• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 26
  • 10
  • 9
  • 9
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studying Clouds and Aerosols with Lidar Depolarization Ratio and Backscatter Relationships

Cho, Hyoun-Myoung 2011 December 1900 (has links)
This dissertation consists of three parts, each devoted to a particular issue of significant importance for CALIPSO lidar observation of depolarization ratio (delta) and backscatter (gamma?) to improve current understanding of the microphysical properties of clouds and aerosols. The relationships between depolarization ratio and backscatter allow us to retrieve particle thermodynamic phase and shape and/or orientation of aerosols and clouds. The first part is devoted to the investigation of the relationships between lidar backscatter and the corresponding depolarization ratio for different cloud classifications and aerosol types. For each cloud and aerosol types, layer-averaged backscatter and backscattering depolarization ratio from the CALIPSO measurements are discussed. The present results demonstrate the unique capabilities of the CALIPSO lidar instrument for determining cloud phase and aerosols subtypes. In the second part, we evaluate the MODIS IR cloud phase with the CALIPSO cloud products. The three possible misclassifications of MODIS IR cloud phasealgorithm, which are studied by Nasiri and Kahn (2008) with radiative transfer modeling, are tested by comparing between MODIS IR phase and CALIOP observations. The current results support their hypotheses, which is that the MODIS phase algorithm may tend to classify thin cirrus clouds as water clouds or mixed phase clouds or unknown, and classify midlevel and/or mid-temperature clouds as mixed or unknown phase. In the third part, we present a comparison of mineral dust aerosol retrievals from two instruments, MODIS and CALIPSO lidar. And, we implement and evaluate a new mineral dust detection algorithm based on the analysis of thin dust radiative signature. In comparison, three commonly used visible and IR mineral dust detection algorithms, including BTD procedure, D parameter method, and multi-channel image algorithm, are evaluated with CALIPSO aerosol classification. The comparison reveals that those dust detection algorithms are not effective for optically thin dust layers, but for thick dust storm. The new algorithm using discriminant analysis with CALIPSO observation is much better in detecting thin dust layer of optical thickness between 0.1 and 2.
2

Validação dos dados do satélite CALIPSO utilizando um sistema lidar de retroespalhamento elástico e o fotômetro solar da rede  AERONET / CALIPSO satellite validation using an elastic backscattering lidar system and the AERONET sunphotometer data

