• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DNA Mismatch Repair–Dependent and –Independent G2 Cell Cycle Arrest and Apoptotic Signaling Pathways After Alkylating Damage

Wagner, Mark W. 06 June 2007 (has links)
No description available.
2

Dysregulation of Vascular Endothelial Function Modulates Severity of IgE-mediated Anaphylactic Reactions

Yamani, Amnah January 2016 (has links)
No description available.
3

The intermediate filament synemin promotes non-homologous end joining in an ATM-dependent manner

Deville, Sara Sofia 07 October 2020 (has links)
Background: Therapy resistance is a great challenge in cancer treatment. Among numerous factors, cell adhesion to extracellular matrix is a well-known determinant of radiochemo-resistance. It has been shown that targeting focal adhesion proteins (FAPs), e.g. β1 integrin, enhances tumor cell radio(chemo)sensitivity in various entities such as head and neck squamous cell carcinoma (HNSCC), lung carcinoma, glioblastoma, breast carcinoma and leukemia. Previous studies demonstrated a functional crosstalk between specific FAPs and DNA repair processes; however, the molecular circuitry underlying this crosstalk remains largely unsolved. Hence, this study in HNSCC aimed to identify alternative FAPs associated with DNA damage repair mechanisms and radioresistance. Materials and Methods: A novel 3D High Throughput RNAi Screen (3DHT-RNAi-S) using laminin-rich extracellular matrix (lrECM) was established to determine radiation-induced re-sidual DNA double strand breaks (DSBs; foci assay) and clonogenic radiation survival. In the screen, we used UTSCC15 HNSSC cells stably expressing the DSB marker protein 53BP1 tagged to pEGFP. Validations were performed in 10 additional HNSCC cell lines (Cal33, FaDu, SAS, UTSCC5, UTSCC8, UTSCC14, UTSCC15, UTSCC45 and XF354fl2) grown in 3D lrECM. Immunofluorescence staining, immunoblotting, chromatin fractionation were utilized to evaluate protein expression, dynamics and kinetics post irradiation. Investigations of molecular mechanisms of DNA repair and radio(chemo)resistance employed DSB repair reporter assays for non-homologous end joining (NHEJ) and homologous recombination (HR), cell cycle analysis, chromatin fractionation levels evaluation and kinase activity profiling (PamGene) upon protein knockdown in combination with/-out X-ray exposure. Foci assay and clonogenic survival assay were performed after single or multiple knockdowns of synemin and associated proteins such as DNA-PKcs and c-Abl. Protein-protein interactions between synemin and associated proteins were determined using immunoprecipitation and proximity ligation assay. Mutant/depletion constructs of synemin (ΔLink-Tail, ΔHead-Link, Synemin_301-961, Synemin_962-1565, S1114A and S1159A) were generated in order to identify essential synemin’s sites controlling DNA repair functions. Results: Among the targets found in the 3DHT-RNAi-S, synemin was one of the most promising FAP candidates to determine HNSCC cell survival and DNA damage repair. Synemin silencing radiosensitized HNSCC cells, while its exogenous overexpression induced radio-protection. Radiation induced an increased synemin/chromatin interaction and a marked ac-cumulation of synemin in the perinuclear area. Intriguingly, synemin depletion elicited a 40% reduction in NHEJ activity without affecting HR or Alt-EJ. In line, ATM, DNA-PKcs and c-Abl phosphorylation as well as Ku70 expression strongly declined in synemin depleted and irra-diated cells relative to controls, whereas an opposite effect was observed under synemin overexpression. Single, double and triple depletion of synemin, DNA-PKcs and c-Abl resulted in a similar radiosensitizing effect and DSB levels as detected upon single knockdown of synemin, describing its upstream role. In kinome analysis, tyrosine kinases showed signifi-cantly reduced activity after synemin silencing relative to controls. Furthermore, immunoprecipitation assays revealed a protein complex formed between synemin, DNA-PKcs and c-Abl under pre- and post-irradiation conditions. This protein complex dispersed when ATM was pharmacologically inhibited, implying synemin function to be dependent on ATM kinase activity. By means of the different mutation/deletion constructs of synemin, the phosphorylation site at serine 1114 located on the distal portion of synemin’s tail was identified as essential protein-protein interaction site for synemin’s function in DNA repair. Conclusions: The established 3DHT-RNAi-S provides a robust screening platform for identifying novel targets involved in therapy resistance. Based on this screen and detailed mechanistic analyses, the intermediate filament synemin was discovered as a novel important determinant of DNA repair, tyrosine kinase activity and radiochemoresistance of HNSCC cells. These results further support the notion that DNA repair is controlled by cooperative interactions between nuclear and cytoplasmic proteins.
4

