commodités doivent être acheminées sur un nombre K de chemins disjoint de taille au plus L. Nous résolvons ces deux problèmes grâce à un algorithme de ``branch-and-cut' basé sur la décomposition de Benders de formulations linéaires pour ces problèmes. La nouveauté de notre approche se situe principalement dans l'étude empirique de la fréquence optimale de génération de coupes au cours de l'algorithme. Nous étudions ensuite un problème d'expansion de réseaux de transmission électrique. Notre travail étudie différents modèles et formulations pour le problème, les comparant sur des réseaux brésiliens réels. En particulier, nous montrons que le re-dimensionnement permet des réductions de coût importantes. Dans une seconde partie, nous examinons des modèles de programmation stochastique. Premièrement, nous prouvons que trois cas particuliers du problème de sac-à-dos avec recours simple peuvent être résolu par des algorithmes de programmation dynamique. Nous reformulons ensuite le problème comme un programme non-linéaire en variables entières et testons un algorithme ``branch-and-cut' basé l'approximation extérieure de la fonction objective. Cet algorithme est ensuite transformé en un algorithme de ``branch-and-cut-and-price', utilisé pour résoudre un problème de dimensionnement de réseau stochastique avec recours simple. Finalement, nous montrons comment linéariser des contraintes de capacité en probabilité avec variables binaires lorsque les coefficients sont des variables aléatoires satisfaisant certaines propriétés.
2

A Polyhedral Approach for the Double TSP with Multiple Stacks and Lexicographical Orders / Une approche polyédrale pour le problème du double voyageur de commerce sous contraintes de piles et pour les ordres lexicographiques

Barbato, Michele 05 October 2016 (has links)
Dans cette thèse nous considérons deux problèmes d'optimisation combinatoire.Le premier s'appelle problème du double voyageur de commerce avec contraintes de piles. Dans ce problème, un véhicule doit ramasser un certain nombre d'objets dans une région pour les livrer à des clients situés dans une autre région. Lors du ramassage, les objets sont stockés dans les différentes piles du véhicule et la livraison des objets se fait selon une politique de type last-in-first-out. Le ramassage et la livraison consistent chacune en une tournée Hamiltonienne effectuée par le véhicule dans la région correspondante.Nous donnons une formulation linéaire en nombres entiers pour ce problème. Elle est basée sur des variables de précédence et sur des contraintes de chemins infaisables. Nous donnons par la suite des résultats polyédraux sur l'enveloppe convexe des solutions de notre formulation. En particulier, nous montrons des liens forts avec un polytope associé au problème du voyageur de commerce et des liens avec un polytope de type set covering. Cette étude polyédrale nous permet de renforcer la formulation initiale et de développer un algorithme de coupes et branchements efficace. Le deuxième problème que nous considérons consiste à trouver la description des polytopes lexicographiques. Ces derniers sont les enveloppes convexes des points entiers lexicographiquement compris entre deux points entiers fixés. Nous donnons une description complète de ces polytopes en termes d'inégalités linéaires. Nous démontrons que la famille des polytopes lexicographiques est fermée par intersection. / In this thesis we consider two problems arising in combinatorial optimization.The first one is the double traveling salesman problem with multiple stacks. In this problem a vehicle picks up a given set of items in a region and subsequently delivers them to demanding customers in another region. When an item is picked up, it is put in a stack of the vehicle. The items are delivered observing a last-in-first-out policy. The pickup phase and the delivery phase consist in two Hamiltonian circuits, each performed by the vehicle in the corresponding region. We give a new integer linear programming formulation for this problem. Its main features are the presence of precedence variables and new infeasible path constraints. We provide polyhedral results on the convex hull of the solutions to our formulation. In particular, we show strong links with a specific TSPpolytope and a specific set covering polytope. We deduce strengthening inequalities for the initial formulation, subsequently embedded in an efficient branch-and-cut algorithm. The second problem we consider consists in finding the description of the lexicographical polytopes. These are convex hulls of the integer points lexicographically between two given integer points. We give a complete description of these polytopes by means of linear inequalities. We show that the lexicographical polytope family is closed under intersection.
3

