• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 42
  • 42
  • 13
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Advances in electrical energy storage using core-shell structures and relaxor-ferroelectric materials

Brown, James Emery January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Jun Li / Electrical energy storage (EES) is crucial in todays’ society owing to the advances in electric cars, microelectronics, portable electronics and grid storage backup for renewable energy utilization. Lithium ion batteries (LIBs) have dominated the EES market owing to their wide use in portable electronics. Despite the success, low specific capacity and low power rates still need to be addressed to meet the increasing demands. Particularly, the low specific capacity of cathode materials is currently limiting the energy storage capability of LIBs. Vanadium pentoxide (V₂O₅) has been an emerging cathode material owing to its low cost, high electrode potential in lithium-extracted state (up to 4.0 V), and high specific capacities of 294 mAh g⁻¹ (for a 2 Li⁺/V₂O₅ insertion process) and 441 mAh g⁻¹ (for a 3 Li⁺/V₂O₅ insertion process). However, the low electrical conductivities and slow Li⁺ ion diffusion still limit the power rate of V₂O₅. To enhance the power-rate capability we construct two core-shell structures that can achieve stable 2 and 3 Li⁺ insertion at high rates. In the first approach, uniform coaxial V₂O₅ shells are coated onto electrospun carbon nanofiber (CNF) cores via pulsed electrodeposition. The materials analyses confirm that the V₂O₅ shell after 4 hours of thermal annealing at 300 °C is a partially hydrated amorphous structure. SEM and TEM images indicate that the uniform 30 to 50 nm thick V₂O₅ shell forms an intimate interface with the CNF core. Lithium insertion capacities up to 291 and 429 mAh g⁻¹ are achieved in the voltage ranges of 4.0 – 2.0 V and 4.0 – 1.5 V, respectively, which are in good agreement with the theoretical values for 2 and 3 Li⁺/V₂O₅ insertion. Moreover, after 100 cycles, remarkable retention rates of 97% and 70% are obtained for 2 and 3 Li⁺/V₂O₅ insertion, respectively. In the second approach, we implement a three-dimensional (3D) core-shell structure consisting of coaxial V₂O₅ shells sputter-coated on vertically aligned carbon nanofiber (VACNF) cores. The hydrated amorphous microporous structure in the “as-deposited” V₂O₅ shells and the particulated nano-crystalline V₂O₅ structure formed by thermal annealing are compared. The former provides remarkably high capacity of 360 and 547 mAh g⁻¹ in the voltage range of 4.0 – 2.0 V and 4.0 – 1.5 V, respectively, far exceeding the theoretical values for 2 and 3 Li⁺/V₂O₅ insertion, respectively. After 100 cycles of 3 Li⁺/V₂O₅ insertion/extraction at 0.20 A g⁻¹ (~ C/3), ~ 84% of the initial capacity is retained. After thermal annealing, the core-shell structure presents a capacity of 294 and 390 mAh g⁻¹, matching well with the theoretical values for 2 and 3 Li⁺/V₂O₅ insertion. The annealed sample shows further improved stability, with remarkable capacity retention of ~100% and ~88% for 2 and 3 Li⁺/V₂O₅ insertion/extraction. However, due to the high cost of Li. alternative approaches are currently being pursued for large scale production. Sodium ion batteries (SIB) have been at the forefront of this endeavor. Here we investigate the sodium insertion in the hydrate amorphous V₂O₅ using the VACNF core-shell structure. Electrochemical characterization was carried out in the potential ranges of 3.5 – 1.0, 4.0 – 1.5, and 4.0 – 1.0 (vs Na/Na⁺). An insertion capacity of 196 mAh g-1 is achieved in the potential range of 3.5 – 1.0 V (vs Na/Na⁺) at a rate of 250 mA g⁻¹. When the potential window is shifted upwards to 4.0 – 1.5 V (vs Na/Na⁺) an insertion capacity of 145 mAh g⁻¹ is achieved. Moreover, a coulombic efficiency of ~98% is attained at a rate of 1500 mA g⁻¹. To enhance the energy density of the VACNF-V₂O₅ core-shell structures, the potential window is expanded to 4.0 – 1.0 V (vs Na/Na⁺) which achieved an initial insertion capacity of 277 mAh g⁻¹. The results demonstrate that amorphous V₂O₅ could serve as a cathode material in future SIBs.
22