Lopes, Fábio Juliano da Silva 05 July 2011 (has links)
Os aerossóis e nuvens desenvolvem um papel muito importante nos processos climáticos terrestres por meio das suas contribuições diretas e indiretas no balanço radiativo da atmosfera. A dificuldade na previsão dos processos de mudanças climáticas estão associadas às incertezas na distribuição e propriedades dos aerossóis e nuvens, assim como em suas interações em escala global. Tendo como principal objetivo desenvolver estudos que ajudem na diminuição dessas incertezas, a NASA, em parceria com a agência espacial francesa CNES, desenvolveu a missão do Satélite CALIPSO, que possui a bordo um sistema Lidar denominado CALIOP capaz de estudar o perfil e a distribuição vertical dos aerossóis e nuvens e os processos de interação entre eles. Uma vez que as propriedade ópticas medidas pelo CALIOP são recuperadas utilizando um complexo conjunto de algoritmos, torna-se necessário o desenvolvimento de estudos e metodologias de validação para inferir qual a acurácia das medidas desse sistema. Nesse contexto, foi desenvolvida uma metodologia de avaliação e validação dos valores de Razão Lidar utilizados a priori pelos algoritmos do CALIOP utilizando dois instrumentos de sensoriamento remoto instalados em solo, um sistema Lidar de retroespalhamento elástico instalado no IPEN - São Paulo e o fotômetro solar da rede AERONET instalado em cinco diferentes localidades, Rio Branco - Acre (RB), Alta Floresta - Mato Grosso (AF), Cuiabá - Mato Grosso (CB), Campo Grande - Mato Grosso do Sul (CG) e São Paulo - São Paulo (SP). Foram determinados os dias de medidas correlativas entre os sistemas em solo e o CALIOP e analisados os dados para os dias de medidas com condições livre de nuvens e com trajetórias de massas de ar se deslocando das regiões de medidas do satélite para as regiões de medidas pelos instrumentos fixos. Foram calculados novos valores de Razão Lidar obtidos pelo Modelo Aeronet/Caliop (Modelo A/C) proposto. Esses valores mostraram-se coerentes com aqueles utilizados inicialmente pelo algoritmo do sistema CALIOP. Realizando uma comparação quantitativa, obteve-se uma diferença percentual de 2,17 ± 30,12%, esse valor mostra-se compatível com outros valores obtidos na literatura de validação desse sistema Lidar a bordo do Satélite CALIPSO. Essa subestimação nos valores de Razão Lidar utilizados pelo CALIOP pode estar ocorrendo devido um problema no processo de calibração dos dados do sistema CALIOP, uma vez que o território brasileiro se encontra na região da Anomalia do Atlântico Sul (SAA). A diferença percentual dos valores de Razão Lidar utilizados pelo CALIOP com aqueles obtido por meio de medidas com o sistema Lidar do IPEN forneceram valores de 2,34 ± 17,53%, demonstrando que o modelo de validação proposto é aceitável e acurácia nos valores de Razão Lidar utilizados a priori pelo CALIOP está dentro das margens de incerteza de 30%. / Aerosol and clouds play an important role in the Earths climate process through their direct and indirect contributions to the radiation budget. The largest difficulty in predicting the climate change processes is associated with uncertainties in the distribution and properties of aerosols and clouds, as well as their interactions on a global scale. The CALIPSO mission was developed as part of the NASA program, in collaboration with the French space agency CNES, with the main goal to develop studies that will help to quantify the uncertainties about aerosols and clouds. The CALIPSO satellite carried a Lidar system on board, named CALIOP, as a primary instrument, able to provide the aerosol and cloud vertical profiles and distribution, as well as their interactions. Once the optical properties measured by CALIOP are retrieved, using a complex set of algorithms, it is necessary to study and develop methodologies in order to assess the accuracy of the CALIOP products. In this context, a validation methodology was developed in order to verify the assumed values of the Lidar Ratio selected by the CALIOP algorithms, using two ground-based remote sensing instruments, an elastic backscatter Lidar system (MSP) installed at IPEN in São Paulo and the AERONET sunphotometers operating at five different locations in Brazil, Rio Branco - Acre (RB), Alta Floresta - Mato Grosso (AF), Cuiabá - Mato Grosso (CB), Campo Grande - Mato Grosso do Sul (CG) e São Paulo - São Paulo (SP). Those days when the CALIOP system and ground-based instruments spatially coincided, were selected and analyzed under cloud-free conditions, as well as days when the trajectories of air masses indicated the transport of air parcels from the CALIOP track towards the ground-based sensors. The Lidar Ratio values from the Aeronet/Caliop proposed model was determined and showed good consistency with those initially assumed by the CALIOP Algorithm. Based on the quantitative comparison, a mean difference of 2,17 ± 30,12%. This value shows to be in good agreement with other papers in the CALIPSO validation literature, demonstrating the accuracy of the proposed model. The apparent underestimation in the CALIOP Lidar Ratio values indicates a possible problem with the calibration process, since the Brazilian territory is in the so-called South Atlantic Anomaly (SSA) Region. The Lidar Ratio retrieved by the MSP-Lidar system at IPEN provided a mean difference of 2,34 ± 17,53%, confirming that the accuracy in the Lidar Ratio assumed a priori by the CALIOP algorithms is within the uncertainty range of 30%.
3

Validação dos dados do satélite CALIPSO utilizando um sistema lidar de retroespalhamento elástico e o fotômetro solar da rede  AERONET / CALIPSO satellite validation using an elastic backscattering lidar system and the AERONET sunphotometer data

