• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 2
  • 2
  • Tagged with
  • 21
  • 21
  • 21
  • 11
  • 8
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Optimalizace CAR T lymfocytů pro imunoterapii hematologických malignit / Optimizing chimeric antigenic receptors (CARs) T-cells for immunotherapy of hematological malignancies

Mucha, Martin January 2021 (has links)
Immunotherapy based on chimeric antigen receptor (CAR)-expressing T lymphocytes has proven to be highly successful in the treatment of acute lymphoblastic leukemia (ALL), leading to development of CAR-based immunotherapies for other hematologic malignancies. Currently, efforts are underway to refine T cell modifications to make patient treatment more effective. Each time, this modification then needs to be empirically validated in in vitro experiments. We decided to study the effect of the cytokine IL-21 on the antitumor function of CD19-specific CAR T cells using in vitro assays. A construct that co-expressed IL-21 under the control of the inducible NFAT promoter together with CARs against CD19 was introduced into T cells. In a series of experiments, the properties of these cells were compared after coculture with tumor B cell lines and CLL cells obtained from patients. The results showed that CAR T cells that express IL-21 proliferate and activate better, even after repeated stimulation with leukemia cells. In addition to CARs specific against the CD19 molecule, we also investigated CARs specific against the CLL1 molecule, which has been described in the literature as one of the promising targets for the treatment of AML. We prepared CAR T cells against CLL1 producing IL-21. For this purpose, we...
12

Canine CAR T cell therapy for solid tumors

Xavier E Ramos Cardona (15331759) 20 April 2023 (has links)
<p>  </p> <p>Adoptive cell transfer of chimeric antigen receptors (CAR) T cells has successfully targeted hematological malignancies in human patients. However, unpredicted side effects experienced after injection of the CAR T cells suggests the need for an optimal predictive preclinical animal model. Dogs have intact immune systems and develop solid tumors spontaneously with similar morphology and genetics to humans. I hypothesize that generating CAR T cells for dogs will closely mimic human patients' outcomes, thus providing new understandings of the safety of this immunotherapy. In addition to the dog as a preclinical model, we propose using a universal CAR T cell to overcome various tumor-related immunosuppressive challenges and control the killing of the target cells. To achieve this, we established methods for activating and expanding canine T cells to a clinically relevant scale. Then, we expressed a second-generation anti-FITC-8-41BB-ζ CAR T cell via lentiviral transduction. In the presence of the correct low-molecular-weight bispecific adapter, we showed <em>in-vitro</em> CAR-mediated function. Our results proved that it is feasible to generate functional canine anti-FITC-8-BB-ζ CAR T cells for therapy.</p>
13

Estabelecimento de uma plataforma para produção de vetores lentivirais para a modificação de linfócitos T com CAR anti-CD19 / Establishment of a platform for the production of lentiviral vectors for the modification of anti-CD19 CAR-T cells