Designing optical multi-band networks : polyhedral analysis and algorithms / Conception de réseaux optiques multi-bandes : Analyse polyédrale et algorithmes

Benhamiche, Amal 12 December 2013 (has links)
Dans cette thèse, on s'intéresse à deux problèmes de conception de réseaux, utilisant la technologie OFDM multi-bandes. Le premier problème concerne la conception d'un réseau mono-couche avec contraintes spécifiques. Nous donnons une formulation en PLNE pour ce problème et étudions le polyèdre associé à sa restriction sur un arc. Nous introduisons deux familles d'inégalités valides définissant des facettes et développons un algorithme de coupes et branchements pour le problème. Nous étudions la variante multicouche du problème précédent et proposons plusieurs PLNE pour le modéliser. Nous identifions plusieurs familles de facettes et discutons des problèmes de séparation associés. Nous développons un algorithme de coupes et branchements utilisant l'ensemble des contraintes identifiées. Enfin, une formulation compacte et deux formulations basées sur des chemins sont proposées pour le problème. Nous présentons deux algorithmes de génération de colonnes et branchements pour le problème. / In this thesis we consider two capacitated network design (CND) problems, using OFDM multi-band technology. The first problem is related to single-layer network design with specific requirements. We give an ILP formulation for this problem and study the polyhedra associated with its arc-set restriction. We describe two families of facet defining inequalities. We devise a Branch-and-Cut algorithm for the problem. Next, we investigate the multilayer version of CND using OFDM technology. We propose several ILP formulations and study the polyhedron associated with the first (cut) formulation. We identify several classes of facets and discuss the related separation problem. We devise a Branch-and-Cut algorithm embedding valid inequalities of both single-layer and multilayer problems. The second formulation is compact, and holds a polynomial number of constraints and variables. Two further path formulations are given which yield two efficient Branch-and-Price algorithms for the problem.
4

A Polyhedral Study of Quadratic Traveling Salesman Problems

Fischer, Anja 12 July 2013 (has links) (PDF)
The quadratic traveling salesman problem (QTSP) is an extension of the (classical) Traveling Salesman Problem (TSP) where the costs depend on each two nodes that are traversed in succession, i. e., on the edges in the symmetric (STSP) and on the arcs in the asymmetric case (ATSP). The QTSP is motivated by an application in bioinformatics. It can be used in the solution of certain Permuted Markov models that are set up for the recognition of transcription factor binding sites and of splice sites in gene regulation. Important special cases are the Angular-Metric TSP used in robotics and the TSP with Reload Costs used in the planning of telecommunication and transport networks. The SQTSP and the AQTSP can be formulated as integer optimization problems over the polytope associated with the STSP resp. ATSP together with a quadratic cost function. We study the polytopes arising from a linearization of the respective quadratic integer programming formulations. Based on the proof of the dimension of the polytopes using the so called direct method we can prove the facetness of several valid inequalities. These facets and valid inequalities can be divided into three large groups. Some are related to the Boolean quadric polytope. Furthermore we introduce the conflicting edges/arc inequalities that forbid certain configurations of edges and 2-edges resp. of arcs and 2-arcs. Finally, we strengthen valid inequalities of STSP and ATSP in order to get stronger inequalities in the quadratic case. We present two general lifting approaches. One is applicable to all inequalities with nonnegative coefficients and the second allows to strengthen clique tree inequalities. Applying these approaches to the subtour elimination constraints leads to facets in most cases, but in general facetness is not preserved. In addition, the complexity of the separation problems for some of the facet classes is studied. Finally, we present some computational results using a branch-and-cut framework, which is improved by some of the newly derived cutting planes. The tested instances from biology could be solved surprisingly well. Instances with up to 100 nodes could be solved in less than 700 seconds improving the results in the literature by several orders of magnitude. For most of the randomly generated instances using some additional separators allowed to reduce the root gaps and the numbers of nodes in the branch-and-cut tree significantly, often even the running times.
5

