Spelling suggestions: "subject:"C0 semigroup""
1 |
Stochastické evoluční systémy a jejich aplikace / Stochastic Evolution Systems and Their ApplicationsRubín, Tomáš January 2016 (has links)
In the Thesis, linear stochastic differential equations in a Hilbert space driven by a cylindrical fractional Brownian motion with the Hurst parameter in the interval H < 1/2 are considered. Under the conditions on the range of the diffusion coefficient, existence of the mild solution is proved together with measurability and continuity. Existence of a limiting distribution is shown for exponentially stable semigroups. The theory is modified for the case of analytical semigroups. In this case, the conditions for the diffusion coefficient are weakened. The scope of the theory is illustrated on the Heath-Jarrow-Morton model, the wave equation, and the heat equation. 1
|
2 |
Exponential dichotomy and smooth invariant center manifolds for semilinear hyperbolic systemsLichtner, Mark 25 August 2006 (has links)
Es wird gezeigt, dass ein Satz über die Abbildung spektraler Lücken, welcher exponentielle Dichotomie charakterisiert, für eine allgemeine Klasse (SH) von semilinearen hyperbolischen Systemen von partiellen Differentialgleichungen in einem Banach-Raum X von stetigen Funktionen gilt. Dies beantwortet ein Schlüsselproblem für die Existenz und Glattheit invarianter Mannigfaltigkeiten semilinearer hyperbolischer Systeme. Unter natürlichen Annahmen an die Nichtlinearitäten wird gezeigt, dass schwache Lösungen von (SH) einen glatten Halbfluß im Raum X bilden. Für Linearisierungen werden hochfrequente Abschätzungen für Spektren sowie Resolventen unter Verwendung von reduzierten (block)diagonal Systemen hergestellt. Darauf aufbauend wird der Abbildungssatz für spektrale Lücken im kleinen Raum X bewiesen: Eine offene spektrale Lücke des Generators wird exponentiell auf eine offene spektrale Lücke der Halbruppe abgebildet und umgekehrt. Es folgt, dass ein Phänomen wie im Gegenbeispiel von Renardy nicht auftreten kann. Unter Verwendung der allgemeinen Theorie implizieren die Ergebnisse die Existenz von glatten Zentrumsmannigfaltigkeiten für (SH). Die Ergebnisse werden auf traveling wave Modelle für die Dynamik von Halbleiter Lasern angewandt. Für diese werden Moden Approximationen (Systeme von gewöhnlichen Differentialgleichungen, welche die Dynamik auf gewissen Zentrumsmannigfaltigkeiten approximativ beschreiben) hergeleitet und gerechtfertigt, die generische Bifurkation von modulierten Wellen aus rotierenden Wellen wird gezeigt. Globale Existenz und glatte Abhängigkeit von nichtautonomen traveling wave Modellen werden betrachtet, außerdem werden Moden Approximationen für solche nichtautonomen Modelle rigoros hergeleitet. Insbesondere arbeitet die Theorie für die Stabilitäts- und Bifurkationsanalyse von Turing Modellen mit korellierter Zufallsbewegung. Ferner beinhaltet die Klasse (SH) neutrale und retardierte funktionale Differentialgleichungen. / A spectral gap mapping theorem, which characterizes exponential dichotomy, is proven for a general class of semilinear hyperbolic systems of PDEs in a Banach space X of continuous functions. This resolves a key problem on existence and smoothness of invariant manifolds for semilinear hyperbolic systems. It is shown that weak solutions to (SH) form a smooth semiflow in X under natural conditions on the nonlinearities. For linearizations high frequency estimates of spectra and resolvents in terms of reduced diagonal and blockdiagonal systems are given. Using these estimates a spectral gap mapping theorem in the small Banach space X is proven: An open spectral gap of the generator is mapped exponentially to an open spectral gap of the semigroup and vice versa. Hence, a phenomenon like in Renardy''s counterexample cannot appear for linearizations of (SH). By the general theory the results imply existence of smooth center manifolds for (SH). Moreoever, the results are applied to traveling wave models of semiconductor laser dynamics. For such models mode approximations (ODE systems which approximately describe the dynamics on center manifolds) are derived and justified, and generic bifurcations of modulated waves from rotating waves are shown. Global existence and smooth dependence of nonautonomous traveling wave models with more general solutions, which possess jumps, are considered, and mode approximations are derived for such nonautonomous models. In particular the theory applies to stability and bifurcation analysis for Turing models with correlated random walk. Moreover, the class (SH) includes neutral and retarded functional differential equations.