Moço, Pablo Diego 23 July 2018 (has links)
A imunoterapia utilizando linfócitos T modificados com receptor quimérico de antígenos (CAR) tem se mostrado eficaz no tratamento de leucemia e linfomas resistentes à quimioterapia. A proteína CD19 é considerada um alvo ideal porque é expressa na maioria dos tumores de linfócitos B e linfócitos B normais, mas não em outras células. Estudos clínicos recentes mostraram excelentes respostas de linfócitos T-CAR em uma variedade de tumores de células B. Os vetores lentivirais são o método mais comumente utilizado para modificação genética em ensaios clínicos. Este estudo teve como objetivo desenvolver uma plataforma eficiente para a produção de lentivírus e testar a funcionalidade desses vetores para que possam ser usados para modificar geneticamente linfócitos T. A transfecção transiente de céulas HEK293T com plasmídeos na proporção de 3:1:1:1 (transgene:gag-pol:VSV-G:rev) utilizando lipossomos catiônicos e 5 mM de butirato de sódio resultou nos títulos virais mais elevados. Isso representa um aumento de 17 vezes no título viral da transfecção com polietilenoimina (PEI). Três métodos para concentracao lentiviral foram utilzados nesse trabalho, ultracentrifugação, filtração tangencial e ultrafiltração. A ultrafiltração sobre membrana com corte de peso molecular (MWCO) de 100 kDa resultou na maior taxa de recuperação de partículas virais viáveis, aproximadamente 82%. As partículas virais produzidas por este processo demonstraram ser funcionais para a transdução de linfócitos T. Além disso, o receptor quimérico (CAR) se mostrou específico contra o antígeno CD19 de células B, resultando na ativação dos linfócitos T-CAR e gerando citotoxicidade contra células CD19+ in vitro. Houve uma redução de aproximadamente 87% das células alvo, quando analisado por citometria de fluxo e uma citotoxicidade média de 50% foi observada por ensaios colorimétricos. / Immunotherapy using T cells modified with chimeric antigen receptor (CAR) has been proven effective in the treatment of leukemia and lymphomas resistant to chemotherapy. CD19 protein has been shown to be an ideal target because it is expressed on most B-cell tumors and normal B cells, but not in other cells. Recent clinical studies have shown excellent responses of CAR T-cells in a variety of B-cell tumors. Lentiviral vectors are the most commonly used method for genetic modification in clinical trials. This study aimed to develop an efficient platform for lentiviral production and to test the functionality of those vectors so that they can be used in to genetically modify T cells. Transient transfection of HEK293T cells with plasmids in a 3:1:1:1 ratio (transgene:gag-pol:VSV-G:rev) using cationic liposomes and 5 mM sodium butyrate resulted in the highest viral titers. That represents a 17-fold increase in viral titer from polyethylenimine (PEI) transfection. Three methods for lentiviral concentration were used in this work, ultracentrifugation, tangential filtration and ultrafiltration. Membrane ultrafiltration with 100 kDa molecular weight cutoff (MWCO) resulted in the highest recovery rate of viable viral particles, approximately 82%. The viral particles produced by this process have been shown to be functional for the transduction of T cells. In addition, the chimeric receptor (CAR) was shown to be specific against the B cell antigen CD19, resulting in the activation of CAR-T cells and generating cytotoxicity against CD19+ cells in vitro. There was a reduction of approximately 87% of the target cells when analyzed by flow cytometry and an average cytotoxicity of 50% was observed by colorimetric assays.
14

Estabelecimento de uma plataforma para produção de vetores lentivirais para a modificação de linfócitos T com CAR anti-CD19 / Establishment of a platform for the production of lentiviral vectors for the modification of anti-CD19 CAR-T cells

Pablo Diego Moço 23 July 2018 (has links)
A imunoterapia utilizando linfócitos T modificados com receptor quimérico de antígenos (CAR) tem se mostrado eficaz no tratamento de leucemia e linfomas resistentes à quimioterapia. A proteína CD19 é considerada um alvo ideal porque é expressa na maioria dos tumores de linfócitos B e linfócitos B normais, mas não em outras células. Estudos clínicos recentes mostraram excelentes respostas de linfócitos T-CAR em uma variedade de tumores de células B. Os vetores lentivirais são o método mais comumente utilizado para modificação genética em ensaios clínicos. Este estudo teve como objetivo desenvolver uma plataforma eficiente para a produção de lentivírus e testar a funcionalidade desses vetores para que possam ser usados para modificar geneticamente linfócitos T. A transfecção transiente de céulas HEK293T com plasmídeos na proporção de 3:1:1:1 (transgene:gag-pol:VSV-G:rev) utilizando lipossomos catiônicos e 5 mM de butirato de sódio resultou nos títulos virais mais elevados. Isso representa um aumento de 17 vezes no título viral da transfecção com polietilenoimina (PEI). Três métodos para concentracao lentiviral foram utilzados nesse trabalho, ultracentrifugação, filtração tangencial e ultrafiltração. A ultrafiltração sobre membrana com corte de peso molecular (MWCO) de 100 kDa resultou na maior taxa de recuperação de partículas virais viáveis, aproximadamente 82%. As partículas virais produzidas por este processo demonstraram ser funcionais para a transdução de linfócitos T. Além disso, o receptor quimérico (CAR) se mostrou específico contra o antígeno CD19 de células B, resultando na ativação dos linfócitos T-CAR e gerando citotoxicidade contra células CD19+ in vitro. Houve uma redução de aproximadamente 87% das células alvo, quando analisado por citometria de fluxo e uma citotoxicidade média de 50% foi observada por ensaios colorimétricos. / Immunotherapy using T cells modified with chimeric antigen receptor (CAR) has been proven effective in the treatment of leukemia and lymphomas resistant to chemotherapy. CD19 protein has been shown to be an ideal target because it is expressed on most B-cell tumors and normal B cells, but not in other cells. Recent clinical studies have shown excellent responses of CAR T-cells in a variety of B-cell tumors. Lentiviral vectors are the most commonly used method for genetic modification in clinical trials. This study aimed to develop an efficient platform for lentiviral production and to test the functionality of those vectors so that they can be used in to genetically modify T cells. Transient transfection of HEK293T cells with plasmids in a 3:1:1:1 ratio (transgene:gag-pol:VSV-G:rev) using cationic liposomes and 5 mM sodium butyrate resulted in the highest viral titers. That represents a 17-fold increase in viral titer from polyethylenimine (PEI) transfection. Three methods for lentiviral concentration were used in this work, ultracentrifugation, tangential filtration and ultrafiltration. Membrane ultrafiltration with 100 kDa molecular weight cutoff (MWCO) resulted in the highest recovery rate of viable viral particles, approximately 82%. The viral particles produced by this process have been shown to be functional for the transduction of T cells. In addition, the chimeric receptor (CAR) was shown to be specific against the B cell antigen CD19, resulting in the activation of CAR-T cells and generating cytotoxicity against CD19+ cells in vitro. There was a reduction of approximately 87% of the target cells when analyzed by flow cytometry and an average cytotoxicity of 50% was observed by colorimetric assays.
15