Estudo poliedral do problema do máximo subgrafo induzido comum / Polyhedral study of the maximum common induced subgraph problem

Piva, Breno 11 1900 (has links)
O problema do Máximo Subgrafo Induzido Comum (MSIC) pertence a classe NP-difícil e possui aplicações em diversas áreas. Apesar de sua complexidade, ainda é importante conhecer soluções exatas para instâncias deste problema. Os algoritmos exatos encontrados na literatura buscam resolvê-lo através de técnicas de backtracking ou através de sua redução para o problema da Clique Máxima. Neste trabalho procuramos dar uma solução exata para o MSIC, tratando-o diretamente através da utilização de modelos de Programação Linear Inteira (PLI) e técnicas de combinatória poliédrica. Assim, realizamos um estudo teórico do poliedro do MSIC e fomos capazes de encontrar algumas desigualdades válidas fortes, inclusive com provas de que algumas delas representam facetas daquele poliedro. Adicionalmente, provamos que existe uma equivalâencia entre o modelo PLI aqui apresentado para o MSIC e uma formulação bem conhecida para o problema da Clique Máxima. Posteriormente, foram implementados algoritmos de Branch-and-Bound (B&B) e Branch-and-Cut (B&C) utilizando as desigualdades encontradas e algumas técnicas para tentar tornar os algoritmos mais eficientes. Experimentos foram executados com os algoritmos implementados neste trabalho e, também, com um algoritmo já existente para resolver o problema da Clique, chamado Cliquer. Os resultados foram comparados e, dentre os algoritmos de PLI, constatamos que o mais eficiente foi aquele que utilizou uma formulação para o MSIC que chamamos de Clique-IS, utilizando B&B e técnicas mais básicas que outros algoritmos. Este algoritmo mostrou-se mais eficiente, inclusive, que um algoritmo PLI com um modelo baseado no problema da Clique Máaxima. Este fato sugere que para uma abordagem baseada em PLI, vale a pena utilizar uma formulação do MSIC diretamente, ao invés de uma que se apóie na redução deste para o problema da Clique Máxima. Ja a comparaçao do melhor algoritmo desenvolvido neste trabalho com o Cliquer, mostrou que este último é mais eficiente. Para que um algoritmo baseado em PLI (utilizando uma formulação com as mesmas variáveis usadas por nós) tivesse alguma chance de vencer um algoritmo combinatório como o Cliquer, seria necessário conhecer mais desigualdades que estivessem ativas na solução ótima do problema._________________________________________________________________________________________ ABSTRACT: The Maximum Common Subgraph problem (MSIC) is in MV-hard and has applications in several fields. Despite its complexity, it is still important to know exact solutions for instances of this problem. The exact algorithms found in literature try to solve it through backtracking techniques or through its reduction to the Maximum Clique problem. In this work we try to give an exact solution to MSIC by addressing it directly, using Linear Integer Programming (PLI) and polyhedral combinatorics techniques. So, we performed a study of the MSIC polyhedron and we were able to find some strong valid inequalities, including some that were proven to define facets of that polyhedron. Additionally, we proved that an equivalence between the PLI model presented here for MSIC and a well known formulation for the Maximum Clique problem exists. Later, Branch-and-Bound (B&B) and Branch-and-Cut (B&C) algorithms were implemented using the inequalities found and some techniques to try to render the algorithms more efficient. Experiments were performed with the algorithms implemented in this work and, also, with an already existing algorithm to solve the Maximum Clique problem, called Cliquer. The results were compared and, among the PLI algorithms, we found that the most efficient was the one that used the formulation which we called Clique-IS, using B&B and more basic techniques than other algorithms. This algorithm was even more efficient than a PLI algorithm with a Clique-based model. This fact suggests that for a PLI approach it is worth to use a formulation based on the MSIC polyhedron instead of one based on its reduction to the Maximum Clique problem. The comparison of the best algorithm developed in this work with Cliquer, though, showed that the latest is more efficient. In order to some PLI-based algorithm (using a formulation with the same variables used by us) to have any chance of outperforming a combinatorial algorithm like Cliquer, it would be necessary to know more inequalities that are active in the problem's optimal solution.
6