c-ABL AND ARG DRIVE CANCER CHEMORESISTANCE VIA ACTIVATION OF MULTIPLE SIGNALING PATHWAYS

Sims, Jonathan Thomas 01 January 2012 (has links)
Despite 35 years of clinical trials, there has been little improvement in one-year survival rates with any chemotherapeutic regimen for the treatment of metastatic melanoma due to resistance to all known agents. Regardless of advances in detection and prevention, diagnosis of metastatic disease remains a death sentence. Resistance mechanisms, including aberrant kinase signaling and drug transport pumps, indicate a need for identification of other therapeutic targets that impinge upon multiple signaling pathways. The Abl family of non-receptor tyrosine kinases (c-Abl, Arg) has been indicted as a causative force in leukemia for more than three decades; however, their role in solid tumors has only recently been described. We first demonstrated that activated Abl family kinases promote breast cancer development and progression, and recently identified them to be novel therapeutic targets in metastatic melanoma cells by demonstrating that they promote proliferation, survival, invasion, and metastasis. We now present evidence that inhibitors of Abl family kinases abrogate resistance to a number of commonly used chemotherapeutics (i.e., 5-fluorouracil, cisplatin, paclitaxel, camptothecin) in a panel of breast cancer cells. We proceed to show that inhibitors of Abl family kinases, likewise, sensitize both breast cancer and melanoma cells to doxorubicin by blocking cell proliferation and dramatically inducing apoptosis. These findings were extended to advanced multi-drug resistant melanoma cells, in which we show for the first time that c- Abl promotes expression of the drug transporter, ABCB1, during acquired resistance, and drugs that inhibit c-Abl/Arg prevent ABCB1 expression and function. Moreover, c-Abl/Arg also promote acquired chemoresistance independent of ABCB1 by modulating multiple survival pathways. We demonstrate that c-Abl/Arg promote chemoresistance by upregulating STAT3, preventing doxorubicin-mediated conversion of NF-κB into a transcriptional repressor, activating an HSP27/p38/Akt survival pathway, and modulating ERK signaling. Therefore, c-Abl/Arg promote chemoresistance in highly resistant melanoma cells by impinging on drug transporter and cell survival pathways. Taken together, these data indicate that c-Abl/Arg inhibitors are likely to reverse acquired resistance in metastatic melanomas harboring activated c-Abl/Arg, and thus, may be effective in a combination regimen.
5

A Novel Link Between Abl Family Kinases and NM23-H1 During Metastatic Progression

Fiore, Leann S. 01 January 2014 (has links)
Cancer patient mortality is caused by the ability of tumor cells to invade the extracellular matrix and metastasize. Our lab was the first to identify the role of Abl family of non-receptor tyrosine kinases (c-Abl and Arg) in the progression of solid tumor cancers. In our previous studies, we showed that high c-Abl/Arg activity promotes proliferation, invasion, and metastasis in melanoma and breast cancer cells lines. Here, we demonstrate that our previous findings are clinically relevant by showing increased c-Abl/Arg kinase activity in primary melanoma tumor tissue in comparison to low activity as compared to benign nevi. Additionally, in breast cancer tissue, we found aggressive tumor subtypes (triple-negative and high-grade breast cancer) had increased c-Abl/Arg activity as compared to less aggressive subtypes. To define the mechanism by which c-Abl and Arg promote melanoma and breast cancer metastasis, we searched for novel pathways by which c-Abl and Arg promote invasion, a key step in metastasis. Significantly, we found that c-Abl and Arg decrease the expression of non-metastatic protein, NM23-H1, a metastasis suppressor that is lost during metastatic progression. We demonstrate that NM23-H1 is localized and degraded within the lysosome via proteases, cathepsins L and B. Moreover, we show that c-Abl and Arg upregulate cathepsin mRNA levels and activate the cathepsins, which in-turn degrade NM23-H1. We demonstrate that this pathway is functionally significant as c-Abl and Arg require the downregulation of NM23-H1 to promote invasion in melanoma and breast cancer cell lines. We show that the pathway is clinically significant as c-Abl/Arg activity is inversely correlated with NM23-H1 expression in mouse lung metastases, as well as in human primary melanoma and primary breast cancer tissue. In summary, we are the first to demonstrate novel crosstalk between oncogenic and metastasis suppressor signaling pathways, and provide evidence that pharmacological inhibition of Abl family kinases in melanoma and breast cancer patients may prevent metastatic progression by stabilizing a metastasis suppressor.
6

A Novel Function of DEAD Box p68 RNA Helicase In Tumor Cell Proliferation And Epithelial-Mesenchymal Transition

Yang, Liuqing 31 July 2006 (has links)
Activities of the DEAD box (Asp-Glu-Ala-Asp) family of proteins- including RNA-dependent ATPase and RNA helicase- function in all organisms to sculpt RNA-RNA duplex and RNA-protein complexes, ensuring that necessary rearrangements are rapidly and properly resolved during genetic information processing. Identified as a prototypic member of the DEAD box family and documented as an ATPase and RNA helicase, p68 plays essential and diverse functions in the control of gene expression ranging from pre-mRNA/rRNA processing and mRNA decay/stability to transcriptional activation and initiation. Despite the early implied roles in organ maturation and tumor progression, the functional contributions of p68 to growth/differentiation regulation and cancer development remain undefined. Here, we show c-Abl-dependent phosphorylation of p68 markedly associates with abnormal cell growth and cancer development. Importantly, we characterize an unanticipated signaling module through which p68 functionally contributes to Epithelial-Mesenchymal Transition (EMT) and cell proliferation. p68, which appears to be phosphorylated by c-Abl at tyrosine 593, consequently promotes an EMT through its ability to recruit â-catenin into cell nucleus via a canonic Wnt/â-catenin axis independent way; accordingly, phosphor-p68 (phosphorylated at tyrosine 593 residue) also stimulates tumor cell growth, which requires the ATPase activity of the protein. These findings define a potential mechanism whereby phosphor-p68 recruits â-catenin into cell nucleus in ATP hydrolysis driven fashion and cooperatively regulates transcriptional programs that control an EMT. The dissertation thus demonstrates a tight coordination between DEAD box RNA helicase and cancer development.
7

