• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 34
  • 22
  • 10
  • 7
  • 4
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 188
  • 73
  • 66
  • 52
  • 46
  • 45
  • 29
  • 26
  • 20
  • 19
  • 17
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Risk Management in the Extractive Industries: Environmental Analysis and Mitigation

Smith, Sean P. 19 February 2014 (has links)
Risk management has been used regularly in the mining industry over the last few decades. The majority of those instances have focused on health and safety issues. Health and safety has improved in the United States, Australia, and other major mining districts because of the successful use of risk management and mitigation practices. Risk management has been used to a lesser extent to reduce or avoid environmental issues as well. There are a number of factors that make utilization of risk management analysis more applicable to health and safety than to environmental issues. This thesis explores the use of risk management in the context of environmental issues associated with mining. Specifically, two case studies are developed in two self-contained manuscripts: the first focuses on sequestering CO2 while the second focuses on wild rice in Minnesota with regards to the sulfate standard. Through the lens of risk management, an attempt is made to align project goals and efforts with mitigation potential to reduce the likelihood or result of particular risks. The end result is a reduction in risks due to mitigation. The first manuscript shows how risks disappear over time because they have been categorized and addressed. The project goals are keep on track by eliminating or reducing these risks. The second manuscript can be used by stakeholders to review their potential risks and mitigate those risks if possible/necessary. In contrast to the first manuscript that contains risks that are known and measurable, the second manuscript examines different risks based on four potential outcomes. / Master of Science
12

Modeling of CO2 separation in post-combustion processes by PSA / Modelagem da separaÃÃo de CO2 em processos de pÃs-combustÃo por PSA

Hugo Rocha Peixoto 23 February 2015 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Adsorption processes involving carbon dioxide (CO2) capture and sequestration have been objects of different studies. A typical problem is the separation of CO2 from fuel gases emitted in power plants in order to mitigate the global warming effects. Recently, Pressure Swing Adsorption (PSA) technology is being applied to this separation. However, design and analysis of adsorption processes are a difficult task due to the large number of parameters involved. This work studies the dynamics of this separation in activated carbons C141 and WV 1050 through commercial software Aspen Adsorption (AspenTechÂ). First, we evaluated the ability of the software reproducing experimental fixed bed data in C141 reported on literature, considering the mixture 10% of helium (carrier gas), 15% dioxide carbon and 75% nitrogen, molar basis. The results showed satisfactory resemblance to the literature. From a scale-up of the analyzed system, it was sized a PSA apparatus at 298 K operating with two columns and four steps: adsorption, depressurization, purge and repressurization (Skarstrom cycle). High-pressure step was at 3.0 bar and regeneration at 1.1 bar. Fuel gas mixture simulated was composed only of CO2 and N2; the molar fraction of the first component at the feed stream was 15%. The product stream in C141 showed purity and recovery of carbon dioxide from approximately 23% and 60% on a molar basis, respectively. The productivity was 0.72 t CO2 kg-1 year-1. Through the study of design variables such as column diameter and length, feed and purge flow rate, feed composition and step times, the product purity exceeded 30 % and the recovery bordered 75%, with maximum productivity of 1.02 t CO2 kg-1 year-1 for some process settings. The process yields in WV 1050 were 26.5 % purity, 47 % recovery and 0.53 t CO2 kg-1 year-1. / Processos de adsorÃÃo envolvendo a captura e o sequestro de diÃxido de carbono (CO2) vÃm sendo objetos de diferentes estudos. Um dos problemas tÃpicos analisados à a separaÃÃo do CO2 a partir dos gases de queima emitidos em plantas energÃticas com o intuito de mitigar os efeitos do aquecimento global. Recentemente, a tecnologia Pressure Swing Adsorption (PSA) està sendo aplicada para este tipo de separaÃÃo. Entretanto, o projeto e a anÃlise de processos de adsorÃÃo sÃo uma tarefa difÃcil devido à grande quantidade de parÃmetros envolvidos. Este trabalho estuda a dinÃmica dessa separaÃÃo nos carbonos ativados C141 e WV 1050 atravÃs do software comercial Aspen Adsorption da AspenTechÂ. Inicialmente, foi avaliada a capacidade do software no que diz respeito à reproduÃÃo de dados experimentais de leito fixo reportados na literatura, que consideram a mistura como sendo, em base molar, 10 % de hÃlio (gÃs de inerte), 15 % de diÃxido de carbono e 75 % de nitrogÃnio. Os resultados obtidos apresentaram semelhanÃa satisfatÃria aos da literatura para o sÃlido C141. A partir de um scale-up desse sistema analisado, foi dimensionada uma PSA a 298 K de duas colunas e quatro passos: adsorÃÃo, despressurizaÃÃo, purga e repressurizaÃÃo (ciclo Skarstrom). A etapa de maior pressÃo ocorre a 3,0 bar e a regeneraÃÃo a 1,1 bar. Considerou-se que o gÃs de queima à composto apenas por CO2 e N2, sendo a fraÃÃo molar de alimentaÃÃo do componente de interesse de 15%. Para C141, a corrente de produto apresentou pureza e recuperaÃÃo de diÃxido de carbono de aproximadamente 23 % e 60 % em base molar, respectivamente, com produtividade de 0,72 t CO2 kg-1 ano-1. AtravÃs do estudo de variÃveis de projeto como diÃmetro e comprimento da coluna, vazÃo de alimentaÃÃo e de purga, composiÃÃo de alimentaÃÃo e tempos das etapas do ciclo, a pureza do produto ultrapassou os 30 %, a recuperaÃÃo se aproximou de 75 % e a produtividade mÃxima foi de 1,02 t CO2 kg-1 ano-1 para algumas configuraÃÃes do processo. Os rendimentos para o adsorvente WV 1050 foram: pureza de 26,5 %, recuperaÃÃo de 47 % e produtividade de 0,53 t CO2 kg-1 ano-1.
13