Models and algorithms for network design problems

Poss, Michaël 22 February 2011 (has links)
Dans cette thèse, nous étudions différents modèles, déterministes et stochastiques, pour les problèmes de dimensionnement de réseaux. Nous examinons également le problème du sac-à-dos stochastique ainsi que, plus généralement, les contraintes de capacité en probabilité.<p>\ / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
7

L'indépendant faiblement connexe : études algorithmiques et polyédrales / Weakly connected independent sets : algorithmic and polyhedral studies

Mameri, Djelloul 25 November 2014 (has links)
Dans ce travail, nous nous intéressons à une topologie pour les réseaux de capteurs sans fil. Un réseau de capteurs sans fil peut être modélisé comme un graphe non orienté G = (V,E). Chaque sommet de V représente un capteur et une arête e = {u, v} dans E indique une transmission directe possible entre deux capteurs u et v. Contrairement aux dispositifs filaires, les capteurs sans fil ne sont pas a priori agencé en réseau. Une topologie doit être créée en sélectionnant des noeuds "dominants" qui vont gérer les transmissions. Les architectures qui ont été examinées dans la littérature reposent essentiellement sur les ensembles dominants connexes et les ensembles dominants faiblement connexes. Cette étude est consacrée aux ensembles indépendants faiblement connexes. Un indépendant S ⊂ V est dit faiblement connexe si le graphe GS = (V, [S, V \S]) est connexe, où [S, V \S] est l’ensemble des arêtes e = {u, v} de E avec u ∈ S et v ∈ V \S. Une topologie basée sur les ensembles faiblement connexes permet de partitionner l’ensemble des capteurs en trois groupes, les esclaves, les maîtres et les intermédiaires. Les premiers effectuent les mesures, les seconds rassemblent les données collectées et les troisièmes assurent les communications inter-groupes. Nous donnons d’abord quelques propriétés de cette structure combinatoire lorsque le graphe non orienté G est connexe. Puis nous proposons des résultats de complexité pour le problème de la recherche de l’indépendant faiblement connexe de cardinalité minimale (MWCISP). Nous décrivons également un algorithme d’énumération exact de complexité O∗(1.4655|V |) pour le MWCISP. Des tests numériques de cette procédure exacte sont présentés. Nous formulons ensuite le MWCISP comme un programme linéaire en nombres entiers. Le polytope associé aux solutions de ce problème est complètement caractérisé lorsque G est un cycle impair. Nous étudions des opérations de composition de graphes et leurs conséquences polyédrales. Nous introduisons des inégalités valides notamment les contraintes dites de multibord. Par la suite, nous développons un algorithme de coupes et branchement sous CPLEX pour résoudre ce problème en utilisant des heuristiques pour la séparation de nos familles de contraintes. Des résultats expérimentaux de ce programme sont exposés. / In this work, we focus on a topology for Wireless Sensor Networks (WSN). A wireless sensor network can be modeled as an undirected graph G = (V,E). Each vertex of V represents a sensor and an edge e = {u, v} in E implies a direct transmission between the two sensors u and v. Unlike wired devices, wireless sensors are not a priori arranged in a network. Topology should be made by selecting some sensor as dominators nodes who manage transmissions. Architectures that have been studied in the literature are mainly based on connected dominating sets and weakly connected dominating sets.This study is devoted to weakly connected independent sets. An independent set S ⊂ V is said Weakly Connected if the graph GS = (V, [S, V \S]) is connected, where [S, V \S] is the set of edges with exactly one end in S. A sensor network topology based on weakly connected sets is partition into three groups, slaves, masters and bridges. The first performs the measurements, the second gathers the collected data and the later provides the inter-group communications. We first give some properties of this combinatorial structure when the undirected graph G is connected. Then we provide complexity results for the problem of finding the minimum weakly connected independent set problem (MWCISP). We also describe an exact enumeration algorithm of complexity O∗(1.4655|V |) (for the (MWCISP)). Numerical tests of this exact procedure are also presented. We then present an integer programming formulation for the minimum weakly connected independent set problem and discuss its associated polytope. Some classical graph operations are also used for defining new polyhedra from pieces. We give valid inequalities and describe heuristical separation algorithms for them. Finally, we develop a branch-and-cut algorithm and test it on two classes of graphs.
8