Development of more precise and efficient antibodies for cancer targeting : membrane associated form specific anti-mesothelin antibodies and CAR as an example / Développement d'anticorps plus précis et efficaces pour le ciblage du cancer : anticorps et CAR anti-mésothéline spécifiques de la membrane comme exemple.

Asgarov, Kamal 13 December 2016 (has links)
Utilistions d'anticorps monoclonaux est une partie prometteuse de la thérapie du cancer. À ce jour, il existe plus de 30 anticorps monoclonaux approuvés pour la thérapie contre le cancer. Plus de 350 anticorps se situent également dans différentes phases du développement clinique. La mésothéline est l'une des cibles les plus prometteuses pour l'immunothérapie. La mésothéline est présente à des niveaux relativement faibles dans les cellules mésothéliales de la plèvre, du péritonéum et du péricarde normaux, mais est fortement exprimée dans un certain nombre de cancers différents, y compris les mésothéliomes, le cancer de l'estomac, les carcinomes à cellules squameuses, le cancer de la prostate, le cancer du pancréas, le cancer du poumon et le cancer de l'ovaire. La mésothéline est une glycoprotéine liée au glycosylphosphatidylinositol (GPI) synthétisée sous la forme d'un précurseur de 69 kDa et transformée de façon protéolytique en une forme sécrétée à 30 kDa (anciennement appelée Facteur de potentialisation des mégacaryocytes (MPF)) et une forme liée à la membrane de 40 kDa. Par ailleurs, il peut être clivé par une protéase et peut produire une forme de mésothéline soluble. Il a été déjà montré que cette forme soluble de mésothéline agit comme un ligand et neutralise les anticorps thérapeutiques ciblant la mésothéline. Par conséquent, les anticorps ne pouvaient pas atteindre les cellules cancéreuses et reste inefficaces. Dans notre travail, nous avons décidé de développer un anticorps discriminant spécifique à la forme associée à la membrane pour surmonter l'antagonisme produit par les formes solubles de mésothéline. Pour ce but, nous avons utilisé une nouvelle méthode d'immunisation de souris, que nous avons d'abord toléré la souris avec une mésothéline soluble et ensuite ré-immunisée avec des cellules exprimant la mésothéline. En utilisant la technologie de phage display, nous avons obtenu près de 150 clones de ciblant mésothéline dans 34 familles de VH-CDR3 parmi lesquelles nous avons identifié seulement 2 familles qui se lient à la mésothéline membranaire avec une affinité élevée et ne reconnaissent aucune autre forme soluble de mésothéline. Ici, nous proposons qu'ils puissent être des bons candidats pour être utilisés pour la thérapie contre le cancer de qui permet de passer à travers la barrière de mésothéline soluble. Pour démontrer leur efficacité pour une utilisation thérapeutique, nous avons construit une CAR avec le sc-Fv d'un anticorps discriminant de la forme membranaire. / Antibody based immune treatment is a promising component of cancer therapy. To date there are more than 30 approved monoclonal antibodies for cancer therapy. More than 350 antibodies are also in different phases of clinical development. Mesothelin is one of the most promising targets for immunotherapy. It is present at relatively low levels in mesothelial cells of the pleura, peritoneum and pericardium of healthy individuals, but is highly expressed in a number of different cancers, including mesotheliomas, stomach cancers, squamous cell carcinomas, as well as prostate, pancreatic, lung, and ovarian cancers. Mesothelin is a glycosylphosphatidylinositol (GPI)-linked glycoprotein synthesized as a 69 kDa precursor and proteolytically processed into a 30 kDa NH2-terminal secreted form (formerly referred to as Megakaryocyte Potentiating Factor (MPF)) and a 40 kDa membrane-bound form. Besides that it can be cleaved by a protease leading to the production of a soluble, shedded, form of mesothelin. It has already been shown that this soluble form of mesothelin acts as a ligand and neutralizes the mesothelin targeting therapeutic antibodies. Therefore antibodies could not reach cancer cells and remained inefficient. In our work we decided to develop discriminating antibodies specific to a membrane associated form so as to overcome the antagonism produced by soluble forms of mesothelin. To this aim we used a novel method of mouse immunization, in which we first tolerized the mouse with soluble mesothelin before immunization with mesothelin expressing cells. By using phage display technology we obtained nearly 150 mesothelin recognizing clones in 34 VH-CDR3 families, among which we identified only 2 families that bind membrane mesothelin with high affinity and do not recognize any other soluble form of mesothelin. Here we suggest that this Fab can be effective candidates to be used for mesothelin expressing cancer therapy being allowed to pass through the soluble mesothelin barrier. To show their efficacy for therapeutic use we constructed a CAR with the sc-Fv of a membrane-form discriminating antibody
16

