• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 2
  • 1
  • Tagged with
  • 16
  • 16
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Numerical Simulation of Breaking Waves Using Level-Set Navier-Stokes Method

Dong, Qian 2010 May 1900 (has links)
In the present study, a fifth-order weighted essentially non-oscillatory (WENO) scheme was built for solving the surface-capturing level-set equation. Combined with the level-set equation, the three-dimensional Reynolds averaged Navier-Stokes (RANS) equations were employed for the prediction of nonlinear wave-interaction and wave-breaking phenomena over sloping beaches. In the level-set finite-analytic Navier-Stokes (FANS) method, the free surface is represented by the zero level-set function, and the flows are modeled as immiscible air-water two phase flows. The Navier-Stokes equations for air-water two phase flows are formulated in a moving curvilinear coordinate system and discretized by a 12-point finite-analytical scheme using the finite-analytic method on a multi-block over-set grid system. The Pressure Implicit with Splitting of Operators / Semi-Implicit Method for Pressure-Linked Equation Revised (PISO/SIMPLER) algorithm was used to determine the coupled velocity and pressure fields. The evolution of the level-set method was solved using the third-order total variation diminishing (TVD) Runge-Kutta method and fifth-order WENO scheme. The accuracy was confirmed by solving the Zalesak's problem. Two major subjects are discussed in the present study. First, to identify the WENO scheme as a more accurate scheme than the essentially non-oscillatory scheme (ENO), the characteristics of a nonlinear monochromatic wave were studied systematically and comparisons of wave profiles using the two schemes were conducted. To eliminate other factors that might produce wave profile fluctuation, different damping functions and grid densities were studied. To damp the reflection waves efficiently, we compared five damping functions. The free-surface elevation data collected from gauges distributed evenly in a numerical wave tank are analyzed to demonstrate the damping effect of the beach. Second, as a surface-tracking numerical method built on curvilinear coordinates, the level-set RANS model was tested for nonlinear bichromatic wave trains and breaking waves on a sloping beach with a complex free surface. As the wave breaks, the velocity of the fluid flow surface became more complex. Numerical modeling was performed to simulate the two-phase flow velocity and its corresponding surface and evolution when the wave passed over different sloping beaches. The breaking wave test showed that it is an efficient technique for accurately capturing the breaking wave free surface. To predict the breaking points, different wave heights and beach slopes are simulated. The results show that the dependency of wave shape and breaking characteristics to wave height and beach slope match the results provided by experiments.
12

Acoustic Analysis of Nearshore Breaking Wave Bubbles Simulated by Piston-Type Wavemaker

Chan, Hsiang-Chih 30 July 2002 (has links)
This article studies ambient noise in the surf zone that was simulated by piston-type wavemaker in the tank. The experiment analyzed the bubbles of breaking wave by using a hydrophone to receive the acoustic signal, and the images of bubbles were recorded by a digital video camera to observe distribution of bubbles. The tank is in College of Marine Sciences, National Sun Yat-sen University, the dimensions of water tank are 35 m ¡Ñ1 m ¡Ñ1.2 m, and the slope of the simulated seabed is 1:5. The studied parameters of ambient noise generates by breaking wave bubbles were wave height, period, and water depth. Short-time Fourier Transform was applied to obtain the acoustic spectrum of bubbles, MATLAB programs were used to calculate mean sound pressure level, and determine number of bubbles. Bubbles with resonant frequency from 0.5 to 10 kHz were studied, counted from peaks in the spectrum. The number of bubbles generated by breaking waves could be estimated by bubbles energy distributions. The sound pressure level of ambient noise was highly related to the wave height and period, with correlation coefficient 0.7. The results were compared with other studies of ambient noise in the surf.
13

Etudes expérimentales et numériques de la dynamique des vagues et leurs implications pour les échanges océan - atmosphère. / Directional Measurements of the Kinematics and Dynamics of Surface Waves and the Implications to Ocean-Atmosphere Interaction Processes

Lenain, Luc 11 September 2017 (has links)
Au cours des dernières décennies, les communautés de recherches océanographiques et atmosphérique ont démontrées que pour améliorer notre compréhension du couplage entre l'atmosphère et l'océan, et le paramétrage du flux de masse entre l'océan et l'atmosphère (gaz, aérosols, par exemple) , de moment (pour la génération de vagues et de courants marins) et d'énergie (flux de chaleur et énergie cinétique pour les courants et le processus de mélange près de la surface ) dans les modèles couplés océan-atmosphère, les vagues doivent être prises en compte. La physique du couplage dépend de la cinématique et de la dynamique du champ de vagues, y compris les processus de génération de vagues liées au vent, les interactions non-linéaires, ondes-ondes et la dissipation des vagues, cette dernière étant normalement considérée comme dominée par le déferlement. Nous présentons ici une série d'études expérimentales et numériques, démontrant l'importance du champ de vagues sur les interactions océan - atmosphère. / Over the last several decades there has been growing recognition from both the traditional oceanographic and atmospheric science communities that to better understand the coupling between the atmosphere and the ocean, and reflect that understanding in improved air-sea fluxes of mass (e.g. gases, aerosols), momentum (e.g. generation of waves and currents) and energy (e.g. heat and kinetic energy for currents and mixing) in coupled ocean-atmosphere models, surface-wave processes must be taken into account. The underlying physics of the coupling depends on the kinematics and dynamics of the wave field, including processes of wind-wave growth, nonlinear wave-wave interactions, wave-current interactions and wave dissipation, with the last normally considered dominated by wave breaking. Here we present a series of experiments, both numerical and field observations, focusing on surface wave effects on air-sea interaction processes.
14