The multi-terminal vertex separator problem : Complexity, Polyhedra and Algorithms / Le problème du séparateur de poids minimum : Complexité, Polyèdres et Algorithmes

Magnouche, Youcef 26 June 2017 (has links)
Étant donné un graphe G = (V U T, E), tel que V U T représente l'ensemble des sommets où T est un ensemble de terminaux, et une fonction poids w associée aux sommets non terminaux, le problème du séparateur de poids minimum consiste à partitionner V U T en k + 1 sous-ensembles {S, V1,..., Vk} tel qu'il n'y a aucune arête entre deux sous-ensembles différents Vi et Vj, chaque Vi contient exactement un terminal et le poids de S est minimum. Dans cette thèse, nous étudions le problème d'un point de vue polyèdral. Nous donnons deux formulations en nombres entiers pour le problème, et pour une de ces formulations, nous étudions le polyèdre associé. Nous présentons plusieurs inégalités valides, et décrivons des conditions de facette. En utilisant ces résultats, nous développons un algorithme de coupes et branchement pour le problème. Nous étudions également le polytope des séparateurs dans les graphes décomposables par sommets d'articulation. Si G est un graphe qui se décompose en G1 et G2, alors nous montrons que le polytope des séparateurs dans G peut être décrit à partir de deux systèmes linéaires liés à G1 et G2. Ceci donne lieu à une technique permettant de caractériser le polytope des séparateurs dans les graphes qui sont récursivement décomposables. Ensuite, nous étudions des formulations étendues pour le problème et proposons des algorithmes de génération de colonnes et branchement ainsi que des algorithmes de génération de colonnes, de coupes et branchement. Pour chaque formulation, nous présentons un algorithme de génération de colonnes, une procedure pour le calcul de la borne duale ainsi qu'une règle de branchement. De plus, nous présentons quatre variantes du problème du séparateur. Nous montrons que celles-ci sont NP-difficiles, et pour chacune d'elles nous donnons une formulation en nombres entiers et présentons certaines classes d'inégalités valides. / Given a graph G = (V U T, E) with V U T the set of vertices, where T is a set of terminals, and a weight function w, associated with the nonterminal nodes, the multi-terminal vertex separator problem consists in partitioning V U T into k + 1 subsets {S, V1,..., Vk} such that there is no edge between two different subsets Vi and Vj, each Vi contains exactly one terminal and the weight of S is minimum. In this thesis, we consider the problem from a polyhedral point of view. We give two integer programming formulations for the problem, for one of them, we investigate the related polyhedron. We describe some valid inequalities and characterize when these inequalities define facets. Using these results, we develop a Branch-and-Cut algorithm for the problem. We also study the multi-terminal vertex separator polytope in the graphs decomposable by one node cutsets. If G is a graph that decomposes into G1 and G2, we show that the multi-terminal vertex separator polytope in G can be described from two linear systems related to G1 and G2. This gives rise to a technique for characterizing the multi-terminal vertex separator polytope in the graphs that are recursively decomposable. Moreover, we propose three extended formulations for the problem and derive Branch-and-Price and Branch-and-Cut-and-Price algorithms. For each formulation we present a column generation scheme, the way to compute the dual bound, and the branching scheme. Finally, we discuss four variants of the multi-terminal vertex separator problem. We show that all these variants are NP-hard and for each one we give an integer programming formulation and present some class of valid inequalities.
9