Bio-CCS metoden i Sverige : kvalitativ innehållsanalys av samhällsaktörer / Bio-CCS method in Sweden : qualitative content analysis of societal actors

Arnsbjer, Felicia, Fors, Clara January 2021 (has links)
Denna studie syftar till att undersöka berörda samhällsaktörers inställning till att uppnå klimatneutralitet inom Sverige med bio-CCS som åtgärd. En kvalitativ innehållsanalys av remisser från klimatpolitiska vägvalsutredningens betänkande Vägen till en klimatpositiv framtid genomfördes med ett multi-level perspective för att studera dessa aktörers ståndpunkt. Aktörernas synpunkter identifieras och analyseras för att därefter ställas mot tidigare forskning. Resultatet av studien visar att det finns delade uppfattningar hos aktörerna angående bio-CCS och vad som behövs för att främja tekniken. De största hindren till att implementera bio-CCS som åtgärd anses vara ekonomiska och politiska aspekter, men att det även finns andra faktorer som har en betydande roll för att bio-CCS ska kunna ha ett inflytande till att Sverige ska uppnå klimatneutralitet till 2045. / This study aims to investigate the approach of relevant actors to achieving climate neutrality within Sweden with bio-CCS as a measure. A qualitative content analysis of referrals from the climate policy inquiry report Vägen till en klimatpositiv framtid carried out with a multi-level perspective theory to study the position of these actors. The actors' views are identified and analyzed and compared to previous research. The results show that there are divided opinions among actors regarding bio-CCS and what is needed to promote the technology. The main obstacles to implementing bio-CCS as a measure are considered to be economic and political aspects, other factors also have a significant role in influencing Sweden to achieve climate neutrality by 2045.
14

Klimatpåverkan för implementering av en CCS-anläggning vid ett avfallseldat kraftvärmeverk