Fábio Juliano da Silva Lopes 05 July 2011 (has links)
Os aerossóis e nuvens desenvolvem um papel muito importante nos processos climáticos terrestres por meio das suas contribuições diretas e indiretas no balanço radiativo da atmosfera. A dificuldade na previsão dos processos de mudanças climáticas estão associadas às incertezas na distribuição e propriedades dos aerossóis e nuvens, assim como em suas interações em escala global. Tendo como principal objetivo desenvolver estudos que ajudem na diminuição dessas incertezas, a NASA, em parceria com a agência espacial francesa CNES, desenvolveu a missão do Satélite CALIPSO, que possui a bordo um sistema Lidar denominado CALIOP capaz de estudar o perfil e a distribuição vertical dos aerossóis e nuvens e os processos de interação entre eles. Uma vez que as propriedade ópticas medidas pelo CALIOP são recuperadas utilizando um complexo conjunto de algoritmos, torna-se necessário o desenvolvimento de estudos e metodologias de validação para inferir qual a acurácia das medidas desse sistema. Nesse contexto, foi desenvolvida uma metodologia de avaliação e validação dos valores de Razão Lidar utilizados a priori pelos algoritmos do CALIOP utilizando dois instrumentos de sensoriamento remoto instalados em solo, um sistema Lidar de retroespalhamento elástico instalado no IPEN - São Paulo e o fotômetro solar da rede AERONET instalado em cinco diferentes localidades, Rio Branco - Acre (RB), Alta Floresta - Mato Grosso (AF), Cuiabá - Mato Grosso (CB), Campo Grande - Mato Grosso do Sul (CG) e São Paulo - São Paulo (SP). Foram determinados os dias de medidas correlativas entre os sistemas em solo e o CALIOP e analisados os dados para os dias de medidas com condições livre de nuvens e com trajetórias de massas de ar se deslocando das regiões de medidas do satélite para as regiões de medidas pelos instrumentos fixos. Foram calculados novos valores de Razão Lidar obtidos pelo Modelo Aeronet/Caliop (Modelo A/C) proposto. Esses valores mostraram-se coerentes com aqueles utilizados inicialmente pelo algoritmo do sistema CALIOP. Realizando uma comparação quantitativa, obteve-se uma diferença percentual de 2,17 ± 30,12%, esse valor mostra-se compatível com outros valores obtidos na literatura de validação desse sistema Lidar a bordo do Satélite CALIPSO. Essa subestimação nos valores de Razão Lidar utilizados pelo CALIOP pode estar ocorrendo devido um problema no processo de calibração dos dados do sistema CALIOP, uma vez que o território brasileiro se encontra na região da Anomalia do Atlântico Sul (SAA). A diferença percentual dos valores de Razão Lidar utilizados pelo CALIOP com aqueles obtido por meio de medidas com o sistema Lidar do IPEN forneceram valores de 2,34 ± 17,53%, demonstrando que o modelo de validação proposto é aceitável e acurácia nos valores de Razão Lidar utilizados a priori pelo CALIOP está dentro das margens de incerteza de 30%. / Aerosol and clouds play an important role in the Earths climate process through their direct and indirect contributions to the radiation budget. The largest difficulty in predicting the climate change processes is associated with uncertainties in the distribution and properties of aerosols and clouds, as well as their interactions on a global scale. The CALIPSO mission was developed as part of the NASA program, in collaboration with the French space agency CNES, with the main goal to develop studies that will help to quantify the uncertainties about aerosols and clouds. The CALIPSO satellite carried a Lidar system on board, named CALIOP, as a primary instrument, able to provide the aerosol and cloud vertical profiles and distribution, as well as their interactions. Once the optical properties measured by CALIOP are retrieved, using a complex set of algorithms, it is necessary to study and develop methodologies in order to assess the accuracy of the CALIOP products. In this context, a validation methodology was developed in order to verify the assumed values of the Lidar Ratio selected by the CALIOP algorithms, using two ground-based remote sensing instruments, an elastic backscatter Lidar system (MSP) installed at IPEN in São Paulo and the AERONET sunphotometers operating at five different locations in Brazil, Rio Branco - Acre (RB), Alta Floresta - Mato Grosso (AF), Cuiabá - Mato Grosso (CB), Campo Grande - Mato Grosso do Sul (CG) e São Paulo - São Paulo (SP). Those days when the CALIOP system and ground-based instruments spatially coincided, were selected and analyzed under cloud-free conditions, as well as days when the trajectories of air masses indicated the transport of air parcels from the CALIOP track towards the ground-based sensors. The Lidar Ratio values from the Aeronet/Caliop proposed model was determined and showed good consistency with those initially assumed by the CALIOP Algorithm. Based on the quantitative comparison, a mean difference of 2,17 ± 30,12%. This value shows to be in good agreement with other papers in the CALIPSO validation literature, demonstrating the accuracy of the proposed model. The apparent underestimation in the CALIOP Lidar Ratio values indicates a possible problem with the calibration process, since the Brazilian territory is in the so-called South Atlantic Anomaly (SSA) Region. The Lidar Ratio retrieved by the MSP-Lidar system at IPEN provided a mean difference of 2,34 ± 17,53%, confirming that the accuracy in the Lidar Ratio assumed a priori by the CALIOP algorithms is within the uncertainty range of 30%.
4

