• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • Tagged with
  • 12
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Essays on Market Microstructure and Pathwise Directional Derivatives

Bielagk, Jana 23 February 2018 (has links)
Wir befassen uns mit Gleichgewichtsproblemen, die bei dem Zusammentreffen von Märkten und Marktteilnehmern entstehen, zuerst in einem Modell mit konkurrierenden Märkten mit Feedback und asymmetrischer Information und dann mit strategisch interagierenden Händlern. Zudem untersuchen wir spezielle Richtungsableitung im Kontext des pfadweisen Malliavinkalküls. Im ersten Kapitel analysieren wir ein Prinzipal-Agenten-Problem mit einem monopolistischen Dealer, der mit einem Crossing-Netzwerk (CN) um den Handel mit Agenten mit privater Information konkurriert. Wir untersuchen die gewinnmaximierenden Angebote des Dealers für unterschiedliche Outside-Optionen und formulieren hinreichende Bedingungen für die Existenz und Eindeutigkeit einer optimalen Lösung. In unserem Modell ist die Einführung des CN für die Agenten vorteilhaft und ein Gleichgewichtspreis existiert. Im zweiten Kapitel analysieren wir den Einfluss vergleichender Leistungsbewertung von Händlern auf die Preisfindung im Marktgleichgewicht. Ein Derivat soll einen markträumenden Preis bekommen unter Beachtung der strategisch handelnden Agenten. Das Risiko eines Händlers setzt sich aus dem eigenen Risikoprofil und dem Erfolg des Handelns relativ zum durchschnittlichen Handelserfolg aller zusammen und er wird durch eine BSDE gemessen. Wir bestimmen einen repräsentativen Agenten und zeigen so die Existenz und Eindeutigkeit eines Gleichgewichtspreises. Weiterhin können wir diesen charakterisieren und im Spezialfall von entropischen Risikomaßen konkret berechnen. In diesem Spezialfall führen wir auch eine Parameteranalyse durch. Das dritte Kapitel verknüpft klassischen und pfadweisen Malliavinkalkül. Wir definieren und analysieren pfadweise Richtungsableitungen mit Hilfe von Perturbationen mit Cameron-Martin-Funktionen, mit (Hölder-)stetigen Funktionen, mit unstetigen Funktionen und mit Maßen. Somit sind sowohl die klassische Malliavin-Ableitung als auch Dupires vertikale Ableitung als Spezialfälle enthalten. / We analyze equilibrium problems arising from interacting markets and market participants, first competing markets with feedback and asymmetric information, then strategically interacting traders; moreover we analyze a new notion of a pathwise directional derivative in the context of pathwise Malliavin calculus. The first chapter analyzes a principal-agent game in which a monopolistic profit-maximizing dealer competes with a crossing network (CN) for trading with privately informed agents. We analyze the structure of the dealer’s offered pricing schedules for different outside options. We give sufficient conditions for the existence and uniqueness of a solution to the dealer’s problem and show that in our setting the introduction of the CN is beneficial for the agents. Additionally, we discuss existence and uniqueness of an equilibrium price for the feedback between dealer and CN. In the second chapter we analyze the impact of performance concerns on a problem of equilibrium pricing. A derivative is priced such that the market clears, given strategically behaving agents. Their risk stems from a risky position in the future and the relative trading gains compared to all other agents. The risk measure of each agent is specified by a BSDE. In spite of the strategic interaction, we are able to apply a representative agent approach to obtain existence and uniqueness of the equilibrium market price of external risk. In the special case of entropic risk measures, we perform a parameter analysis. The third chapter provides a link between classical and pathwise Malliavin calculus. We define and analyze pathwise directional derivatives via perturbations with Cameron-Martin functions, (Hölder-)continuous functions, discontinuous functions and measures, thereby including both the traditional Malliavin derivative and the vertical derivative from Dupire’s work.
12

Non-standard backward stochastic differential equations and multiple optimal stopping problems with applications to securities pricing

Zhang, Jianing 03 April 2013 (has links)
Zentraler Gegenstand dieser Dissertation ist die Entwicklung von mathematischen Methoden zur Charakterisierung und Implementierung von optimalen Investmentstrategien eines Kleininvestors auf einem Finanzmarkt. Zur Behandlung dieser Probleme ziehen wir als Hauptwerkzeug Stochastische Rückwärts-Differenzialgleichungen (BSDEs) mit nicht-linearen Drifts heran. Diese Nicht-Lineariäten ordnen sie außerhalb der Standardklasse der Lipschitz-stetigen BSDEs ein und treten häufig in finanzmathematischen Kontrollproblemen auf. Wir charakterisieren das optimale Vermögen und die optimale Investmentstrategie eines Kleininvestors mit Hilfe einer sog. Stochastischen Vorwärts-Rückwärts-Differenzialgleichung (FBSDE), einem System bestehend aus einer stochastischen Vorwärtsgleichung, die vollständig gekoppelt ist an eine Rückwärtsgleichung. Die Festlegung bestimmter Nutzenfunktionen führt uns schließlich zu einer weiteren Klasse von nicht-standard BSDEs, die in unmittelbarem Zusammenhang zu dem sog. Ansatz der stochastischen partiellen Rückwärts-Differenzialgleichungen (BSPDEs) steht. Anschließend entwickeln wir eine Methode zur numerischen Behandlung von quadratischen BSDEs, die auf einem stochastischen Analogon der Cole-Hopf-Transformation basiert. Wir studieren weiterhin eine Klasse von BSDEs, deren Drifts explizite Pfadabhängigkiten aufweisen und leiten mehrere analytische Eigenschaften her. Schließlich studieren wir Dualdarstellungen für Optimalen Mehrfachstoppprobleme. Wir leiten Martingal-Dualdarstellungen her, die die Grundlage für die Entwicklung von Regressions-basierten Monte Carlo Simulationsalgorithmen bilden, die schnell und effektiv untere und obere Schranken berechnen. / This thesis elaborates on the wealth maximization problem of a small investor who invests in a financial market. Key tools for our studies come across in the form of several classes of BSDEs with particular non-linearities, casting them outside the standard class of Lipschitz continuous BSDEs. We first give a characterization of a small investor''s optimal wealth and its associated optimal strategy by means of a systems of coupled equations, a forward-backward stochastic differential equation (FBSDE) with non-Lipschitz coefficients, where the backward component is of quadratic growth. We then examine how specifying concrete utility functions give rise to another class of non-standard BSDEs. In this context, we also investigate the relationship to a modeling approach based on random fields techniques, known by now as the backward stochastic partial differential equations (BSPDEs) approach. We continue with the presentation of a numerical method for a special type of quadratic BSDEs. This method is based on a stochastic analogue to the Cole-Hopf transformation from PDE theory. We discuss its applicability to numerically solve indifference pricing problems for contingent claims in an incomplete market. We then proceed to BSDEs whose drifts explicitly incorporate path dependence. Several analytical properties for this type of non-standard BSDEs are derived. Finally, we devote our attention to the problem of a small investor who is equipped with several exercise rights that allow her to collect pre-specified cashflows. We solve this problem by casting it into the language of multiple optimal stopping and develop a martingale dual approach for characterizing the optimal possible outcome. Moreover, we develop regression based Monte Carlo algorithms which simulate efficiently lower and upper price bounds.

Page generated in 0.0379 seconds