Nový chimérický antigenní receptor (CAR) pro terapii infekce lidským cytomegalovirem (HCMV) / New chimeric antigen receptor (CAR) for therapy of human cytomegalovirus (HCMV) infection

Kroutilová, Marie January 2018 (has links)
Human cytomegalovirus (HCMV, Herpesviridae) can cause severe complications in the infected individuals undergoing hematopoietic stem cell transplantation. Nowadays, these patients are treated using antivirotics or HCMV-specific T cells derived from the seropositive graft donor. This study explored the possibility of redirecting HCMV-non-specific T cells from a seronegative donor towards HCMV-infected cells via chimeric antigen receptor (CAR), i.e. artificially designed T cell receptor. Viral glycoprotein B (gB) has been selected as a target for this receptor. Published sequence of a single chain variable fragment of a human antibody was used for the design of the CAR against gB (gBCAR). After the verification of production and surface localization in cell lines, gBCAR was being introduced into human T cells via lentiviral vectors. Human fetal lung fibroblasts (LEP) infected with HCMV were used as target cells after the expression of gB at their surface was demonstrated. gBCAR functionality was evaluated by the incubation of modified T cells with infected cells and subsequent analysis of media for IFNγ concentration, which was significantly higher in the setting of gBCAR T cells incubated with HCMV-LEP than in the control incubations. The results obtained show the specificity of gBCAR against...
17

Příprava a charakterizace chimerických antigenních receptorů / Construction and characterization of chimeric antigen receptors

Ptáčková, Pavlína January 2021 (has links)
Background: The CD19 chimeric antigen receptor (CAR) adoptive T-cell therapy for B-cell leukemia is a promising treatment for relapsed or refractory malignities. The overall response rate of CD19 CAR-T cells in clinical trials was greater than 80% for patients with B-cell acute lymphoblastic leukemia (B-ALL) and non-Hodgkin's lymphoma (NHL). However, CAR-T cell therapy of leukemias and solid tumors has been limited by a lot of factors such as antigen loss of tumor escape variants, reduced proliferation, persistence and tumor-infiltration of CAR-T cells in vivo, immunosuppressive tumor environment, absence of ideal antigens and on-target, off-tumor toxicities. Therefore, new strategies improving the safety and efficacy of CAR-T cells, including further T-cell modification to overcome the immune suppression, are tested. Aims: (i) Bispecific CARs designed to express two antigen-binding domains prevent of antigen escape. (ii) T-cells were genetically modified to express CAR along with an inducible IL-21 gene cassette driven by NFAT-responsive promoter. IL-21 directly enhances CAR-T cell activity and anti-tumor effects. (iii) Applying suicide epitope modification in CAR enables significantly increasing the therapeutic safety of CAR-T cells. Methods: CARs were constructed by using molecular biology...
18

Taking Lessons from CAR-T Cells and Going Beyond: Tailoring Design and Signaling for CAR-NK Cells in Cancer Therapy

