• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • Tagged with
  • 11
  • 11
  • 8
  • 6
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bio-CCS metoden i Sverige : kvalitativ innehållsanalys av samhällsaktörer / Bio-CCS method in Sweden : qualitative content analysis of societal actors

Arnsbjer, Felicia, Fors, Clara January 2021 (has links)
Denna studie syftar till att undersöka berörda samhällsaktörers inställning till att uppnå klimatneutralitet inom Sverige med bio-CCS som åtgärd. En kvalitativ innehållsanalys av remisser från klimatpolitiska vägvalsutredningens betänkande Vägen till en klimatpositiv framtid genomfördes med ett multi-level perspective för att studera dessa aktörers ståndpunkt. Aktörernas synpunkter identifieras och analyseras för att därefter ställas mot tidigare forskning. Resultatet av studien visar att det finns delade uppfattningar hos aktörerna angående bio-CCS och vad som behövs för att främja tekniken. De största hindren till att implementera bio-CCS som åtgärd anses vara ekonomiska och politiska aspekter, men att det även finns andra faktorer som har en betydande roll för att bio-CCS ska kunna ha ett inflytande till att Sverige ska uppnå klimatneutralitet till 2045. / This study aims to investigate the approach of relevant actors to achieving climate neutrality within Sweden with bio-CCS as a measure. A qualitative content analysis of referrals from the climate policy inquiry report Vägen till en klimatpositiv framtid carried out with a multi-level perspective theory to study the position of these actors. The actors' views are identified and analyzed and compared to previous research. The results show that there are divided opinions among actors regarding bio-CCS and what is needed to promote the technology. The main obstacles to implementing bio-CCS as a measure are considered to be economic and political aspects, other factors also have a significant role in influencing Sweden to achieve climate neutrality by 2045.
2

