• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 12
  • 12
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Sur des propriétés fractales et trajectorielles de processus de branchement continus / Study of some fractal and pathwise properties of continuous branching processes

Duhalde, Jean-Pierre 07 January 2015 (has links)
Cette thèse étudie certaines propriétés fractales et trajectorielles de processus de branchement en temps et espace continus. De façon informelle, ce type de processus est obtenu en considérant l'évolution d'une population où les individus se reproduisent et meurent au cours du temps, et ce de manière aléatoire. Le premier chapitre concerne la classe des processus de branchement avec immigration. On donne une formule semi-explicite pour la transformée de Laplace des temps d'atteinte ainsi qu'une condition nécessaire et suffisante de récurrence-transience. Ces deux résultats illustrent la compétition branchement/immigration. Le second chapitre considère l'arbre Brownien et ses mesures de temps local, dites mesures de niveau. On montre que celles-ci s'obtiennent comme restriction, à une constante près explicitée, d'une certaine mesure de Hausdorff sur l'arbre. Le résultat est montré simultanément pour tous niveaux. Le troisième chapitre étudie le Super-mouvement Brownien associé à un mécanisme de branchement général. Sa mesure d'occupation totale est obtenue comme restriction d'une certaine mesure de packing dans l'espace euclidien. Le résultat est valable en grande dimension. La condition sur la dimension de l'espace ambiant est discutée à travers le calcul, sous des hypothèse de régularité faibles pour le mécanisme de branchement, de la dimension de packing du range total du processus. / This thesis investigates some fractal and pathwise properties of branching processes with continuous time and state-space. Informally, this kind of process can be described by considering the evolution of a population where individuals reproduce and die over time, randomly. The first chapter deals with the class of continuous branching processes with immigration. We provide a semi-explicit formula for the hitting times and a necessary and sufficient condition for the process to be recurrent or transient. Those two results illustrate the competition between branching and immigration. The second chapter deals with the Brownian tree and its local time measures : the level-sets measures. We show that they can be obtained as the restriction, with an explicit multiplicative constant, of a Hausdorff measure on the tree. The result holds uniformly for all levels. The third chapter study the Super-Brownian motion associated with a general branching mechanism. Its total occupation measure is obtained as the restriction to the total range, of a given packing measure on the euclidean space. The result is valid for large dimensions. The condition on the dimension is discussed by computing the packing dimension of the total range. This is done under a weak assumption on the regularity of the branching mechanism.
42

Modèles paramétriques de processus de branchement uni et multi-types / Parametric models for single and multi-type branching processes

Ouaari, Amel 11 July 2018 (has links)
L'objet de cette thèse concerne la proposition de modèles paramétriques des processus de branchement uni et multi-types. Nous mettons en valeur l’intérêt de la théorie des processus de branchement et du développement nécessaire des différents outils et de concepts propres à plusieurs domaines. Pour cela, nous commençons par rappeler quelques définitions et résultats de la théorie des processus de branchement uni et multi-types, et ce en temps discret comme en temps continu. On se consacre par la suite au développement méthodologique de ces modèles.Dans la deuxième partie de ce mémoire, nous étudions seulement l'évolution d’une seule population en temps continu, et présentons quelques familles de lois paramétriques, associées à des processus de branchement homogènes particuliers. Des méthodes récursives de calcul, ainsi que des propriétés pertinentes, concernant ces distributions de probabilité, sont dérivées des fonctions génératrices satisfaisant certaines équations aux dérivées partielles linéaires précisés. Les familles proposées seront utiles à la modélisation de systèmes plus cohérents en dynamique de populations, puisqu'on y montre que les hypothèses usuelles de distributions de Poisson ne peuvent être argumentées.Dans la troisième partie, nous étudions le comportement de l'évolution de plusieurs populations en interactions. Nous y présentons aussi des modèles paramétriques de lois, associés à des processus de branchement multi-types en temps continu et homogènes en temps. Nous considérons ensuite un modèle particulier, où une population ``mère donneuse" autonome alimente en individus K populations filles, qui sont, elles, en interaction. Ce modèle est bien adapté à l'étude des systèmes dynamiques des populations en interaction qui reste à la fois simple, mais riche en variétés de comportement. L'étude du système multi-types se fait via l'évolution des fonctions génératrices de la loi multidimensionnelles des effectifs. Pour cela, utilisant les équations différentielles ordinaires et aux dérivées partielles, nous établissons les équations implicites des distributions temporelles et multidimensionnelles, et discutons des méthodes analytiques ou numériques de leur résolution. Nous développons ensuite des exemples de modèles et en particulier celui concernant 3 et 4 populations.En conclusion, nous argumentons la pertinence de cette approche, et l’interprétation des paramètres, qui sont d'un grand intérêt pour le développement de méthodes d'inférence statistique, pour de nombreux domaines d'applications. / This thesis aims to propose parametric models for single and multi-type branching processes. The importance of the theory of branching processes is pointed out. Hence, developing various tools and specific concepts in several domains is important for applications. For those purpose, we recall some definitions and results of the single-and-multi-type branching processes theory in discrete and continuous case. Afterward, we focus on the methodological development of those models.In the second part, the evolution of a single population in the continuous case has been studied. Then, some parametric distribution families associated to particular branching mechanisms are explored. Recursive computational procedure and relevant properties concerning the associted probability distributions are derived from generating functions that satisfy specified linear partial differential equations. The suggested families are useful for the modeling of systems that are more coherent with population dynamics, contrarily to the usual hypothesis of Poisson distributions, that cannot be argued.In the third part, the evolution of different populations with interaction is explored. Similarly, some parametric models of homogeneous multi-type branching processes in continuous time are proposed. Afterwards, we consider a particular model where an autonomous donor parent population feeds in individuals, K types progeny populations that interacts. This model is well adapted to the study of dynamical systems of populations in interaction. This simple model, but has a rich variety of behaviors.The study of such systems is also done regarding the evolution of generating functions of multidimensional ndividual countrings. To achievea such study, ordinary and partial differential equations are used to establish the implicit equations of temporal and multidimensional distributions. Analytical and numerical methods for equation resolution are then discussed, and examples of particular models are developed.In conclusion, the relevancy of this approach is argumed, censidering parameters interpretation in the development of inference methods for the various applied domains.
43