On the development of Macroscale Modeling Strategies for AC/DC Transport-Deformation Coupling in Self-Sensing Piezoresistive Materials

Goon mo Koo (9533396) 16 December 2020 (has links)
<div>Sensing of mechanical state is critical in diverse fields including biomedical implants, intelligent robotics, consumer technology interfaces, and integrated structural health monitoring among many others. Recently, materials that are self-sensing via the piezoresistive effect (i.e. having deformation-dependent electrical conductivity) have received much attention due to their potential to enable intrinsic, material-level strain sensing with lesser dependence on external/ad hoc sensor arrays. In order to effectively use piezoresistive materials for strain-sensing, however, it is necessary to understand the deformation-resistivity change relationship. To that end, many studies have been conducted to model the piezoresistive effect, particularly in nanocomposites which have been modified with high aspect-ratio carbonaceous fillers such as carbon nanotubes or carbon nanofibers. However, prevailing piezoresistivity models have important limitations such as being limited to microscales and therefore being computationally prohibitive for macroscale analyses, considering only simple deformations, and having limited accuracy. These are important issues because small errors or delays due to these challenges can substantially mitigate the effectiveness of strain-sensing via piezoresistivity. Therefore, the first objective of this thesis is to develop a conceptual framework for a piezoresistive tensorial relation that is amenable to arbitrary deformation, macroscale analyses, and a wide range of piezoresistive material systems. This was achieved by postulating a general higher-order resistivity-strain relation and fitting the general model to experimental data for carbon nanofiber-modified epoxy (as a representative piezoresistive material with non-linear resistivity-strain relations) through the determination of piezoresistive constants. Lastly, the proposed relation was validated experimentally against discrete resistance changes collected over a complex shape and spatially distributed resistivity changes imaged via electrical impedance tomography (EIT) with very good correspondence. Because of the generality of the proposed higher-order tensorial relation, it can be applied to a wide variety of material systems (e.g. piezoresistive polymers, cementitious, and ceramic composites) thereby lending significant potential for broader impacts to this work. </div><div><br></div><div>Despite the expansive body of work on direct current (DC) transport, DC-based methods have important limitations which can be overcome via alternating current (AC)-based self-sensing. Unfortunately, comparatively little work has been done on AC transport-deformation modeling in self-sensing materials. Therefore, the second objective of this thesis is to establish a conceptual framework for the macroscale modeling of AC conductivity-strain coupling in piezoresistive materials. For this, the universal dielectric response (UDR) as described by Joncsher's power law for AC conductivity was fit to AC conductivity versus strain data for CNF/epoxy (again serving as a representative self-sensing material). It was found that this power law does indeed accurately describe deformation-dependent AC conductivity and power-law fitting constants are non-linear in both normal and shear strain. Curiously, a piezoresistive switching behavior was also observed during this testing. That is, positive piezoresistivity (i.e. decreasing AC conductivity with increasing tensile strain) was observed at low frequencies and negative piezoresistivity (i.e. increasing AC conductivity with increasing tensile strain) was observed at high frequencies. Consequently, there exists a point of zero piezoresistivity (i.e. frequency at which AC conductivity does not change with deformation) between these behaviors. Via microscale computational modeling, it was discovered that changing inter-filler tunneling resistance acting in parallel with inter-filler capacitance is the physical mechanism of this switching behavior.</div>
23

Electrically Conductive Polymer Composites

Rhodes, Susan M. January 2007 (has links)
No description available.
24

Development of Conductive Green Polymer Nano-Composite for use in Construction of Transportation Infrastructure