Practical implementation of Bio-CCS in Uppsala : A techno-economic assessment

Djurberg, Robert January 2020 (has links)
To decrease global warming, bioenergy with carbon capture and storage (Bio-CCS) has been proposed as an effective and necessary tool. Combusting biomass and capturing carbon dioxide (CO2) from the same process results in net negative emissions, hence, reducing the concentration of CO2 in the atmosphere. The infrastructure around heat and power generation in Sweden has transformed to make use of biomass and waste. Bio-CCS has the potential to be a key factor in making the heat sector carbon negative and the Swedish energy system more sustainable. This study has assessed how Bio-CCS can practically be implemented in the Uppsala heat and power plant. In the assessment, three chemical absorption post-combustion carbon capture (CC) technologies were evaluated based on energy requirement, potential to reduce emissions and economics. They are the amine process, the chilled ammonia process (CAP) and the hot potassium carbonate process (HPC). The process of each technology was modelled by performing mass and energy balance calculations when implementing CC on the flue gas streams of the production units using biomass-based fuel at the plant. The modelling enabled finding specific heating, cooling and electricity requirements of the technologies. With this data it was possible to assess the potential emission reduction and CC cost for the different configurations assessed. A solution was proposed in how a CC technology can be integrated into the system of the Uppsala plant regarding land footprint, available heat supply to the process and possibilities for waste heat recovery. If heat recovery is not utilized the results show that the amine process is the most cost-effective technology when implemented on the flue gas stream of the waste blocks. When utilizing heat recovery to use waste heat to heat the district heating water, CAP becomes more cost-effective than the amine process. Further improvements can be achieved by combining flue gas streams of the waste blocks to increase the number of hours per year CC can be performed. The plant in Uppsala can then capture 200 000 tonne CO2 annually. The total cost of Bio-CCS will be approximately 900 SEK per tonne CO2 captured. / För att minska den globala uppvärmningen har infångning och lagring av koldioxid från förbränning av biomassa (Bio-CCS) föreslagits som ett effektivt och nödvändigt verktyg. Förbränning av biomassa och infångande av koldioxid från samma process leder till negativa nettoutsläpp, vilket minskar koncentrationen av koldioxid (CO2) i atmosfären. Infrastrukturen kring värme- och kraftproduktion i Sverige har omvandlats till att använda biomassa och avfall. Bio-CCS har potential att vara en nyckelfaktor för att göra värmesektorn koldioxidnegativ och det svenska energisystemet mer hållbart. Denna studie har analyserat hur Bio-CCS praktiskt kan implementeras i Uppsalas kraftvärmeverk. I analysen utvärderades tre infångningstekniker av typen kemisk absorption baserat på energibehov, potential att minska utsläpp och ekonomi. Teknikerna är aminprocessen, chilled ammonia process (CAP) och hot potassium carbonate process (HPC). Processen för varje teknik modellerades genom att utföra mass- och energibalansberäkningar vid infångning av CO2 från rökgasströmmarna producerade av produktionsenheterna som förbränner biomassa. Modelleringen gjorde det möjligt att hitta specifika värme-, kyl- och elbehov för teknikerna. Med dessa data var det möjligt att bedöma den potentiella utsläppsminskningen och kostnaden för infångning för de olika konfigurationer som har analyserats. En lösning föreslogs i hur en infångningsanläggning kan integreras i kraftvärmeverkets system när det gäller markanvändning, tillgänglig värmeförsörjning till processen och möjligheter till återvinning av spillvärme. Om värmeåtervinning inte utnyttjas visar resultaten att aminprocessen är den mest kostnadseffektiva tekniken när den implementeras på rökgasströmmen från avfallsblocken. När man använder värmeåtervinning för att använda spillvärme för att värma fjärrvärmevattnet blir CAP mer kostnadseffektivt än aminprocessen. Ytterligare förbättringar kan uppnås genom att kombinera rökgasströmmar från avfallsblocken för att öka antalet timmar per år infångning kan utföras. Anläggningen i Uppsala kan då årligen fånga 200 000 ton CO2. Den totala kostnaden för Bio-CCS kommer att vara cirka 900 SEK per ton infångad CO2.
3

Potential att lagra koldioxid genom in situ-karbonatisering i Sundsvall och Örnsköldsvik