EFFEKTIVT BESLUTSFATTANDE HOS NORRMEJERIER : En optimeringsmodell för implementering av nya produktkategorier och förändrade produktionsvolymer / Effective Decision Making at Norrmejerier : An Optimization Model for Implementation of New Product Categories and Changed Production Volumes

Herou, Emma, Vänn, Arvid January 2024 (has links)
Norrmejerier står inför förändringar vad gäller både mjölkkonsumtion och flytt av produktionen från Luleå mejeri till Umeå mejeri inom en snar framtid. Det har gett behov av ett verktyg för att snabbt kunna fatta beslut om systemet kan hantera en ökad mängd volym och antal produktkategorier. För att ta fram ett sådant verktyg skapades en matematisk optimeringsmodell uppbyggd i programvaran Python som gör det möjligt att köra programmet för olika scenarion. Modellen använder optimeringslösaren Pulp för att hitta en lösning på problemet. Den matematiska modellen baseras på Multi Commodity Flow Problem med tidsvariabel i kombination med Flow-shop scheduling och har modifierats efter systemet på Umeå mejeri. Det är en pessimistisk modell baserat på de antaganden som gjorts i rapporten. Programmet baseras på ett dygns produktion och avgör, genom att minimera den totala tiden det tar för flödet genom processen, om det finns kapacitet för en ökad produktion. Systemet i projektet är uppdelat i två subnätverk på grund av tidskomplexiteten och resultaten visar att implementering av en ytterligare produktkategori kan hanteras av båda subnätverken. En ökad volym med 10% av den befintliga kan endast hanteras av den första delen av nätverket. Det betyder att det finns tekniska begränsningar i det andra subnätverket. Genom tillägg av extra noder som kan användas till en viss straffkostnad kunde flaskhalsar identifieras och det visade sig att pastör 2P1 är en uppenbar flaskhals i systemet. Om man ökar produktionen ytterligare kan även silosarna behöva utökas för att hantera flödet. / Norrmejerier is facing changes in terms of both milk consumption and a move of the production from Luleå dairy to Umeå dairy in the near future. This has given rise to the need of a tool that quickly can make descisions about whether the system can handle an increased amount of volume and number of product categories. To produce such a tool a mathematical optimization model was created in Python which makes it possible to run the program for different scenarios. The model uses the optimization solver Pulp. The mathematical model is based on Multi Commodity Flow Problem with time variable combined with Flow-shop scheduling and has been modified according to the system at Umeå dairy. Based on the assumptions made in the report it is a pessimistic model. The program is based on one day's production and determines by minimizing the total time it takes for the flow to pass through the system, to see if there is enough capacity for increased production. The system in the project is divided into two subnetworks due to the time complexity and the results show that implementation of an additional product category can be handled by both subnetworks. An increased volume of 10% of the existing volume can only be handled by the first part of the network. This means that there are technical limitations in the second subnetwork. By adding extra nodes that can be used for a certain penalty cost, bottlenecks could be identified and it turned out that Pasteur 2P1 is an obvious bottleneck in the system. If the production increases further the silos may also need to be expanded to handle the flow in the system.
10

Design of Survivable Networks with Bounded-Length Paths / Conception de Réseaux Fiables à Chemins de Longueur Bornée