Sjunnesson, Alva January 2023 (has links)
För att möjliggöra att Helsingborgs stad uppnår målet om klimatneutralitet till år 2030 har Öresundskraft beslutat att implementera en CCS-anläggning vid ett avfallseldat kraftvärmeverk i Helsingborg som idag står för ungefär 19 % av de direkta utsläppen i Helsingborg. Innan Öresundskraft planerar att påbörja byggnationen är det av intresse att undersöka klimatpåverkan för livscykeln för att förstå nettoeffekten av klimatnyttan som CCS-anläggningen skapar. Syftet med examensarbetet är följaktligen att undersöka klimatpåverkan för byggnation och drift av CCS-anläggningen samt klimatpåverkan för transport och geologisk förvaring av den avskilda koldioxiden. Klimatpåverkan för byggnation av anläggningen utfördes enligt ett bokföringsperspektiv där beräkningar genomfördes i Excel med klimatdata för respektive material som erhölls från digitala klimatdatabaser. Klimatpåverkan för driften av anläggningen samt nedströms delprocesser utfördes både enligt ett bokföringsperspektiv och ett konsekvensperspektiv. Då klimatpåverkan beräknades användes ett kvantifieringsverktyg baserat på livscykelmetodik som var framtaget i Excel. Genom en litteraturstudie kunde efterfrågad indata och redan tillgänglig data sammanställas och matas in i verktyget. Efter att modifieringar genomförts i verktyget kunde energianvändning och klimatpåverkan för driften undersökas för ett driftår och för anläggningens livstid. Resultatet visade att byggnationen av CCS-anläggningen står för ungefär 2 % av den totala klimatpåverkan under anläggningens livstid och uppgår till ungefär 8,9 kton CO2e. CCS-anläggningen behöver vara i drift i 30 dygn för att klimatpåverkan som byggnationen står för ska hinna kompenseras för. CCS-anläggningen kommer under sin livstid ge upphov till en total klimatpåverkan mellan 439 ton CO2e och 511 ton CO2e medan ungefär 2,5 miljoner ton biogen koldioxid kommer att geologiskt förvaras under samma period. Detta innebär att anläggningens totala klimatpåverkan netto uppgår till ungefär -2 miljoner ton CO2e. Eftersom driften av CCS-anläggningen kräver el får detta konsekvensen att andra producenter i elnätet behöver öka sin produktion för att både kompensera för den minskade exporten av el från Filbornaverket men även för att kompensera för elanvändningen i hamn och vid injektion till geologisk förvaring. Den totala klimatpåverkan för denna elproduktion står årligen för ungefär 42 kton CO2e och totalt efter 25 driftår för ungefär 1 miljon ton CO2e. Eftersom den totala klimatpåverkan för CCS-anläggningen är lägre än mängden biogen koldioxid som avskiljs och geologiskt förvaras bidrar anläggningen till att minska utsläppen av växthusgaser i Helsingborgs stad. Däremot motsvarar inte mängden avskild biogen koldioxid den mängd utsläpp av växthusgaser som årligen sker i Helsingborg. På grund av detta kommer implementeringen av en CCS-anläggning inte vara en tillräckligt stor åtgärd för att Helsingborgs stad ska uppnå målet om klimatneutralitet till året 2030 och således krävs även andra utsläppsminskande åtgärder för att klimatmålet ska uppnås. / In order to enable the city of Helsingborg to achieve the goal of climate neutrality by the year 2030, Öresundskraft has decided to implement a CCS plant at a waste-fired cogeneration plant in Helsingborg, which today accounts for approximately 19 % of the direct emissions in Helsingborg. Before Öresundskraft plans to start construction, it is of interest to investigate the climate impact for the life cycle to understand the net effect of the climate benefit that the CCS plant creates. The purpose of the thesis is therefore to investigate the climate impact for the construction and operation of the CCS facility as well as the climate impact for transport and geological storage of the separated carbon dioxide. The climate impact for construction of the facility was carried out according to an accounting perspective where calculations were carried out in Excel with climate data for the respective materials obtained from digital climate databases. The climate impact for the operation of the plant and downstream sub-processes was carried out both from an accounting perspective and a consequence perspective. When the climate impact was calculated, a quantification tool based on life cycle methodology was used, which was developed in Excel. Through a literature study, requested input data and already available data could be compiled and entered into the tool. After modifications were carried out in the tool, the energy use and climate impact of the operation could be examined for one year of operation and for the lifetime of the facility. The result showed that the construction of the CCS facility accounts for approximately 2 % of the total climate impact during the lifetime of the facility and amounts to approximately 8.9 kton CO2e. The CCS facility needs to be in operation for 30 days in order to compensate for the climate impact that the building is responsible for. The CCS facility will during its lifetime give rise to a total climate impact of between 439 ton CO2e and 511 ton CO2e, while approximately 2.5 million ton of biogenic carbon dioxide will be geologically stored during the same period. This means that the plant’s total net climate impact amounts to approximately minus 2 million ton CO2e. Since the operation of the CCS plant requires electricity, this has the consequence that other producers in the electricity grid need to increase their production to both compensate for the reduced export of electricity from the Filbornaverket but also to compensate for the use of electricity in the port and when injecting into geological storage. The total climate impact for this electricity production accounts annually for approximately 42 kton CO2e and in total after 25 years of operation for approximately 1 million ton CO2e. Since the total climate impact of the CCS facility is lower than the amount of biogenic carbon dioxide that is separated and geologically stored, the facility contributes to reducing the emissions of greenhouse gases in the city of Helsingborg. However, the amount of separated biogenic carbon dioxide does not correspond to the amount of greenhouse gas emissions that occur annually in Helsingborg. Because of this, the implementation of a CCS facility will not be a large enough measure for the city of Helsingborg to achieve the goal of climate neutrality by the year 2030, and thus other emission-reducing measures are also required for the climate goal to be achieved.
15