Ruppel, Katharina Eva, Fricke, Stephan, Köhl, Ulrike, Schmiedel, Dominik 08 June 2023 (has links)
Cancer immunotherapies utilize the capabilities of the immune system to efficiently target malignant cells. In recent years, chimeric antigen receptor (CAR) equipped T cells showed promising results against B cell lymphomas. Autologous CAR-T cells require patientspecific manufacturing and thus extensive production facilities, resulting in high priced therapies. Along with potentially severe side effects, these are the major drawbacks of CAR-T cells therapies. Natural Killer (NK) cells pose an alternative for CAR equipped immune cells. Since NK cells can be safely transferred from healthy donors to cancer patients, they present a suitable platform for an allogeneic “off-the-shelf” immunotherapy. However, administration of activated NK cells in cancer therapy has until now shown poor anti-cancer responses, especially in solid tumors. Genetic modifications such as CARs promise to enhance recognition of tumor cells, thereby increasing anti-tumor effects and improving clinical efficacy. Although the cell biology of T and NK cells deviates in many aspects, the development of CAR-NK cells frequently follows within the footsteps of CART cells, meaning that T cell technologies are simply adopted to NK cells. In this review, we underline the unique properties of NK cells and their potential in CAR therapies. First, we summarize the characteristics of NK cell biology with a focus on signaling, a fine-tuned interaction of activating and inhibitory receptors. We then discuss why tailored NK cellspecific CAR designs promise superior efficacy compared to designs developed for T cells. We summarize current findings and developments in the CAR-NK landscape: different CAR formats and modifications to optimize signaling, to target a broader pool of antigens or to increase in vivo persistence. Finally, we address challenges beyond NK cell engineering, including expansion and manufacturing, that need to be addressed to pave the way for CAR-NK therapies from the bench to the clinics.
19