DYNAMIC INTERACTIONS OF P53 AND C-ABL IN REGULATING BREASTCANCER PROGRESSION AND METASTASIS

Morrison, Chevaun Danielle 08 February 2017 (has links)
No description available.
8

Influence du microenvironnement inflammatoire sur la sénescence contrôlée par la réponse aux dommages à l'ADN, et sa régulation par l’induction du stress à la chromatine

Carrier-Leclerc, Audrey 01 1900 (has links)
La sénescence cellulaire, ou l’arrêt irréversible de la prolifération, influence des processus physiologiques et pathologiques, comme le cancer. Parmi les caractéristiques de la sénescence, se retrouve le PSAS ou phénotype sécrétoire associé à la sénescence. Le PSAS est composé d’une variété de cytokines, facteurs de croissance et protéases. Ses actions pro- et anti-tumorale sont connues, mais l’on ignore laquelle prédomine. Mes travaux s’attardent aux effets du PSAS sur l’induction de la sénescence dans les cellules environnantes et à sa régulation. Nous avons démontré que le PSAS ne synergise pas avec la dysfonction télomérique chronique ou aigue, afin de causer un arrêt de croissance. Également, l’étude du mécanisme responsable de l’induction de la sénescence par stress à la chromatine, suggère que la kinase c-Abl n’est pas requise pour cette voie, contrairement à des publications antérieures. Mes travaux éclairent les mécanismes d’action et la régulation du PSAS dans la sénescence induite par dysfonction télomérique et par stress à la chromatine. / Cellular senescence, or irreversible proliferation arrest, is known for its influence on physiological and pathological processes, such as cancer. Among the features found in the senescent phenotype is the inflammatory secretome, also known as the senescence associated secretory phenotype (SASP). The SASP consists of a variety of factors such as cytokines, growth factors and proteases. It is widely recognized that SASP can have either a pro- or anti-tumor effect, but it is not clear which one predominates. My work focused on the SASP effects on the induction of senescence in surrounding cells and its regulation mechanisms. We demonstrated that the SASP does not synergize with chronic or induced telomere dysfunction to cause cellular proliferation arrest. Also, study of chromatin stress-induced senescence mechanism suggests that kinase c-Abl is not required for this pathway, contrary to what had been previously published. My work helps understand the regulatory and working mechanisms of the SASP in chromatin stress-induced and telomere dysfunction-induced senescence models.
9

A Src-Abl kinase inhibitor, SKI-606, blocks breast cancer invasion, growth and metastasis in vitro and in vivo /

Jallal, Houda. January 2007 (has links)
The central role of Src in the development of several malignancies including breast cancer and the accumulating evidence of its interaction with receptor tyrosine kinases (RTK), integrins and steroid receptors have identified it as an attractive therapeutic target. In the current study we have evaluated the effect of a Src/Abl kinase inhibitor SKI-606, on breast cancer growth, migration, invasion and metastasis. Treatment of human breast cancer cells MDA-MB-231 with SKI-606 caused a marked inhibition of cell proliferation, invasion and migration by inhibiting MAPK and Akt phosphorylation. For in vivo studies MDA-MB-231 cells transfected with the plasmid encoding green fluorescent protein (GFP) [MDA-MB-231-GFP] were inoculated into mammary fat pad of female BALB/c nu/nu mice. Once tumor volume reached 30-50 mm3, animals were randomized and treated with vehicle alone or 150 mg/kg of SKI-606 by daily oral gavage. Experimental animals receiving SKI-606 developed tumors of significantly smaller volume (45-54%) as compared to control animals receiving vehicle alone. Analysis of lungs, liver and spleen of these animals showed a significant decrease in GFP positive tumor metastasis in animals receiving SKI-606 at a dose that was well tolerated. Western blot analysis and immunohistochemical analysis of primary tumors showed that these effects were due to the ability of SKI-606 to block tumor cell proliferation, angiogenesis, growth factors expression and inhibition of Src mediated signalling pathways in vivo. Together the results from these studies provide compelling evidence for the use of Src inhibitors as therapeutic agents for blocking breast cancer growth and metastasis.
10

A Src-Abl kinase inhibitor, SKI-606, blocks breast cancer invasion, growth and metastasis in vitro and in vivo /

Jallal, Houda. January 2007 (has links)
No description available.

Page generated in 0.0237 seconds