Gissentaner, Tremaine D. January 2014 (has links)
No description available.
25

APPLICATIONS OF THIN CARBON COATINGS AND FILMS IN INJECTION MOLDING

Cabrera, Eusebio Duarte January 2014 (has links)
No description available.
26

Rheological Characterization and Modeling of Micro- and Nano-Scale Particle Suspensions

Kagarise, Christopher D. January 2009 (has links)
No description available.
27

Effects of Carbon Nanoparticles on Properties of Thermoset Polymer Systems

Movva, Siva Subramanyam 25 October 2010 (has links)
No description available.
28

An experimental and modeling study of carbon nanomaterial membranes, bacterial growth, and their interactions towards Pb(II) removal from wastewater

Chidiac, Cassandra January 2020 (has links)
Pb(II) removal is imperative due to its inherent toxicity at low levels and its tendency to accumulate in ecosystems. Conductive carbonaceous nanomaterials (CCNs), such as carbon nanotubes (CNTs) and carbon nanofibers (CNFs), have recently gained the interest of researchers due to their superior properties and ease of functionalization. The aim of this study is to utilize CCNs for Pb(II) removal within membrane technology and bioremediation strategies. Membranes have shown promise in their treatment abilities, producing excellent effluent quality while reducing plant footprints. The integration of CNTs within membrane technology provides an opportunity to couple its removal capacity with Pb(II) removal that exhibits regeneration capabilities. However, membrane fouling can be problematic for membrane longevity and regeneration. CNTs have also shown to be capable of mitigating fouling via electrostatic repulsion and pollutant degradation. However, little work has been conducted on its fabrication. In this work, CNTs were incorporated with poly(vinyl) alcohol (PVA) in thin film composites, where the effects of PVA chain length and degree of crosslinking were investigated. It was found that a pseudo-optimal coating can be obtained using 31-50kDa PVA with 10% crosslinking. This combination lead to a highly permeable, hydrophilic surface with good electrical conductivity that exhibited a molecular weight cut off of 2000kDa. Biosorption has shown promise in Pb(II) removal in the lab scale but its large-scale use is hindered from rapid saturation of binding sites and low regeneration abilities. Exoelectrogens were proposed as reactive biosorbents to couple biosorption with bioreduction in an attached growth configuration. CCNs were investigated as bacterial scaffolds, where their efficacy and Pb(II) dosage concentration was studied. It was found that CNFs were superior in removing Pb(II), exhibiting Pb(II) concentrations ≤0.10 ppm where removal increased when Pb(II) dosage increased from 0.5 to 5ppm. SEM-EDX analysis provided evidence that bioreduction dominated Pb(II) removal. A long-term study was further conducted using CNFs, revealing its robustness in long term removal over suspended growth reactors with a sustained removal of ≈ 80%. A numerical model was further proposed which exhibited a goodness of fit with an R-squared of 0.92. This model confirmed that bioreduction dominated Pb(II) removal and revealed biofilm thickness and Monod kinetics to be the main influential parameters on Pb(II) removal. / Thesis / Master of Applied Science (MASc)
29

Growth Model, Synthesis of Carbon Nanostructures and Alteration of Surface Properties Using Them