Antigen-specific depletion of autoreacitve B cells in multiple sclerosis

Lamprecht, Chris 31 January 2023 (has links)
Die Entwicklung von Autoimmunerkrankungen wird durch eine Vielzahl verschiedener Faktoren verursacht, darunter gewisse Umwelteinflüsse, genetische Veranlagungen oder Virusinfektionen. So vielfältig die Ursprünge von Autoimmunerkrankungen sind, so divers sind die daraus resultierenden Erkrankungen, wodurch die Entwicklung zuverlässiger Therapien erschwert wird. Obwohl verschiedene Behandlungsmöglichkeiten existieren, welche die Symptome bei Autoimmunerkrankungen wie neuroinflammatorischer Multipler Sklerose (MS) mildern können, z.B. mit monoklonalen Antikörpern (mAk), wirken die meisten Medikamente breit und unspezifisch. Dies beeinträchtigt die Funktionalität des Immunsystems, was wiederum zu einem höheren Risiko für bakterielle und virale Infektionen, maligne Erkrankungen oder sekundäre Autoimmunität führen kann. Andere Therapieansätze untersuchen daher Möglichkeiten einer Antigen-abhängigen Immuntoleranz-Induktion. Allerdings befinden sich diese noch in den frühen Entwicklungsphasen und deren klinische Wirksamkeit muss noch bewiesen werden. Alternativ hat es sich in der onkologischen Immuntherapie als erfolgreich erwiesen, entweder natürliche oder gentechnisch veränderte Immunzellen zu aktivieren. Bisher wurden humane T-Zellen, welche mit Hilfe chimärer Antigenrezeptoren (CAR) mit ausgewählter Spezifität ausgestattet sind, sehr erfolgreich in der Klinik gegen Tumorerkrankungen genutzt. Basierend auf diesen klinischen Erfolgen stellt sich die Frage, ob CAR T-Zellen auch zur Behandlung von Autoimmunerkrankungen eingesetzt werden können. Herkömmlichen CAR T-Zellen mangelt es jedoch sowohl an Flexibilität als auch an Kontrollierbarkeit, da sie mit einem CAR gegen ein einzelnes Antigen ausgestattet sind und in Gegenwart des Zielantigens dauerhaft aktiviert und nicht kontrollierbar sind. Um Limitationen konventioneller CARs zu überwinden, wurden universelle Adapter-CARs (UniCARs, RevCARs) in der Gruppe von Prof. Bachmann entwickelt. Die modulare UniCAR-Plattform besteht aus universell einsetzbaren UniCAR T-Zellen und anpassbaren antigenspezifischen Zielmodulen (TMs). Die Bindungseinheit des UniCAR basiert auf einem mAk mit Spezifität gegen ein Peptidepitop, das Teil des TMs ist und welches spezifisch an Zielantigene auf Tumorzellen bindet. Das TM fungiert als Adaptermolekül, das eine Vernetzung der UniCAR T-Zelle mit der Zielzelle herstellt. Nach der Vernetzung mit der Zielzelle über das TM wird die UniCAR T-Zelle aktiviert, so dass die Zielzelle eliminiert wird. Eine vor Kurzem vorgenommene Modifikation der extrazellulären UniCAR-Domäne führte zu der Reverse CAR (RevCAR)-Plattform, welche die Spezifität und Sicherheit noch weiter erhöhen sowie tonische Signale konventioneller CARs reduzieren soll. Dabei wurde die extrazelluläre mAk-basierte UniCAR-Domäne mit dem Peptidepitop des TM ausgetauscht. Eines der am besten untersuchten Autoantigene bei neuroinflammatorischen Erkrankungen ist das Myelin-Oligodendrozyten-Glykoprotein (MOG). Dieses Protein befindet sich ausschließlich im zentralen Nervensystem an der abaxonalen Membran der nervenschützenden Myelinscheide. Obwohl neuroinflammatorische Erkrankungen wie MS hauptsächlich durch T-Zellen verursacht werden, wurden bei MS-Patienten auch Autoantikörper gegen MOG nachgewiesen, was auf die Beteiligung autoreaktiver B-Zellen an der Verschlimmerung der Krankheit hinweist. Diese Ergebnisse werden durch die wirksame Behandlung von MS-Patienten mit anti-CD20-mAks belegt. In dieser Arbeit wurde MOG als erstes Modell-Zielantigen für das Retargeting von CAR-modifizierten T-Zellen gegen anti-MOG-Ak-exprimierende humane Zellen verwendet. Ziel dieser Arbeit war neue TMs basierend auf der extrazellulären Domäne des MOG Antigens zu entwickeln, die dazu dienen, UniCAR oder RevCAR T-Zellen zur Eliminierung von anti-MOG Ak-exprimierenden Zielzellen zu aktivieren. Zur Bestimmung des optimalen MOG-Antigen TM-Formats wurden für die UniCAR-Plattform ein monovalentes (25 kDa) und ein bivalentes MOG-Antigen TM (50 kDa) entwickelt. Die Wirksamkeit des UniCAR-Systems wurde in vitro demonstriert. Es konnte dabei gezeigt werden, dass beide TMs bereits nach einer kurzen Inkubationszeit von 8 Stunden eine TM-spezifische Lyse Anti-MOG scFv-exprimierender menschlicher Zelllinien durch UniCAR-T-Zellen vermitteln. Darüber hinaus war es möglich, das zytotoxische Potential der UniCAR-T-Zellen durch die Dosierung der TMs zu kontrollieren. Um zu überprüfen, ob der Effekt basierend auf der UniCAR-Platform gegen anti-MOG scFv-exprimierende Zielzellen noch gesteigert werden kann, wurde ein monovalentes MOG-Antigen RevTM für die RevCAR-Plattform entwickelt. In Kombination mit RevCAR-T-Zellen übertraf die Anwendung des RevTM beide UniCAR TMs hinsichtlich Bindungsaffinität und dosisabhängiger Zytotoxizität gegen zwei anti-MOG scFv-exprimierende Zelllinien in vitro. Außerdem war die Freisetzung proinflammatorischer und T-Zellwachstum-fördernder Zytokine im Vergleich zu UniCAR T-Zellen höher und ausgeprägter. Weiterhin wurde die Funktionalität des RevCAR-Systems gegen anti-MOG-scFv-exprimierende Zielzellen in vivo bewiesen. Zusammenfassend kann geschlussfolgert werden, dass die modularen Adapter-CAR T-Zell-Plattformen neben der Krebsimmuntherapie auch bemerkenswertes Potential für die Behandlung von MOG-assoziierten