Thin Cloud Length Scales Using CALIPSO and CloudSat Data

Solbrig, Jeremy E. 2009 August 1900 (has links)
Thin clouds are the most difficult cloud type to observe. The recent availability of joint cloud products from the active remote sensing instruments aboard CloudSat and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) facilitates the study of these clouds. Using one of these joint cloud products, 2B-GEOPROF-Lidar, and a post-processing algorithm designed to find horizontally continuous thin clouds within the cloud product, the locations, length scales, and vertical distributions by length of thin clouds are determined. It is found that thin clouds vary in length from a few km to over 2900 km and tend to be longer in the tropical upper troposphere than lower in the atmosphere and at higher latitudes. In the upper troposphere between 0° and 40°N, over 20% of all thin cloud measurements in the 2B-GEOPROF-Lidar product are contributed by thin clouds that are longer than 500 km. In fact, in this latitude range, over 65% of all thin cloud measurements are contributed by clouds longer than 100 km. Also, thin cloud length and frequency differ between the four seasons in the year of data used here.
5

Aerosol typing over Europe and its benefits for the CALIPSO and EarthCARE missions

Schwarz, Anja 09 March 2016 (has links) (PDF)
Aerosols show type-specific characteristics, which depend on intensive aerosol optical and microphysical properties that influence the radiation processes in the atmosphere in several ways. There are still large uncertainties in the calculation of the aerosol direct radiative effect. The classification of aerosols and the characterization of the vertical aerosol distribution is needed in order to provide more accurate information for radiative-transfer simulations. In the framework of the present thesis, the vertical and spatial distribution as well as optical properties of atmospheric aerosols over the European continent were investigated based on lidar measurements. Possibilities for an aerosol classification or so-called aerosol typing were presented and major aerosol types were specified. Former studies about the classification of aerosols were summarized and representative values for aerosol-type-dependent parameters were given. Case studies were used to demonstrate how observations of the European lidar network EARLINET from 2008 until 2010 were analyzed for aerosol layers and how model simulations and auxiliary data including the assessment of meteorological conditions were applied to determine the origin of each single aerosol layer. Thus, aerosol-type dependent parameters were evaluated and a novel method for the typing of aerosols was developed, which can be used, e.g., within algorithms of satellite data retrievals. Additionally, conversion factors were determined, which are needed for the harmonization of satellite data of present and upcoming missions. Furthermore, findings of the aerosol