Naha, Sayangdev 26 August 2008 (has links)
Flame synthesis is recognized as a much cheaper and higher throughput process for carbon nanotube/nanofiber (CNT/CNF) production compared to conventional catalytic processes like chemical vapor deposition (CVD). Nanostructured carbon materials, such as carbon nanotubes and nanofibers, exhibit superhydrophobic behavior over a range of pH values, including for corrosive liquids. Part of this research reports the development of a rapid on-demand process for the synthesis of superhydrophobic surfaces on silicon (Si) discs using an ethylene-air nonpremixed flame. Such superhydrophobic behavior, combined with increase in effective surface area due to carbon nanostructure (CNS) deposition and corresponding desirable size (nanoscale roughness) attract the growth and attachment of microbial colonies to these CNS-enhanced substrates. This has potentially high-impact application in microbial fuel cells (MiFCs) whereby stainless steel (SS) meshes coated with flame-deposited CNS are used as anodes and the electrons produced by attaching biofilms can generate electricity in a fuel cell. However, despite such and many other applications and promise of carbon nanotubes (CNTs), their production is generally based on empirical principles. There are only a few CNT formation models that predict the dependence of CNT growth on various synthesis parameters. Typically, these do not incorporate a detailed mechanistic consideration of the various processes that are involved during CNT synthesis. Herein, this need is addressed and a model is presented for catalytic CNT growth that integrates various interdependent physical and chemical mechanisms involved in CNT production. It is validated by comparing its predictions with experimental measurements for CVD synthesis of CNTs and a concise parametric study is presented. The results are extrapolated for flame synthesis that is recognized as a desirable cost-effective process for the bulk synthesis of CNTs, as already mentioned. The last part of this dissertation discusses an extension of the CNT growth model to silicon nanowire/nanowhisker (SiNW) synthesis. SiNWs are synthesized by a number of methods — catalysis by a metal (involving vapor-liquid-solid or VLS growth mode), molecular beam epitaxy, thermal evaporation and laser ablation to name a few. Our model pertains to metal-catalyzed VLS growth mode. / Ph. D.
30

Le composite cuivre / nanofibres de carbone / The copper-carbon nanofibers composite

Vincent, Cécile 19 November 2008 (has links)
Le matériau composite Cu/NFC (Nano Fibre de Carbone) peut être utilisé en tant que drain thermique par les industriels de l'électronique de puissance. En remplacement du cuivre, il doit combiner une conductivité thermique élevée et un coefficient de dilatation thermique adapté à celui de la céramique du circuit imprimé (alumine ou nitrure d’aluminium). Après avoir étudié les propriétés de la matrice cuivre et des NFC, plusieurs méthodes de synthèse du composite Cu/NFC ont été développées. Le composite a tout d’abord été élaboré par métallurgie des poudres. Puis, dans le but d’améliorer l’homogénéité, il a été envisagé de revêtir individuellement chaque NFC par du cuivre déposé par voie chimique electroless ainsi que par une méthode originale de décomposition d’un sel métallique. Des mesures de densité et de propriétés thermiques (conductivité et dilatation) ainsi que les caractérisations microstructurales de ces matériaux montrent la complexité de l’élaboration d’un tel composite. En effet, la dispersion des nanofibres, la nature des interfaces fibres/matrice et surtout les phénomènes thermiques à l’échelle nanométrique sont autant de paramètres à contrôler afin d’obtenir les propriétés recherchées. La simulation numérique et analytique, qui a été mise en oeuvre en parallèle a été corrélée aux résultats expérimentaux, afin de prédire les propriétés finales de nos matériaux. / Cu/CNF (Carbon Nano Fiber) composite materials can be used as heat sink in power electronic devices. They can substitute Copper by combining a high thermal conductivity and a coefficient of thermal expansion close to the printed circuit one (alumina or aluminum nitride). After studying the properties of Copper matrix and CNF, three methods were set up for the elaboration of the Cu/CNF composite materials. It was first synthesized by a simple powder metallurgy process. Second, in order to obtain a better homogeneity, CNF were individually coated with Cu by an electroless deposition method. Third, an original technique involving the decomposition of a metallic salt has been used. Measurements of the density, the thermal properties (conductivity and dilatation), and the characterization of the microstructure of the composite materials have been performed. It reveals the complexity of the realization of such a composite. Indeed, the dispersion of CNF and the chemical nature of the Cu/CNF interfaces have to be controlled in order to reach the desired thermal properties. Analytical and numerical simulations have been conducted and correlated with the experimental results to predict final properties of our materials.

Page generated in 0.0361 seconds