An algorithmic look at phase-controlled branching processes / Un regard algorithmique aux processus de branchement contrôlés par des phases

Hautphenne, Sophie 15 October 2009 (has links)
Branching processes are stochastic processes describing the evolution of populations of individuals which reproduce and die independently of each other according to specific probability laws. We consider a particular class of branching processes, called Markovian binary trees, where the lifetime and birth epochs of individuals are controlled by a Markovian arrival process. <p><p>Our objective is to develop numerical methods to answer several questions about Markovian binary trees. The issue of the extinction probability is the main question addressed in the thesis. We first assume independence between individuals. In this case, the extinction probability is the minimal nonnegative solution of a matrix fixed point equation which can generally not be solved analytically. In order to solve this equation, we develop a linear algorithm based on functional iterations, and a quadratic algorithm, based on Newton's method, and we give their probabilistic interpretation in terms of the tree. <p><p>Next, we look at some transient features for a Markovian binary tree: the distribution of the population size at any given time, of the time until extinction and of the total progeny. These distributions are obtained using the Kolmogorov and the renewal approaches. <p><p>We illustrate the results mentioned above through an example where the Markovian binary tree serves as a model for female families in different countries, for which we use real data provided by the World Health Organization website. <p><p>Finally, we analyze the case where Markovian binary trees evolve under the external influence of a random environment or a catastrophe process. In this case, individuals do not behave independently of each other anymore, and the extinction probability may no longer be expressed as the solution of a fixed point equation, which makes the analysis more complicated. We approach the extinction probability, through the study of the population size distribution, by purely numerical methods of resolution of partial differential equations, and also by probabilistic methods imposing constraints on the external process or on the maximal population size.<p><p>/<p><p>Les processus de branchements sont des processus stochastiques décrivant l'évolution de populations d'individus qui se reproduisent et meurent indépendamment les uns des autres, suivant des lois de probabilités spécifiques. <p><p>Nous considérons une classe particulière de processus de branchement, appelés arbres binaires Markoviens, dans lesquels la vie d'un individu et ses instants de reproduction sont contrôlés par un MAP. Notre objectif est de développer des méthodes numériques pour répondre à plusieurs questions à propos des arbres binaires Markoviens.<p><p>La question de la probabilité d'extinction d'un arbre binaire Markovien est la principale abordée dans la thèse. Nous faisons tout d'abord l'hypothèse d'indépendance entre individus. Dans ce cas, la probabilité d'extinction s'exprime comme la solution minimale non négative d'une équation de point fixe matricielle, qui ne peut être résolue analytiquement. Afin de résoudre cette équation, nous développons un algorithme linéaire, basé sur l'itération fonctionnelle, ainsi que des algorithmes quadratiques, basés sur la méthode de Newton, et nous donnons leur interprétation probabiliste en termes de l'arbre que l'on étudie.<p><p>Nous nous intéressons ensuite à certaines caractéristiques transitoires d'un arbre binaire Markovien: la distribution de la taille de la population à un instant donné, celle du temps jusqu'à l'extinction du processus et celle de la descendance totale. Ces distributions sont obtenues en utilisant l'approche de Kolmogorov ainsi que l'approche de renouvellement.<p><p>Nous illustrons les résultats mentionnés plus haut au travers d'un exemple où l'arbre binaire Markovien sert de modèle pour des populations féminines dans différents pays, et pour lesquelles nous utilisons des données réelles fournies par la World Health Organization.<p><p>Enfin, nous analysons le cas où les arbres binaires Markoviens évoluent sous une influence extérieure aléatoire, comme un environnement Markovien aléatoire ou un processus de catastrophes. Dans ce cas, les individus ne se comportent plus indépendamment les uns des autres, et la probabilité d'extinction ne peut plus s'exprimer comme la solution d'une équation de point fixe, ce qui rend l'analyse plus compliquée. Nous approchons la probabilité d'extinction au travers de l'étude de la distribution de la taille de la population, à la fois par des méthodes purement numériques de résolution d'équations aux dérivées partielles, ainsi que par des méthodes probabilistes en imposant des contraintes sur le processus extérieur ou sur la taille maximale de la population. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
44