typing based on EARLINET data were compared to results of the aerosol classification scheme for satellite-borne lidar measurements onboard CALIPSO. It could be shown that deficient classifications of the aerosol type emerged systematically within the automated CALIPSO algorithm. Those wrong classification leads to an underestimation of the single-scattering albedo and hence to an overestimation of the warming effect of the respective aerosol layer. This overestimated warming effect has to be kept in mind for simulations of the global aerosol radiative effect based on CALIPSO data. / Die Bestimmung des direkten Strahlungsantriebs von Aerosolen ist mit großen Unsicherheiten behaftet. Inwiefern Aerosole die Strahlungsprozesse in der Atmosphäre beeinflussen ist abhängig von ihren optischen und mikrophysikalischen Eigenschaften. Zur Optimierung von Strahlungstransfersimulationen werden daher ergänzende Informationen über typspezifische Aerosoleigenschaften sowie die vertikale Aerosolverteilung benötigt. Im Rahmen der vorliegenden Arbeit wurden anhand von Lidarmessungen die vertikale und räumliche Verteilung atmosphärischer Aerosole über Europa analysiert sowie deren optische Eigenschaften ermittelt. Einleitend werden Möglichkeiten der Aerosolklassifizierung erläutert und Aerosoltypen spezifiziert, die über Europa beobachtet werden können. Vorherige Studien zur Aerosolklassifizierung sind in einer Literaturübersicht zusammengefasst. Anhand von Fallstudien wurde zunächst die Analyse von Beobachtungen des europäischen Lidarnetzwerkes EARLINET von 2008 bis 2010 auf das Vorhandensein von Aerosolschichten verdeutlicht. Die Herkunft jeder einzelnen Aerosolschicht wurde anschließend unter Verwendung von Modellrechnungen sowie weiteren Informationen bestimmt und aerosoltypspezifische Kenngrößen berechnet. Mit Hilfe dieser Kenngrößen ist es möglich, den Typ des Aerosols abzuleiten. Daraus wurde eine neuartige Methode zur Typisierung von Aerosolen entwickelt, die z.B. in Algorithmen zur Verarbeitung von Satellitendaten verwendet werden kann. Zusätzlich wurden Umrechnungsfaktoren bestimmt, die zur Zusammenführung und zum Vergleich von Daten aktueller und zukünftiger Satellitenmissionen benötigt werden. Die Ergebnisse der Aerosoltypisierung auf Basis von EARLINET-Daten wurden anschließend mit Ergebnissen der automatischen Typisierung weltraumbasierter Lidarmessungen des CALIPSO-Satelliten verglichen. Es konnte gezeigt werden, dass innerhalb des CALIPSO-Algorithmus systematisch fehlerhafte Klassifizierungen des Aerosoltyps auftreten. Diese falsche Klassifizierung führt zu einer Unterschätzung der Einfachstreualbedo und zu einer Überschätzung der erwärmenden Wirkung der betreffenden Aerosolschicht. Die überschätzte Wärmewirkung hat wiederum fehlerhafte Ergebnisse bei Strahlungstransferrechnungen, die auf CALIPSO-Daten basieren, zur Folge.
6

Clouds and their effects on solar radiation in São Paulo / Nuvens e seus efeitos na radiação solar em São Paulo