Öjebrandt, Anna January 2023 (has links)
Samhället står inför stora utmaningar för att lyckas nå målet i Parisavtalet om att begränsa den antropogena uppvärmningen till 1,5˚C samt det nationella klimatmålet om att uppnå netto-noll-utsläpp av växthusgaser senast år 2045. Geologisk lagring av koldioxid (CCS, Carbon Capture and Storage) lyfts fram som en nyckelåtgärd för att reducera koldioxidutsläppen och därigenom uppnå dessa mål. Totalt beräknas ca. 2700 CCS-projekt behövas år 2050, vilket är en signifikant ökning från dagens 27 anläggningar. Bio-CCS, eller BECCS (Bio-Energy with Carbon Capture and Storage) är en CCS-teknik där koldioxid som bildas som en industriell biprodukt fångas in och lagras. Koldioxiden kan till exempel fångas in vid förbränning av biomassa i massa- och pappersbruk. På senare år har en ny geologisk lagringsmetod utvecklats där man lagrar koldioxid genom att bilda stabila karbonatmineral in situ. In situ-karbonatisering utmanar i allra högsta grad den hittills dominerande lagringsmetoden där lagring av koldioxid sker i sedimentär berggrund. När koldioxid lagras i sedimentär berggrund tar det tusentals år för koldioxiden att bilda karbonatmineral, vilket kan jämföras med in situ-karbonatisering där det visat sig ta <2 år att uppnå samma resultat. Karbonatisering påskyndar en naturlig process som sker när kol lagras i marken och utnyttjar därmed bergartens befintliga egenskaper.  Ultramafisk och mafisk berggrund med högt innehåll av tvåvärt järn (Fe2+), kalcium (Ca2+) och magnesium (Mg2+), har visat sig vara lämpade för in situ-karbonatisering. Fram tills nu har potentialen för in situ-karbonatisering aldrig undersökts i Sverige. Detta arbete syftar därför till att karaktärisera mafiska bergarter baserat på deras teoretiska potential att lagra koldioxid genom in situ-karbonatisering, vilket gjorts genom att studera mineralogin och geokemin av olika bergarter från lokaliteter på Alnön, öster om Sundsvall och runt Nordingrå utanför Örnsköldsvik samt områden i närheten av Örnsköldsvik. Det här arbetet är en del av forskningsprojektet INSURANCE som finansieras av Energimyndigheten och syftar till att utvärdera potentialen för bio-CCS i den svenska berggrunden. Resultatet påvisade mineralogiska och geokemiska likheter mellan de provtagna områdena och basalt som visat sig vara lämplig för koldioxidlagring. En del av proverna uppvisar dock tecken på omvandling vilket är påverkar reaktionen negativt. Därför är det främst de lokaler som uppvisar låg omvandlingsgrad som rekommenderas för vidare undersökning. Proverna innehåller mineral som har potential att fungera för in situ-karbonatisering. Det behövs dock ytterligare undersökningar för hur dessa bergarter reagerar med koldioxiden i praktiken (karbonatiseringsexperiment) samt storleken/volymen på en eventuell lagringsplats. / Society faces major challenges to succeed in achieving the goal of the Paris Agreement to limit anthropogenic warming to 1.5°C and the national climate target of achieving zero net emissions of greenhouse gases by 2045. Geological storage of carbon dioxide (CCS, Carbon Capture and Storage) is highlighted as a key action in reducing carbon dioxide emissions and thereby achieve these goals. In total, approx. 2700 CCS projects are needed by 2050, which is a significant increase from today's 27 facilities. Bio-CCS, or BECCS (Bio-Energy with Carbon Capture and Storage) is a CCS technology where carbon dioxide formed as an industrial by-product is captured and stored. The carbon dioxide can, for example, be captured during the combustion of biomass in pulp and paper industries. In recent years, a new geological storage method has been developed where carbon dioxide is stored by forming stable carbonate minerals in situ. In situ carbonation is very much challenging the until now dominant storage method that stores carbon dioxide in sedimentary basins. When carbon dioxide is stored in sedimentary basins, it takes thousands of years for the carbon dioxide to form carbonate minerals, which can be compared to in situ carbonation where it has been shown to take <2 years to achieve the same result. Carbonation accelerates a natural process that occurs when carbon is stored in the soil, thereby utilizing the rock's existing properties. Ultramafic and mafic bedrock with a high content of divalent iron (Fe2+), calcium (Ca2+) and magnesium (Mg2+), have proven to be suitable for in situ carbonation. Until now, the potential for in situ carbonation has not been investigated in the Swedish bedrock. This work therefore aims to characterize mafic rocks based on their theoretical potential to store carbon dioxide through in situ carbonation, which has been done by studying the mineralogy and geochemistry of different rocks from localities on Alnön, east of Sundsvall and around Nordingrå outside Örnsköldsvik and areas near Örnsköldsvik. This work is part of the research project INSURANCE, which is funded by the Swedish Energy Agency and aims to evaluate the potential for bio-CCS in Sweden. The sampled areas show mineralogical and geochemical similarities to basalt which has been proven to be suitable for carbon dioxide storage. However, some of the samples show signs of alteration, which affects the reaction negatively. Therefore, it is mainly those localities that show a low alteration rate that are recommended for further investigation. The samples contain mineral that has the potential to function for in situ carbonation. However, further studies are needed on how these rocks react with carbon dioxide in practice (carbonation experiment) and to evaluate the size/volume of the possible storage site.
4

Vägen mot ett klimatpositivt Haninge : Kartläggning av utsläpp och möjligheter till framtida negativa utsläpp