Sur quelques fonctionnelles des forêts de branchement multitypes / On some functionals of multitype branching forests

Nguyen, Thi Ngoc Anh 15 July 2016 (has links)
Cette thèse est principalement consacrée à l’étude de quelques caractéristiques d’une population à plusieurs types d’individus qui évolue selon un modèle de branchement multi-type au cours du temps. Autrement dit,chaque individu vit un certain temps et donne naissance, à la fin de sa vie, à un nombre aléatoire d’individus, suivant une loi de probabilité qui ne dépend que de son type, indépendamment des autres individus. Plus précisément, nous nous intéressons aux aspects statistiques des mutations et des individus ayant une progéniture donnée dans la population en question.Les problèmes d’énumération de forêts multi-types constituent également une motivation de ce travail de thèse. / This thesis is devoted to the study of some characteristics of a population consisting of individuals of several types which evolve according to a multitype branching model. In other words, each individual lives a certain time and gives birth to a random number of individuals at the end of its life, following a probability law which depends only on the individual’s type, independently of the others individuals. More precisely, we are interested in in the statistical aspects of mutations and the individuals having a given offspring in the population of interest. The problems of enumeration of multitype forests also form a motivation of this thesis’s work.
45

Supervision of distributed systems using constrained unfoldings of timed models / Supervision de systèmes répartis utilisant des dépliages avec contraintes de modèles temporisés

Grabiec, Bartosz 04 October 2011 (has links)
Ce travail est consacré à la problématique du suivi des systèmes répartis temps réel. Plus précisément, il se concentre sur les aspects formels de la supervision basée sur des modèles ainsi que sur les problèmes qui lui sont liés. Dans la première partie du travail, nous présentons les propriétés de base de deux modèles formels bien connus utilisés pour la modélisation de systèmes répartis : les réseaux d'automates temporisés et les réseaux de Petri temporels. Nous montrons que le comportement de ces modèles peut être représenté par les procédés dits de branchement. Nous introduisons également les éléments conceptuels clés du système de surveillance. La deuxième partie du travail est consacrée à la question des dépliages avec contraintes qui permettent le suivi des relations causales entre les événements dans un système réparti. Ce type de structure peut reproduire des processus sur la base d'un ensemble totalement non-ordonné d'évènements. Dans notre travail, nous soulevons les problèmes des contraintes de temps et de leurs paramétrages. Les méthodes proposées sont illustrées par des études de cas. La troisième partie du travail traite de la problématique des boucles inobservables qui peuvent résulter de comportements cycliques inobservables des systèmes considérés. Ce type de comportement conduit à un nombre infini d'événements dans les dépliages avec contraintes. La quatrième et dernière partie du travail est consacrée à l'implémentation des méthodes décrites précédemment. / This work is devoted to the issue of monitoring of distributed real-time systems. In particular, it focuses on formal aspects of model-based supervision and problems which are related to it. In its first part, we present the basic properties of two well-known formal models used to model distributed systems: networks of timed automata and time Petri nets. We show that the behavior of these models can be represented with so-called branching processes. We also introduce the key conceptual elements of the supervisory system. The second part of the work is dedicated to the issue of constrained unfoldings which enable us to track causal relationships between events in a distributed system. This type of structure can be used to reproduce processes of the system on the basis of a completely unordered set of previously observed events. Moreover, we show that time constraints imposed on a system and observations submitted to the supervisory system can significantly affect a course of events in the system. We also raise the issue of parameters in time constraints. The proposed methods are illustrated with case studies. The third part of the work deals with the issue of unobservable cyclical behaviors in distributed systems. This type of behaviors leads to an infinite number of events in constrained unfoldings. We explain how we can obtain a finite structure that stores information about all observed events in the system, even if this involves processes that are infinite due to such unobservable loops. The fourth and final part of the work is dedicated to implementation issues of the previously described methods.

Page generated in 0.5418 seconds