Experiments investigating momentum transfer, turbulence and air-water gas transfer in a wind wave tank

Mukto, Moniz 06 1900 (has links)
A series of laboratory experiments were conducted at three fetches of 4.8, 8.8 and 12.4 m, and at six wind speeds ranging from 4.1 to 9.6 m/s at each fetch in a wind-wave-current research facility. In addition, five surfactant-influenced experiments were conducted at concentrations ranging from 0.1 to 5.0 ppm at a wind speed of 7.9 m/s and a fetch of 4.8 m. The goals were to examine the momentum transfer and to characterize the turbulent flow structure beneath wind waves, and to investigate the relationship between wind waves and the gas transfer rate at the air-water interface. Digital particle image velocimetry (DPIV) was used to measure two-dimensional instantaneous velocity fields beneath the wind waves. The friction velocities and roughness lengths of the coupled boundary layers were used to characterize the flow regime and momentum transfer. The air-side flows were found to be aerodynamically rough and the water-side flows were found to be in transition and then become hydrodynamically smooth as wind speed increased. Airflow separation from the crests of breaking waves may be responsible for making the air-side boundary layer rougher and water-side boundary layer smoother. Momentum transfer was studied by examining the partitioning of the wind stress into the viscous tangential stress and wave-induced stress. It was found that the wave steepness was the most important wind-wave property that controls the momentum transfer in the coupled boundary layers. Two distinct layers were observed in the near-surface turbulence in the presence of a surfactant and three layers in clean water. In the surfactant-influenced experiments, the energy dissipation rate decayed as zeta^(-0.3) in the upper layer and in the lower layer energy dissipation rate decayed as zeta^(-1.0) similar to a wall-layer. For clean experiments, the energy dissipation rate could be scaled using the depth, friction velocity, wave height and phase speed as proposed by Terray et al. (1996) provided that layer based friction velocities were used. In the upper layer, the near-surface turbulence was dominated by wave-induced motions and the dissipation rates decayed as zeta^(-0.2) at all fetches. Below this in the transition layer turbulence was generated by both wave-induced motions and shear currents and the dissipation rate decayed as zeta^(-2.0) at a fetch of 4.8 m. However, at fetches of 8.8 and 12.4 m, the dissipation rate decayed at two different rates; as zeta^(-2.0) in the upper region and as zeta^(-4.0) in the lower region. In the third layer, the dissipation rate decayed as zeta^(-1.0) similar to a wall-layer at a fetch of 4.8 m. Four empirical relationships commonly used to predict the gas transfer rate were evaluated using laboratory measurements. The gas transfer rate was found to correlate most closely with the total mean square wave slope and varied linearly with this parameter. The three other parameterizations using wind speed, wind friction velocity and energy dissipation did not correlate as well. / Water Resources Engineering
15

Experiments investigating momentum transfer, turbulence and air-water gas transfer in a wind wave tank

Mukto, Moniz Unknown Date
No description available.
16

Oceanographic Considerations for the Management and Protection of Surfing Breaks

Scarfe, Bradley Edward January 2008 (has links)
Although the physical characteristics of surfing breaks are well described in the literature, there is little specific research on surfing and coastal management. Such research is required because coastal engineering has had significant impacts to surfing breaks, both positive and negative. Strategic planning and environmental impact assessment methods, a central tenet of integrated coastal zone management (ICZM), are recommended by this thesis to maximise surfing amenities. The research reported here identifies key oceanographic considerations required for ICZM around surfing breaks including: surfing wave parameters; surfing break components; relationship between surfer skill, surfing manoeuvre type and wave parameters; wind effects on waves; currents; geomorphic surfing break categorisation; beach-state and morphology; and offshore wave transformations. Key coastal activities that can have impacts to surfing breaks are identified. Environmental data types to consider during coastal studies around surfing breaks are presented and geographic information systems (GIS) are used to manage and interpret such information. To monitor surfing breaks, a shallow water multibeam echo sounding system was utilised and a RTK GPS water level correction and hydrographic GIS methodology developed. Including surfing in coastal management requires coastal engineering solutions that incorporate surfing. As an example, the efficacy of the artificial surfing reef (ASR) at Mount Maunganui, New Zealand, was evaluated. GIS, multibeam echo soundings, oceanographic measurements, photography, and wave modelling were all applied to monitor sea floor morphology around the reef. Results showed that the beach-state has more cellular circulation since the reef was installed, and a groin effect on the offshore bar was caused by the structure within the monitoring period, trapping sediment updrift and eroding sediment downdrift. No identifiable shoreline salient was observed. Landward of the reef, a scour hole ~3 times the surface area of the reef has formed. The current literature on ASRs has primarily focused on reef shape and its role in creating surfing waves. However, this study suggests that impacts to the offshore bar, beach-state, scour hole and surf zone hydrodynamics should all be included in future surfing reef designs. More real world reef studies, including ongoing monitoring of existing surfing reefs are required to validate theoretical concepts in the published literature.

Page generated in 0.0756 seconds