Jorge Rosas Santana 03 July 2018 (has links)
Clouds and their instantaneous effects on downward solar radiation were studied at the Metropolitan Area of São Paulo. For this purpose, visual observations of clouds, ground-based measurements performed by different radiometers, products from the polar orbiting satellites CALIPSO and CloudSat and 1-D Radiative Transfer Model (RTM) LibRadtran were used. Daytime climatology of cloud cover fraction (1958-2016) using data of hourly visual observations was carried out. The diurnal cycle of cloud cover fraction was dominated by low clouds especially by stratiform clouds. Remarkable differences in the diurnal cycles of low cumuliform and stratiform clouds were also observed. During the time period, positive trends for low cloud cover (1.6 %/decade), especially stratiform (3.1 %/decade), and cirriform cloud (0.8 %/decade) were observed, while a decreasing trend of mid-level cloud cover (-2.4%/decade) was found. Seasonal and diurnal variability of vertical profile of cloud was observed, with cloud extending to higher altitudes at night and with maximum frequency of occurrence observed in summer. In winter, low clouds prevailed. Effective cloud optical depth (ECOD), using the total transmittance at 415 nm, and instantaneous cloud effects on solar radiation at the surface, using global irradiance measurements, were estimated in synergy with LibRadtran computations. ECOD presented seasonal and diurnal variability, with maximum of mean in spring (34.4) and in the afternoon (34.2), and minimum at sunrise (25.5) and winter (26.9) for low clouds. The shortwave effects of clouds depended on solar disk condition, cloud type and cloud cover. Maximum of shortwave radiative attenuation was observed for low clouds in total overcast conditions with a median reduction of 72 % of global irradiance compared to clear sky. Median reduction of mid and high clouds was 57 % and 33 %, respectively. Enhancement effects with duration as long as 20 minutes, caused by lateral scattering, were observed in the presence of all analyzed cloud types, when the solar disk was not blocked by clouds, increasing global solar irradiance around 10% at the surface. Maximum enhancement could reach 50 % for low clouds. / Na Região Metropolitana de São Paulo, foram estudadas as nuvens e seus efeitos na radiação solar. Para tanto, foram usadas observações visuais de nuvens, medições desde a superfície efetuadas por diferentes radiômetros, produtos dos satélites de órbita polar CALIPSO e CloudSat e o modelo de transferência radiativa 1-D LibRadtran. Foi desenvolvida uma climatologia para o ciclo diurno da fração de cobertura de nuvens (1958-2016) usando dados de observações visuais. O ciclo diurno da cobertura de nuvens foi dominado por nuvens baixas, especialmente as estratiformes. Observaram-se diferenças entre o ciclo diurno das nuvens baixas cumuliformes e estratiformes. Além disso, houve uma tendência de aumento da fração de cobertura de nuvens baixas (1,6 %/década), especificamente das estratiformes (3,1 %/década), e das nuvens cirriformes (0,8%/década). Por outro lado, observou-se tendência de diminuição da fração de cobertura de nuvens médias (-2,4%/década). A variabilidade sazonal e diurna do perfil vertical de nuvens foi analisada, com as nuvens atingindo maiores altitudes à noite e no verão. No inverno, as nuvens baixas predominaram. A profundidade óptica efetiva da nuvem (ECOD), usando a transmitância total em 415 nm, e os efeitos instantâneos das nuvens sobre a radiação solar, de medições de irradiância solar global, foram estimados em sinergia com cálculos feitos com o LibRadtran. ECOD apresentou variabilidade diurna e sazonal com máximo na primavera (34,4) e no período da tarde (34,2) e mínimo pela manhã, próximo ao nascer do sol (25,5) e no inverno (26,9) para nuvens baixas. O efeito radiativo de onda curta apresentou dependência com relação à obstrução do disco solar pelas nuvens, o tipo de nuvem e fração de cobertura. A atenuação máxima foi observada para nuvens baixas com o céu totalmente nublado, com valor médio de redução de 72 % da irradiância global, comparada com condições de céu claro. Medianas de redução de nuvens médias e altas foram de 57 % e 33 %, respectivamente. Foram observados efeitos de incrementos da radiação solar (enhancement) de cerca de 10 % com duração de até 20 minutos, devido ao espalhamento pelas laterais das nuvens, em presença de todos os tipos de nuvens analisados, quando o disco solar não estava obstruído. O máximo de enhancement chegou até 50 % na presença de nuvens baixas.
7

Clouds and their effects on solar radiation in São Paulo / Nuvens e seus efeitos na radiação solar em São Paulo