Babiker, Dina, Ruud, Jessica January 2022 (has links)
För att minska den globala uppvärmningen har en rad olika aktörer satt mål för minskade utsläpp fram till 2050, däribland Haninge kommun. För att kommunen skall minska sina utsläpp bör de först kartlägga sina utsläppskällor för att få en tydlig bild över vart potentiella minskningar kan ske. Som komplement till att minska sina utsläpp och följa Sveriges satta mål med kompletterande åtgärder har kommunen en stor potential inom Bio-CCS då kommunen huserar Jordbro kraftvärmeverk, ett kraftvärmeverk som ägs av Vattenfall och drivs helt på biobränslen. Bio-CCS ligger under kategorin negativa emissions teknologier och har en stor potential till att minska koldioxidhalten i atmosfären. Studiens syfte är att föreslå en åtgärdssammansättning för att hjälpa Haninge kommun bli klimatpositivt. För att uppfylla syftet ska utsläppens magnitud och fördelning i kommunen undersökas, för att sedan utforska möjliga åtgärder för att minska och kompensera för utsläppen. Ett fokus för studien är att analysera vilken potential Vattenfalls anläggning i Jordbro har för att bidra till negativa utsläpp i Haninge, med en utblick för andra möjliga tekniker för negativa utsläpp inom kommunen. För att uppnå syftet gjordes en djupgående litteraturstudie där metoder för klimatberäkningar undersöktes för att komma fram till vilken metod som är lämpligast ur ett kommunperspektiv där Greenhouse Gas Protocols redovisningsstandard för städer valdes och verktyget som valdes för klimatredovisningen var Greenhouse Gas Protocols egna verktyg CIRIS. För scenarioanalysen av kommunens väg mot klimatpositivitet fram till 2050 valdes programmet LEAP och till sist gjordes en enkel ekonomisk analys och dimensionering av en Bio-CCS anläggning i Jordbro kraftvärmeverk baserat på kraftvärmeverkets värmeproduktion. Resultatet blev att för basåret 2018 släppte Haninge kommun ut 2,3 ton koldioxidekvivalenter per capita baserat på geografiska utsläpp, motsvarande 209 000 ton koldioxid ekvivalenter. Som resultat av privat konsumtion i Haninge släppte kommunens invånare ut 4,9 ton koldioxidekvivalenter per capita. För att kunna nå de mål som är uppsatta skulle Haninge kommun behöva minska utsläppen genom åtgärder inom främst transportsektorn samt öka andelen av biobaserade byggmaterial. För att nå målet om klimatpositivitet anses Bio-CCS vara den enda passande och realistiska negativa emissionsteknologin i dagsläget. Vid genomförande av alla åtgärder nås år 2050 vid slutet av modelleringsperioden -35 tusen ton koldioxidekvivalenter, en minskning med 60% jämfört med förväntad utveckling. I den initiala analysen uppskattas att Bio-CCS i Jordbroanläggningen skulle kunna bidra till en minskning på cirka 150 000 ton koldioxidekvivalenter per år. För att på ett kostnadseffektivt sätt installera koldioxidinfångning i Jordbro bör infångningskapaciteten ligga på 21 ton koldioxid per timme till en uppskattad kostnad på 770 SEK per ton koldioxid. Vid finansiering av en Bio-CCS anläggning krävs det i dagsläget statliga stöd då det inte finns någon marknad än för infångad koldioxid som skulle göra det till en lönsam investering / To reduce global warming a number of different stakeholders have set targets for reduced emissions by 2050, including Haninge municipality. In order for the municipality to reduce its emissions the first step is to map their emission sources to get a clear picture of where potential reductions can take place. As a complement to reducing its emissions and following Sweden's set goals with complementary measures the municipality has great potential regarding Bio-CCS as the municipality houses a combined heat and power plant in Jordbro, a plant owned by Vattenfall which runs entirely on biofuels. Bio-CCS falls under the category of negative emission technologies and has great potential for reducing the amount of carbon dioxide in the atmosphere. The purpose of the study is to propose a composition of measures to help Haninge municipality become climate positive. To fulfill the purpose, the magnitude and distribution of emissions in the municipality have been examined, and an investigation of possible measures to reduce and compensate for the emissions has been done. A focus of the study is to analyze what potential Vattenfall's facility in Jordbro has to contribute to negative emissions in Haninge, together with other possible technologies for negative emissions within the municipality. To achieve this purpose, an in-depth literature study was conducted where methods for greenhouse gas inventory were examined to determine which method is most suitable from a municipal perspective. The conclusion was that Greenhouse Gas Protocol's accounting standard for cities was the best fit. Furthermore, various tools for compiling climate data were examined, which laid the foundation for Haninge municipality's overall climate report. The tool chosen for the climate report was Greenhouse Gas Protocol's own tool CIRIS. For the scenario analysis of the municipality's road towards climate positivity before 2050, the program LEAP was chosen and finally a simple economic analysis was made for the dimensioning of a Bio-CCS plant in Jordbro’s combined heat and power plant based on the plant’s heat production. It was concluded that for the base year 2018, Haninge municipality emitted 2.3 tonnes of carbon dioxide equivalents per capita when considering the territorial emissions, corresponding to 209 000 tonnes of carbon dioxide equivalents. As a result of household consumption within the municipality inhabitants emitted 4.9 tonnes carbon dioxide equivalents per capita. In order to be able to achieve the goals that have been set, Haninge municipality would need to reduce emissions through measures primarily in the transport sector and increase the share of bio-based building materials. To achieve the goal of climate positivity, Bio-CCS is considered to be the only suitable and realistic negative emission technology at present. By implementing a range of solutions, the emissions in 2050 at the end of the modeling period reach -35 thousand tonnes of carbon dioxide equivalents, a reduction of 60% compared to expected development. In the initial analysis, it is estimated that Bio-CCS in the Jordbro plant could contribute to a reduction of approximately 150 000 tonnes of carbon dioxide equivalents per year. In order to install carbon capture in a cost-effective way in Jordbro, the capture capacity should be 21 tonnes of carbon dioxide per hour at an estimated cost of SEK 770 per tonne of carbon dioxide. Financially, a Bio-CCS facility currently needs state aid as there is no market for captured CO2 that would make it a profitable investment.
5