Geospatial and Economic Viability of CO<sub>2</sub> Storage in Fractured Shale

Langenfeld, Julie K. January 2016 (has links)
No description available.
16

Evaluation of Onshore Transportation Methods for Captured CO2 between Facility and Harbour in Stockholm / Utvärdering av metoder att transportera fångad CO2 från anläggning till hamn i Stockholm

Johansson, Emma, Pétursdóttir, Vilborg January 2021 (has links)
Carbon capture and storage (CCS) is a method to reduce the emission of CO2 into the atmosphere. Stockholm Exergi is a Stockholm based company with combined heat and power (CHP) plants in various places around the city and are currently investigating the possibilities to implement CCS on their CHP plant Högdalenverket. The captured CO2 is required to be transferred from the facility to a harbour for further transport to its injection site. This report investigates the optimal means of transportation from the facility to harbour. The methods considered are pipeline and trucks.From the frame of reference, it is concluded that the shortest distance possible is preferable, so the harbour alternative is set to be Värtan. For pipelines the cheapest alternative of the state of form, for the specific case, is gas. For trucks the best alternative is liquid since a larger amount can fit in each load. For the cost estimation the method from (Piessenset al., 2008) is used to calculate the price estimate of pipelines, and (Marufuzzaman, 2015) is used for the trucks. Parameters such as the diameter of the pipe, pressure drop and power requirement are of high importance for the pipeline. For truck road regulations, CO2’s density and operation time is essential. The results from the implementation shows the pipelines to be the more beneficial option in regards to price, stability and robustness. The NPV for the pipeline is calculated, with the lifetime of theproject as 25 years, to be 75 million €, which is the cheaper alternative compared to the truck, which has a NPV of 95 million €. The optimal inlet pressure for the pipes is calculated to be 3.5MPa and the temperature to be 57.5°C due to an implemented heat exchange operation before the inlet. Future work and recommendations are to continue creating a more detailed design over the pipelines and to discard the truck transport alternative. / Infångning och lagring av koldioxid (CCS) är en metod för att minska utsläppen av CO2 i atmosfären. Stockholm Exergi är ett energibolag i Stockholm med diverse kraftvärmeverk runtom i staden. En undersökning pågår där företaget forskar kring möjligheterna att implementera CCS på kraftvärmeverk Högdalenverket. Den uppfångade koldioxiden ska transporteras från anläggning till hamn, där den sedan ska vidare med skepp till sin injektionsplats. Denna rapport studerar vilken den optimala metoden för transport från anläggning till hamn är. Metoderna som berörs är rörledningar och lastbilar. Från bakgrundstudien var det möjligt att dra slutsatsen om att det kortaste möjliga avståndet är optimalt, så den valda hamnen är Värtahamnen. För rörledningarna är det billigaste alternativet på substansen gas för det behandlade fallet i rapporten. För lastbilsalternativet är den optimala formen vätska då det får plats mer volym per last. För uppskattningen av priserna används metoden från (Piessenset al., 2008) för rörledningarna och (Marufuzzaman, 2015) för lastbilarna. Parametrar såsom diametern på rören, tryckfall och effektkrav är viktiga för rörledningarna. För lastbilarna är vägkrav, CO2 s densitet och operationstid essentiella. Resultaten från implementationen visar att transport med rörledningar är det optimala alternativet i avseende av pris och stabilitet. Nuvärdet på investeringen av rörledningarna är beräknade till 75miljoner €, som är billigare jämfört med 95 miljoner € för lastbilsalternativet. Det optimala trycket för inloppet till rörledningarna är beräknat till 3.5 MPa och inloppstemperaturen till 57.5°C som resultat av en implementerad värmeväxlaroperation precis före starten på rörledningen. Framtida arbete och rekommendationer är att fortsätta utveckla en mer detaljerad design överrörledningen och att avfärda alternativet med transport av lastbilar.
17