Santana, Jorge Rosas 03 July 2018 (has links)
Clouds and their instantaneous effects on downward solar radiation were studied at the Metropolitan Area of São Paulo. For this purpose, visual observations of clouds, ground-based measurements performed by different radiometers, products from the polar orbiting satellites CALIPSO and CloudSat and 1-D Radiative Transfer Model (RTM) LibRadtran were used. Daytime climatology of cloud cover fraction (1958-2016) using data of hourly visual observations was carried out. The diurnal cycle of cloud cover fraction was dominated by low clouds especially by stratiform clouds. Remarkable differences in the diurnal cycles of low cumuliform and stratiform clouds were also observed. During the time period, positive trends for low cloud cover (1.6 %/decade), especially stratiform (3.1 %/decade), and cirriform cloud (0.8 %/decade) were observed, while a decreasing trend of mid-level cloud cover (-2.4%/decade) was found. Seasonal and diurnal variability of vertical profile of cloud was observed, with cloud extending to higher altitudes at night and with maximum frequency of occurrence observed in summer. In winter, low clouds prevailed. Effective cloud optical depth (ECOD), using the total transmittance at 415 nm, and instantaneous cloud effects on solar radiation at the surface, using global irradiance measurements, were estimated in synergy with LibRadtran computations. ECOD presented seasonal and diurnal variability, with maximum of mean in spring (34.4) and in the afternoon (34.2), and minimum at sunrise (25.5) and winter (26.9) for low clouds. The shortwave effects of clouds depended on solar disk condition, cloud type and cloud cover. Maximum of shortwave radiative attenuation was observed for low clouds in total overcast conditions with a median reduction of 72 % of global irradiance compared to clear sky. Median reduction of mid and high clouds was 57 % and 33 %, respectively. Enhancement effects with duration as long as 20 minutes, caused by lateral scattering, were observed in the presence of all analyzed cloud types, when the solar disk was not blocked by clouds, increasing global solar irradiance around 10% at the surface. Maximum enhancement could reach 50 % for low clouds. / Na Região Metropolitana de São Paulo, foram estudadas as nuvens e seus efeitos na radiação solar. Para tanto, foram usadas observações visuais de nuvens, medições desde a superfície efetuadas por diferentes radiômetros, produtos dos satélites de órbita polar CALIPSO e CloudSat e o modelo de transferência radiativa 1-D LibRadtran. Foi desenvolvida uma climatologia para o ciclo diurno da fração de cobertura de nuvens (1958-2016) usando dados de observações visuais. O ciclo diurno da cobertura de nuvens foi dominado por nuvens baixas, especialmente as estratiformes. Observaram-se diferenças entre o ciclo diurno das nuvens baixas cumuliformes e estratiformes. Além disso, houve uma tendência de aumento da fração de cobertura de nuvens baixas (1,6 %/década), especificamente das estratiformes (3,1 %/década), e das nuvens cirriformes (0,8%/década). Por outro lado, observou-se tendência de diminuição da fração de cobertura de nuvens médias (-2,4%/década). A variabilidade sazonal e diurna do perfil vertical de nuvens foi analisada, com as nuvens atingindo maiores altitudes à noite e no verão. No inverno, as nuvens baixas predominaram. A profundidade óptica efetiva da nuvem (ECOD), usando a transmitância total em 415 nm, e os efeitos instantâneos das nuvens sobre a radiação solar, de medições de irradiância solar global, foram estimados em sinergia com cálculos feitos com o LibRadtran. ECOD apresentou variabilidade diurna e sazonal com máximo na primavera (34,4) e no período da tarde (34,2) e mínimo pela manhã, próximo ao nascer do sol (25,5) e no inverno (26,9) para nuvens baixas. O efeito radiativo de onda curta apresentou dependência com relação à obstrução do disco solar pelas nuvens, o tipo de nuvem e fração de cobertura. A atenuação máxima foi observada para nuvens baixas com o céu totalmente nublado, com valor médio de redução de 72 % da irradiância global, comparada com condições de céu claro. Medianas de redução de nuvens médias e altas foram de 57 % e 33 %, respectivamente. Foram observados efeitos de incrementos da radiação solar (enhancement) de cerca de 10 % com duração de até 20 minutos, devido ao espalhamento pelas laterais das nuvens, em presença de todos os tipos de nuvens analisados, quando o disco solar não estava obstruído. O máximo de enhancement chegou até 50 % na presença de nuvens baixas.
8

Evaluation of boundary layer cloud parameterizations in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data