Autoimmunerkrankungen hat. Damit konnte ein erster Grundstein dafür gelegt werden, CAR T-Zellen auf die Anwendung in Autoimmunerkrankungen zu übertragen, um zukünftig gezielt fehlerhafte Immunzellen zu beseitigen, die nachweislich zur Verschlimmerung von Autoimmunerkrankungen beitragen.:Table of contents I List of abbreviations VI 1 Introduction 1 1.1 The human immune system 2 1.2 B cells and antibodies 3 1.2.1 Antibody structure 3 1.2.2 Tolerance induction 4 1.2.3 B cell activation 5 1.2.4 B cell functions in autoimmune diseases 6 1.3 Multiple sclerosis – an example for neuroinflammatory demyelination diseases 8 1.3.1.1 Disease phenotypes 9 1.3.1.2 Immunopathogenesis 9 1.3.2 Autoantigen myelin oligodendrocyte glycoprotein 11 1.4 Immunotherapy 14 1.4.1 Monoclonal antibody therapy 14 1.4.2 Chimeric antigen receptor therapy 16 1.4.2.1 UniCAR and RevCAR T cell system 18 1.4.2.2 CAR T cells in autoimmune diseases 22 1.5 Objectives 23 2 Materials and Methods 25 2.1 Materials 25 2.1.1 Consumables 25 2.1.2 Devices and software 27 2.1.3 Chemicals and reagents 32 2.1.4 Buffers and solutions 36 2.1.5 Enzymes and enzyme buffers 38 2.1.6 Kit systems 39 2.1.7 Plasmid vectors 39 2.1.8 Oligonucleotides 41 2.1.9 Antibodies 41 2.1.10 Basic media, additives, and recombinant proteins 43 2.1.11 Composition of culture media 44 2.1.12 Bacterial strain 46 2.1.13 Cell lines 46 2.1.14 Mouse strain 47 2.2 Methods 47 2.2.1 Molecular biological and microbiology methods 47 2.2.1.1 DNA digestion with restriction enzymes 47 2.2.1.2 Dephosphorylation of vectors 48 2.2.1.3 Agarose gel electrophoresis 48 2.2.1.4 Isolation and purification of DNA fragments from agarose gels 48 2.2.1.5 Ligation of DNA fragments 49 2.2.1.6 Heat-shock transformation of competent E. colis 49 2.2.1.7 Plasmid mini preparation 49 2.2.1.8 Plasmid midi preparation 50 2.2.1.9 Determination of DNA concentration 50 2.2.1.10 DNA sequencing 50 2.2.2 Cell biology methods 50 2.2.2.1 Cultivation of eukaryotic cells 50 2.2.2.2 Freezing and thawing cultured cells 51 2.2.2.3 Determination of cell number 52 2.2.2.4 Lentiviral transduction of eukaryotic cells 52 2.2.2.5 Immunofluorescence labeling 54 2.2.2.6 Flow cytometry and analysis of flow cytometry data 55 2.2.2.7 Isolation of human peripheral blood mononuclear cells 57 2.2.2.8 Isolation of T cells from PBMCs with magnetic-activated cell sorting 58 2.2.2.9 Stimulation of isolated human T cells 58 2.2.2.10 Engraftment of T cells with chimeric antigen receptors 59 2.2.3 Methods of protein biochemistry 59 2.2.3.1 Isolation of target module constructs 59 2.2.3.2 Dialysis of purified target module constructs 60 2.2.3.3 Discontinuous Sodium dodecyl sulfate polyacrylamide gel electrophoresis 60 2.2.3.4 Determination of concentration and immunochemical detection of target module constructs 62 2.2.3.5 Determination of binding affinities of target modules using enzyme-linked immunosorbent assay 63 2.2.4 In vitro functional studies 64 2.2.4.1 T cell activation and exhaustion assay 65 2.2.4.2 Luciferase assay (cytotoxicity assay) 65 2.2.4.3 Determination of cytokine concentration 65 2.2.5 In vivo functionality studies 66 2.2.5.1 Evaluation of tumor killing in vivo 66 2.2.5.2 Optical imaging of luciferase-expressing tumors in vivo 67 2.2.6 Statistical evaluation 67 3 Results 68 3.1 Design and generation of novel MOG target modules 68 3.1.1 MOG target module constructs 68 3.1.2 Expression of target modules 69 3.2 Establishment of scFv MOG-presenting cell models 72 3.3 Binding properties of MOG target modules 74 3.3.1 Determination of binding affinity between anti-MOG antibody and MOG target modules with enzyme-linked immunosorbent assay 74 3.3.2 Determination of binding affinity between anti-MOG receptor-expressing cell lines and MOG target modules with flow cytometry 75 3.4 Generation of human CAR-expressing T cells and binding of MOG target modules 80 3.4.1.1 Genetic modification of human T cells for UniCAR expression 81 3.4.1.2 Genetic modification of human T cells for RevCAR expression 83 3.5 Redirection of UniCAR T cells in vitro 85 3.5.1 Activation of redirected UniCAR T cells 85 3.5.2 Cytokine profile of redirected UniCAR T cells 87 3.5.3 Elimination of scFv MOG-positive target cells by UniCAR T cells 89 3.5.3.1 Time-dependent retargeting of scFv MOG-positive target cells by UniCAR T cells 89 3.5.3.2 Efficacy of UniCAR target modules 91 3.6 Redirection of RevCAR T cells in vitro 92 3.6.1 Activation of redirected RevCAR T cells 92 3.6.2 Cytokine profile of redirected RevCAR T cells 95 3.6.3 Elimination of scFv MOG-positive target cells by RevCAR T cells 99 3.6.3.1 Time-dependent retargeting of scFv MOG-positive target cells using RevCAR T cells 99 3.6.3.2 Efficacy of RevCAR target module 101 3.7 Investigation of RevCAR T cell-mediated cytotoxicity in vivo 103 4 Discussion 105 4.1 Structure and purification of MOG target modules 106 4.2 Expression and purification of target modules 107 4.3 Binding properties of MOG target modules 107 4.4 In vitro cytotoxic potential of UniCAR and RevCAR T cells redirected by MOG target modules 110 4.4.1 Target module-specific redirection of UniCAR T cells to scFv MOG-expressing target cells 110 4.4.2 Target module-specific redirection of RevCAR T cells to scFv MOG-expressing target cells 112 4.5 Future prospective 116 5 Summary 119 6 Zusammenfassung 121 7 References 124 List of figures 145 List of tables 147 Acknowledgement 148
20