|
3 |
Observation et commande de quelques systèmes à paramètres distribués / Observation and control of some distributed parameter systemsLi, Xiaodong 09 December 2009 (has links)
L’objectif principal de cette thèse consiste à étudier plusieurs thématiques : l’étude de l’observation et la commande d’un système de structure flexible et l’étude de la stabilité asymptotique d’un système d’échangeurs thermiques. Ce travail s’inscrit dans le domaine du contrôle des systèmes décrits par des équations aux dérivées partielles (EDP). On s’intéresse au système du corps-poutre en rotation dont la dynamique est physiquement non mesurable. On présente un observateur du type Luenberger de dimension infinie exponentiellement convergent afin d’estimer les variables d’état. L’observateur est valable pour une vitesse angulaire en temps variant autour d’une constante. La vitesse de convergence de l’observateur peut être accélérée en tenant compte d’une seconde étape de conception. La contribution principale de ce travail consiste à construire un simulateur fiable basé sur la méthode des éléments finis. Une étude numérique est effectuée pour le système avec la vitesse angulaire constante ou variante en fonction du temps. L’influence du choix de gain est examinée sur la vitesse de convergence de l’observateur. La robustesse de l’observateur est testée face à la mesure corrompue par du bruit. En mettant en cascade notre observateur et une loi de commande stabilisante par retour d’état, on souhaite obtenir une stabilisation globale du système. Des résultats numériques pertinents permettent de conjecturer la stabilité asymptotique du système en boucle fermée. Dans la seconde partie, l’étude est effectuée sur la stabilité exponentielle des systèmes d’échangeurs thermiques avec diffusion et sans diffusion. On établit la stabilité exponentielle du modèle avec diffusion dans un espace de Banach. Le taux de décroissance optimal du système est calculé pour le modèle avec diffusion. On prouve la stabilité exponentielle dans l’espace Lp pour le modèle sans diffusion. Le taux de décroissance n’est pas encore explicité dans ce dernier cas. / The main objective of this thesis consists to investigate the following themes : observation and control of a flexible structure system and asymptotic stability of a heat exchangers system. This work is placed in the field of the control of systems described by partial differential equations (PDEs). We consider a rotating body-beam system whose dynamics are not physically measurable. An infinite-dimensional exponentially convergent Luenberger-like observer is presented in order to estimate the state variables. The observer is also valid for a time-varying angular velocity around some constant. We can accelerate the decay rate of the observer by a second step design. The main contribution of this work consists in building a numerical simulator based on the finite element method (FEM). A numerical investigation is carried out for the system with constant or time-varying angular velocity. We examine the influence of the gain choice on the decay rate of the observer. The robustness of the observer is tested with the measurement corrupted by noise. By cascading our observer and a feedback control law, we wish to obtain a global stabilization of the rotating bodybeam system. The relevant numerical results make it possible for us to conjecture that the closed-loop system is locally asymptotically stable. We investigate the exponential stability of the heat exchangers systems with diffusion or without diffusion. We establish the exponential stability of the model with diffusion in a Banach space. Moreover, the optimal decay rate of the system is computed for the model with diffusion. We prove exponential stability in (C[0, 1])4 space for the model without diffusion. The optimal decay rate in the latter case is not yet found.
|
Page generated in 0.0266 seconds