Integrating Chemical Looping Gasification for Hydrogen Generation and CO2 Capture in Pulp Mills / Integrering av Chemical Looping Gasification för Generering av Vätgas samt CO2 Infångning på Massabruk

Palmér, Matilda January 2022 (has links)
Utsläpp av CO2 till atmosfären bidrar till ökningen av globala temperaturer. Industrisektorn står för 20 % av utsläppen och utav dessa kommer 6 % från pappers- och massaindustrin. För att lyckas minska den globala temperaturhöjningen till under 1,5 °C hjälper det inte bara att minska utsläppen. Även negativa utsläpp måste genereras. Syftet med denna studie är att undersöka implementeringen av CLG för att separera CO2 på ett energieffektivt sätt och samtidigt generera H2 och elektricitet. Processanalyser genomfördes för att undersöka möjligheten att implementera CLG-processen till ett typiskt massabruk. Processmodeller togs fram for att undersöka CLG, värmeåtervinning samt elektricitetsgenerering. Processmodellerna utvecklades med hjälp av Aspen Plus och Aspen HYSYS. De framtagna modellerna analyserades sedan med avseende på olika designparametrar inom CLG-processen. På ett typiskt massabruk som producerar 800 000 adt varje år kan 375 kg CO2/adt separeras och då uppnå negativa utsläpp, genom att byta ut multi-fuel forsrännaren med en CLG process. Den framtagna processmodellen skulle också kunna generera 360-504 kWh/adt av H2 beroende på de designparametrar som används för CLG-processen. Enligt modellen kan värme som återvinns från processen användas för att fånga upp ytterligare 13 % av CO2 från andra delar av bruket. Processanalys för olika designparametrar inom CLG systemet så som temperatur, luftflöde och flödet av syrgasbärare har presenterats. Nyckeltalen som undersöktes var den mängd CO2 som kunde fångas upp, mängd H2 genererad samt överskottet av elektricitet som produceras när multi-fuel förbränningen byts ut mot en CLG-process på ett typiskt massa bruk. / Emissions of CO2 to the atmosphere are contributing to the global temperature rise. The industrial sector contributed to 20 % of the emissions and out of that, 6 % are generated from the pulp and paper industry. To limit the temperature increase below 1,5 °C, the emissions not only need to be reduced but also negative emissions should be generated from different sectors. The purpose of this study is to realize the implementation of Chemical Looping Gasification (CLG) to separate CO2 (for permanent storage) in an energy-efficient way while co-generating H2 as well as electricity. Process analysis was carried out to investigate the possibility of substituting the multifuel boiler in a typical pulp mill with a CLG process. Process models for the CLG, heat recovery and electricity generation process were developed using AspenPlus and Aspen HYSYS. The process was analysed for different design conditions (temperature, autothermal condition, air flow, oxygen carrier flow) in the CLG process. It was found that in a typical pulp mill producing 800 000 adt per year, 375 kg- CO2/adt (14 % of total emissions from the process) can be inherently separated for storage to achieve negative emissions, if the multi-fuel boiler is replaced with a CLG unit. This process will also be able to generate 360-504 kWh/adt H2 depending on the design conditions in the CLG process. Heat recovered from the CLG unit can be utilized in capturing approximately 13 % additional CO2 from other sources in the pulp mill. Process analysis for different design conditions in CLG (temperature, airflow, oxygen carrier flow) have been presented. The key performance indicators were CO2 capture rates, H2 generated and net electrical output from the process.
6