Development of Bright Staining Reagents for Flow Cytometry and Fluorescence Microscopy

Reiber, Thorge Rasmus 13 August 2024 (has links)
Die Durchflusszytometrie und Fluoreszenzmikroskopie sind zentrale Techniken zur Analyse von Zellen, Geweben und Organen. Besonders in der Immunologie werden sie zur Identifizierung und Charakterisierung von Biomolekülen mittels fluoreszenzmarkierter Antikörper verwendet. Fluoreszenzmarker müssen je nach Anwendung hohe Helligkeit, geringe Größe und minimierte Löschung des Signals aufweisen. Stark markierte Konstrukte leiden jedoch oft unter Fluoreszenzlöschung oder großen Molekularmassen. Diese Arbeit untersucht verzweigtes Polyethylenglykol (PEG) als Träger für Fluorophore. PEG-Ketten wurden als räumliche Trennmittel identifiziert und an Aminodextran gekoppelt, wodurch hochgradig multimerisierte Fluorophor-PEG-Dextran-Zwischenprodukte entstanden. Diese Konjugate, gekoppelt mit Antikörpern, zeigen hohe Fluoreszenzintensität und wurden bei der Detektion von CAR SUP-T1-Zellen erfolgreich eingesetzt. PEG-basierte Reagenzien durchdringen jedoch oft die Zellmembran nicht, was für intrazelluläre Ziele und größere Gewebe wichtig ist. Sequentielle Multiplex-Analysen sind durch unvollständige Spaltung und Restsignale problematisch. Deshalb wurden synthetische Peptide als Rückgrat für die Fluorophor-Multimerisierung untersucht. Diese Konstrukte, verbunden mit Nanokörpern, zeigten erhöhte Helligkeit und Gewebepenetration in der Lichtblattmikroskopie von Mausorganen. Zudem wurde ein dualer Entfernungsmechanismus in die REAdyelease-Technologie integriert. Basierend auf Oligonukleotiden, Disulfiden oder Peptiden in Kombination mit Aminodextran konnte eine schnellere Signalreduktion ermöglicht werden. Dies wurde in der Konfokalmikroskopie an einer Pankreastumorzelllinie demonstriert. / Flow cytometry and fluorescence microscopy are crucial for analyzing cells and tissues, especially in immunology, where immunofluorescence is used for identifying, visualizing, and characterizing biomolecules with fluorescently labeled antibodies. These labels must meet various requirements: high brightness, small size, and the ability to be rendered non-fluorescent. However, highly labeled constructs often suffer from fluorescence self-quenching or high molecular masses, limiting their effectiveness. This work demonstrates that branched polyethylene glycol (PEG) serves as an efficient fluorophore multimerization platform for protein labeling. I explored factors critical for preventing fluorophore self-quenching in multi-fluorophore systems. Fluorescent PEGs were multimerized on an amino-dextran scaffold, generating highly multimerized fluorophore-PEG-dextran intermediates. When conjugated to antibodies, these intermediates allowed bright labeling of biomarkers on cells and tissues and were successfully used in detecting CAR SUP-T1 cells. Despite their strengths, PEG-based reagents often lack deep tissue penetration, essential for intracellular targets and 3D organ imaging. To enhance tissue penetration, I designed small peptide-based backbones for fluorophore multimerization. These constructs, coupled with nanobodies, produced homogeneous fluorescent conjugates that quickly penetrated mouse organs and enabled bright staining in light-sheet microscopy. The final part of the thesis focuses on synthesizing labels for cyclic immunofluorescence. I addressed the issue of incomplete label removal by creating erasable conjugates with two release sites. Fluorescent conjugates based on oligonucleotides, disulfides, or peptides combined with amino-dextran can be rapidly erased from labeled epitopes using a dual-release approach. This method was demonstrated in confocal microscopy and used for iterative imaging of biomarkers on a sample of a pancreatic tumor cell line.

Page generated in 0.0842 seconds