Nam, Christine C. W., Quaas, Johannes, Neggers, Roel, Siegenthaler-Le Drian, Colombe, Isotta, Francesco 24 August 2015 (has links) (PDF)
Three different boundary layer cloud models are incorporated into the ECHAM5 general circulation model (GCM) and compared to CloudSat and CALIPSO satellite observations. The first boundary layer model builds upon the standard Tiedtke (1989) parameterization for shallow convection with an adapted convective trigger; the second is a bulk parameterization of the effects of transient shallow cumulus clouds; and lastly the Dual Mass Flux (DMF) scheme adjusted to better represent shallow convection. The three schemes improved (Sub)Tropical oceanic low-level cloud cover, however, the fraction of low-level cloud cover remains underestimated compared to CALIPSO observations. The representation of precipitation was improved by all schemes as they reduced the frequency of light intensity events <0.01 mm d-1, which were found to dominate the radar reflectivity histograms as well as be the greatest source of differences between ECHAM5 and CloudSat radar reflectivity histograms. For both lidar and radar diagnostics, the differences amongst the schemes are smaller than the differences compared to observations. While the DMF approach remains experimental, as its top-of-atmosphere radiative balance has not been retuned, it shows the most promise in producing nonprecipitating boundary layer clouds. With its internally consistent boundary layer scheme that uses the same bimodal joint distribution with a diffusive and an updraft component for clouds and turbulent transport, the ECHAM5_DMF produces the most realistic boundary layer depth as indicated by the cloud field. In addition, it reduced the frequency of large-scale precipitation intensities of <0.01 mm d-1 the greatest.
9

Evaluation of boundary layer cloud parameterizations in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data

Nam, Christine C. W., Quaas, Johannes, Neggers, Roel, Siegenthaler-Le Drian, Colombe, Isotta, Francesco January 2014 (has links)
Three different boundary layer cloud models are incorporated into the ECHAM5 general circulation model (GCM) and compared to CloudSat and CALIPSO satellite observations. The first boundary layer model builds upon the standard Tiedtke (1989) parameterization for shallow convection with an adapted convective trigger; the second is a bulk parameterization of the effects of transient shallow cumulus clouds; and lastly the Dual Mass Flux (DMF) scheme adjusted to better represent shallow convection. The three schemes improved (Sub)Tropical oceanic low-level cloud cover, however, the fraction of low-level cloud cover remains underestimated compared to CALIPSO observations. The representation of precipitation was improved by all schemes as they reduced the frequency of light intensity events <0.01 mm d-1, which were found to dominate the radar reflectivity histograms as well as be the greatest source of differences between ECHAM5 and CloudSat radar reflectivity histograms. For both lidar and radar diagnostics, the differences amongst the schemes are smaller than the differences compared to observations. While the DMF approach remains experimental, as its top-of-atmosphere radiative balance has not been retuned, it shows the most promise in producing nonprecipitating boundary layer clouds. With its internally consistent boundary layer scheme that uses the same bimodal joint distribution with a diffusive and an updraft component for clouds and turbulent transport, the ECHAM5_DMF produces the most realistic boundary layer depth as indicated by the cloud field. In addition, it reduced the frequency of large-scale precipitation intensities of <0.01 mm d-1 the greatest.
10

Aerosol Retrievals from CALIPSO Lidar Ocean Surface Returns

Venkata, Srikanth, Reagan, John 09 December 2016 (has links)
This paper describes approaches to retrieve important aerosol results from the strong lidar return signals that are received by the space-borne CALIPSO lidar system after reflecting off-ocean surfaces. Relations, from which the theoretically expected values of area under ocean surface returns can be computed, are presented. A detailed description of the lidar system response to the ocean surface returns and the processes of sampling and averaging of lidar return signals are provided. An effective technique that reconstructs the lidar response to surface returnsstarting from down-linked samplesand calculates the area under it, has been developed and described. The calculated area values are validated after comparing them to their theoretically predicted counterpart values. Methods to retrieve aerosol optical depths (AODs) from these calculated areas are described and retrieval results are presented, including retrieval comparison with independent AOD measurements made by an airborne High Spectral Resolution Lidar (HSRL) that yielded quite good agreement. Techniques and results are also presented on using the spectral ratios of the surface response areas to determine spectral ratios of aerosol round-trip transmission and AOD spectral difference, without need of a specific/accurate ocean-surface reflectance model.

Page generated in 0.4132 seconds