Integrating Chemical Looping Gasification for Hydrogen Generation and CO2 Capture in Pulp Mills / Integrering av Chemical Looping Gasification för Generering av Vätgas samt CO2 Infångning på Massabruk

Pamér, Matilda January 2022 (has links)
Utsläpp av CO2 till atmosfären bidrar till ökningen av globala temperaturer. Industrisektorn står för 20 % av utsläppen och utav dessa kommer 6 % från pappers- och massaindustrin. För att lyckas minska den globala temperaturhöjningen till under 1,5 °C hjälper det inte bara att minska utsläppen. Även negativa utsläpp måste genereras. Syftet med denna studie är att undersöka implementeringen av CLG för att separera CO2 på ett energieffektivt sätt och samtidigt generera H2 och elektricitet. Processanalyser genomfördes för att undersöka möjligheten att implementera CLG-processen till ett typiskt massabruk. Processmodeller togs fram for att undersöka CLG, värmeåtervinning samt elektricitetsgenerering. Processmodellerna utvecklades med hjälp av Aspen Plus och Aspen HYSYS. De framtagna modellerna analyserades sedan med avseende på olika designparametrar inom CLG-processen. På ett typiskt massabruk som producerar 800 000 adt varje ˚ar kan 375 kg CO2/adt separeras och då uppnå negativa utsläpp, genom att byta ut multi-fuel forsrännaren med en CLG process. Den framtagna processmodellen skulle också kunna generera 360-504 kWh/adt av H2 beroende på de designparametrar som används för CLG-processen. Enligt modellen kan värme som ˚återvinns från processen användas för att fånga upp ytterligare 13 % av CO2 från andra delar av bruket. Processanalys för olika designparametrar inom CLG systemet så som temperatur, luftflöde och flödet av syrgasbärare har presenterats. Nyckeltalen som undersöktes var den mängd CO2 som kunde fångas upp, mängd H2 genererad samt överskottet av elektricitet som produceras när multi-fuel förbränningen byts ut mot en CLG-process på ett typiskt massa bruk. / Emissions of CO2 to the atmosphere are contributing to the global temperature rise. The industrial sector contributed to 20 % of the emissions and out of that, 6 % are generated from the pulp and paper industry. To limit the temperature increase below 1,5 °C, the emissions not only need to be reduced but also negative emissions should be generated from different sectors. The purpose of this study is to realize the implementation of Chemical Looping Gasification (CLG) to separate CO2 (for permanent storage) in an energy-efficient way while co-generating H2 as well as electricity. Process analysis was carried out to investigate the possibility of substituting the multifuel boiler in a typical pulp mill with a CLG process. Process models for the CLG, heat recovery and electricity generation process were developed using Aspen  Plus and Aspen HYSYS. The process was analysed for different design conditions (temperature, autothermal condition, air flow, oxygen carrier flow) in the CLG process. It was found that in a typical pulp mill producing 800 000 adt per year, 375 kg- CO2/adt (14 % of total emissions from the process) can be inherently separated for storage to achieve negative emissions, if the multi-fuel boiler is replaced with a CLG unit. This process will also be able to generate 360-504 kWh/adt H2 depending on the design conditions in the CLG process. Heat recovered from the CLG unit can be utilized in capturing approximately 13 % additional CO2 from other sources in the pulp mill. Process analysis for different design conditions in CLG (temperature, airflow, oxygen carrier flow) have been presented. The key performance indicators were CO2 capture rates, H2 generated and net electrical output from the process.
7