Kostnaden för CCS vid Cementa AB i Degerhamn

Nyberg, Jesper January 2016 (has links)
CCS, Carbon Capture and Storage, innebär infångning och lagring av koldioxid från stora punktutsläpp. Detta gör cementindustrin aktuell för implementering av CCS. Stora delar av branschens koldioxidutsläpp går inte att eliminera på annat sätt. Kostnaden för monoetanolamin-baserad post-combustion capture med efterföljande transport och lagring av koldioxiden vid cementfabriken Cementa AB i Degerhamn undersöktes. Studiens kostnadsberäkningar är baserade på publicerade uppgifter om kostnaden för koldioxidinfångning vid den norska cementfabriken Norcem Brevik, och på publicerade uppgifter om kostnaden för transport av koldioxid till en lagringsplats i Östersjön. Cementa Degerhamns koldioxidutsläpp kan reduceras med 5,4 miljoner ton under en 25-årsperiod till en kostnad av 2,2 miljarder SEK. Slutresultatet, som uttrycks i måttet Cost of CO2 avoided, ger en kostnad på 890 SEK/ton CO2. En känslighetsanalys visar att av de undersökta parametrarna är storleken på koldioxidutsläppen och kostnaden för användning och underhåll viktigast för storleken på Cost of CO2 avoided. Vidare studier behövs för en mer exakt beräkning av kostnaden för CCS vid Cementa Degerhamn. / CCS, Carbon Capture and Storage, involves the capture and storage of carbon dioxide from large point sources. This makes the cement industry suitable for the implementation of CCS. Large parts of the industry's carbon dioxide emissions cannot be eliminated by other means. The cost of monoethanolamine-based post-combustion capture and subsequent transport and storage of the carbon dioxide at the cement factory Cementa AB in Degerhamn was studied. This study's cost estimates are based on published data on the cost of carbon capture at the Norwegian cement plant Norcem Brevik, and on published data on the cost of transport of carbon dioxide to a storage site in the Baltic Sea. Cementa Degerhamn’s carbon dioxide emissions can be reduced by 5.4 million tons over a 25 year period to a cost of 2.2 billion SEK. The result, expressed in Cost of CO2 avoided, gives a cost of 890 SEK/ton CO2. A sensitivity analysis shows that of the examined parameters, the size of the carbon dioxide emissions and the cost of use and maintenance are the most important for the size of Cost of CO2 avoided. Further studies are required for a more accurate calculation of the cost of CCS at Cementa Degerhamn.
18

Carbon capture and storage potential contribution to mitigate climate change

Baca, Angel Mario 20 September 2010 (has links)
Carbon Capture and Storage Potential Contribution to Mitigate Climate Change By Angel Mario Baca, M.A. The University of Texas at Austin, 2009 Supervisor: Dr. Eric Bickel This thesis evaluates the potential of the Carbon Capture and Storage technologies to mitigate climate change. This work emerged from the current debate regarding when CCS technologies are going to be ready in a commercial-scale, or whether they are going to be economically viable. Geologically, the world contains enough room for storing CO2 emissions, but it is still unsolved if leakage can be controlled and monitored. This research focuses on the development of an economic model to estimate the value of CCS.. This model uses equations from the DICE (Dynamic Integrated model on Climate and the Economy). Then, it estimates what change in temperature could occur, and computes the present value of damages to the economy. Moreover, emissions are simulated using the 40 scenario emissions from the Intergovernmental Panel on Climate Change. As the main conclusion of this model, CCS has to be deployed in almost in the entire number of fossil fuel plants around the world and has to be done in the next 30 years to see CCS having an impact, otherwise it would be relatively small and not worth it. Moreover, CCS technologies are part of the components to reduce climate change, but not the main one. It is required that governments, companies, and institution focus their efforts in working collaboratively towards the enforcement of new policies and development of more technologies. / text
19

Ignition of suspensions of coal and biomass particles in air and oxy-fuel for Carbon Capture and Storage (CCS) and climate change mitigation