Huygens, David D. P. O. 30 September 2005 (has links)
In this thesis, we consider the k-edge connected L-hop-constrained network design problem. Given a weighted graph G=(N,E), a set D of pairs of terminal nodes, and two integers k,L > 1, it consists in finding in G the minimum cost subgraph containing at least k edge-disjoint paths of at most L edges between each pair in D. This problem is of great interest in today's telecommunication industry, where highly survivable networks need to be constructed. We first study the particular case where the set of demands D is reduced to a single pair {s,t}. We propose an integer programming formulation for the problem, which consists in the st-cut and trivial inequalities, along with the so-called L-st-path-cut inequalities. We show that these three classes of inequalities completely describe the associated polytope when k=2 and L=2 or 3, and give necessary and sufficient conditions for them to be facet-defining. We also consider the dominant of the associated polytope, and discuss how the previous inequalities can be separated in polynomial time. We then extend the complete and minimal description obtained above to any number k of required edge-disjoint L-st-paths, but when L=2 only. We devise a cutting plane algorithm to solve the problem, using the previous polynomial separations, and present some computational results. After that, we consider the case where there is more than one demand in D. We first show that the problem is strongly NP-hard, for all L fixed, even when all the demands in D have one root node in common. For k=2 and L=2,3, we give an integer programming formulation, based on the previous constraints written for all pairs {s,t} in D. We then proceed by giving several new classes of facet-defining inequalities, valid for the problem in general, but more adapted to the rooted case. We propose separation procedures for these inequalities, which are embedded within a Branch-and-Cut algorithm to solve the problem when L=2,3. Extensive computational results from it are given and analyzed for both random and real instances. Since those results appear less satisfactory in the case of arbitrary demands (non necessarily rooted), we present additional families of valid inequalites in that situation. Again, separation procedures are devised for them, and added to our previous Branch-and-Cut algorithm, in order to see the practical improvement granted by them. Finally, we study the problem for greater values of L. In particular, when L=4, we propose new families of constraints for the problem of finding a subgraph that contains at least two L-st-paths either node-disjoint, or edge-disjoint. Using these, we obtain an integer programming formulation in the space of the design variables for each case. ------------------------------------------------ Dans cette thèse, nous considérons le problème de conception de réseau k-arete connexe à chemins L-bornés. Etant donné un graphe pondéré G=(N,E), un ensemble D de paires de noeuds terminaux, et deux entiers k,L > 1, ce problème consiste à trouver, dans G, un sous-graphe de cout minimum tel que, entre chaque paire dans D, il existe au moins k chemins arete-disjoints de longueur au plus L. Ce problème est d'un grand intéret dans l'industrie des télécommunications, où des réseaux hautement fiables doivent etre construits. Nous étudions tout d'abord le cas particulier où l'ensemble des demandes D est réduit à une seule paire de noeuds. Nous proposons une formulation du problème sous forme de programme linéaire en nombres entiers, laquelle consiste en les inégalités triviales et de coupe, ainsi que les inégalités dites de L-chemin-coupe. Nous montrons que ces trois types d'inégalités décrivent complètement le polytope associé lorsque k=2 et L=2,3, et donnons des conditions nécessaires et suffisantes pour que celles-ci en définissent des facettes. Nous considérons également le dominant du polytope associé et discutons de la séparation polynomiale des trois classes précédentes. Nous étendons alors cette description complète et minimale à tout nombre k de chemins arete-disjoints de longueur au plus 2. De plus, nous proposons un algorithme de plans coupants utilisant les précédentes séparations polynomiales, et en présentons quelques résultats calculatoires, pour tout k>1 et L=2,3. Nous considérons ensuite le cas où plusieurs demandes se trouvent dans D. Nous montrons d'abord que le problème est fortement NP-dur, pour tout L fixé et ce, meme si les demandes sont toutes enracinées en un noeud. Pour k=2 et L=2,3, nous donnons une formulation du problème sous forme de programme linéaire en nombres entiers. Nous proposons également de nouvelles classes d'inégalités valides, pour lesquelles nous réalisons une étude faciale. Celles-ci sont alors séparées dans le cadre d'un algorithme de coupes et branchements pour résoudre des instances aléatoires et réelles du problème. Enfin, nous étudions le problème pour de plus grandes valeurs de L. En particulier, lorsque L=4, nous donnons de nouvelles familles de contraintes pour le problème consistant à déterminer un sous-graphe contenant entre deux noeuds fixés au moins deux chemins de longueur au plus 4, que ceux-ci doivent etre arete-disjoints ou noeud-disjoints. Grace à ces dernières, nous parvenons à donner une formulation naturelle du problème dans chacun de ces deux cas.

Page generated in 0.0841 seconds