Trabadela Robles, Ignacio January 2015 (has links)
Carbon Capture and Storage (CCS) is a legitimate technology option that should be part of a balanced portfolio of mitigation technologies available Post-Kyoto Protocol framework after Paris 2015 and beyond the 2020s or the cost achieving 2 degrees Celsius stabilisation scenario will significantly increase. Oxy-fuel combustion as a CCS technology option increases fuel flexibility. Additionally, oxy-biomass as a bio-energy with CCS (BECCS) technology can achieve negative carbon dioxide (CO2) emissions in sustainable biomass systems. Also, oxygen (O2) production in an air separation unit (ASU) gives potential for extra operational flexibility and energy storage. In this work, new designs of 20 litre spherical (R-20) and 30 litre non-spherical (R-30) ignition chambers have been built at the University of Edinburgh to carry-out dust ignition experiments with different ignition energies for evaluating pulverised fuel ignitability as a function of primary recycle (PR) O2 content for oxy-fuel PF milling safety. A set of coals and biomasses being used (at the time of submitting this work) in the utility pulverised fuel boilers in the UK have been employed. Coal and biomass dusts were ignited in air and oxy-fuel mixtures up to 30 % v/v O2 balance mixture CO2 where peak pressures (Pmax) from ignition were recorded. Pressure ratios (Pmax/Pinitial) were determined the key parameter for positive ignition identification with a value above 2.5 to be considered positive. Particle size effects in coal and biomass ignition were evaluated. Results on biomass were more variable than with coals, requiring a stronger ignition source (5,000 J) mainly due to larger particle sizes. Finer biomass particles behaved similarly to air ignition in 25 % v/v O2 in CO2. Larger particles of biomass did not ignite at all for most cases even reaching 30 % v/v O2 in CO2. A reference coal used, El Cerrejon, behaved as expected with 30 % v/v O2 balance CO2 matching air case; particles between 75-53 microns had lower ignitability than finer below 53 microns but were critical in devolatilisation. Most fuels did not ignite in 21 % v/v in CO2 below 200 g/m3 concentrations. The use of adequate ignition energy strength is needed for the PF mill safety case, with 5,000 J energy required for the biomasses tested. An indication of potential ignition chamber volume and geometry effect has also been observed when comparing results from R-20 and R-30 ignition chambers. Important implications include that oxy-biomass PR with 21 % v/v O2 content would give improved pulverised fuel (PF) milling safety when compared to air firing but reduced ignitability and a 25 % v/v O2 balance CO2 atmosphere would approach to oxy-biomass ignition behaviour in air in mills.
20

International politics of low carbon technology development : carbon capture and storage (CCS) in India

Kapila, Rudra Vidhumani January 2015 (has links)
This thesis explores the international political dynamics of developing low carbon technology. Specifically, Carbon Capture and Storage (CCS) technology as a climate mitigation strategy in a developing country context is examined. CCS is a technological solution that allows for the continued use of fossil fuels without the large amounts of associated CO2 emissions. This entails capturing the CO2 emitted from large point sources, such as a coal-fired power station, and transporting the captured emissions to be injected and stored permanently into geological media. Consequently, CCS is a bridging technology that could provide more time for transitioning to a low-carbon economy. A case study of India is used, which is an emerging industrialising economy, and is also the third-largest coal producer in the world. India faces a dilemma: poverty alleviation and infrastructure development to support its billion plus population requires vast amounts of energy, which is predominantly based on fossil fuels. Therefore, it was envisioned that CCS would be a sustainable option, which could enable industrialisation at the rate required, whilst preventing the exacerbation of the negative effects of climate change. However, during the period of study (2007-2010), CCS was not embraced by India, despite there being a growing impetus to develop, demonstrate and transfer the technology. India was reluctant to consider CCS as part of a mitigation strategy, and this thesis focuses on the reasons why. An interdisciplinary approach is used, coupling perspectives from science, technology and innovation studies (STS) with concepts from International Relations (IR) scholarship. This sociotechnical conceptual framework is applied to gain a more holistic picture of the failed attempt to transfer CCS technology to India. Key technical challenges and blockages are identified within India’s existing energy system, which have restricted CCS technology implementation. In addition, the political challenges associated with the rejection of CCS by the Indian Government are explored. Empirical evidence is on the basis of elite interviews, an expert stakeholder survey and relevant documents. Another case study on the Cambay basin is used to further demonstrate the influence of political factors on CCS implementation, even in an area considered to have suitable technical conditions. The outcomes of this study have implications for policy addressing global challenges, especially by means of international cooperation and technological change.

Page generated in 0.0349 seconds