Möjligheterna att implementera bio-CCS och CCS på Högdalenverket : En fallstudie över fyra olika koldioxidavskiljningsteknologier och deras kompatibilitet på Högdalenverket med avseende på tekniska, ekonomiska, miljömässiga och energirelaterade aspekter. / The possibilities to implement bio-CCS and CCS at Högdalenverket : A case study about four different carbon capture technologies and their compatibility at Högdalenverket with regards to technical, economical, environmental and energy related aspects

Nilsson, Emma, Östlund, Evelina January 2021 (has links)
Increased carbon dioxide in the atmosphere has raised the attention to Carbon Capture and Storage (CCS). Stockholm Exergi is a company conducting research on CCS and bio-CCS, a form of CCS where biogenic CO2 is captured. This master thesis analyzed the possibilities to implement CCS and bio-CCS at Högdalenverket, one of Stockholm Exergi’s combined heat and power plant with waste incineration. The aim was to investigate advantages and disadvantages with different carbon capture technologies (CC technologies) considering technical, economical, and energy related aspects. Industrial and household waste are incinerated in four boilers at Högdalenverket. Two cases were analyzed, one case with all boilers connected to the CC technology and one case with the boiler with the highest degree of CO2 emission connected. The CC technologies taken into consideration were amine technology, Hot Potassium Carbonates (HPC), Compact Carbon Capture (3C), and Svante. Amine technology and HPC use chemical absorption in static columns. The Amine technology is the most investigated and used one. It uses temperature swing absorption with amines as absorbent. HPC uses pressure swing absorption with potassium carbonate as absorbent. The remaining two are new process intensified technologies. 3C uses rotating packed beds and absorbs CO2 chemically using, most commonly, amines. Svante also uses a rotating technique by chemically adsorbing CO2 with nanomaterial as the solid adsorbent. All CC technologies need steam to regenerate CO2. The steam was assumed to be extracted from the existing steam network at Högdalenverket with a pressure and temperature of 36 bar and 400 degrees. The method used in the study was mainly literature review with peer reviewed articles regarding CCS as base. It was of importance to analyze how the flue gases could affect the CC technologies since the waste has an inhomogeneous composition. The flue gas composition was compiled using external and internal measurements from 2019 and 2020. Furthermore, energy and power calculations were performed to investigate how the heat and electricity delivery would be affected if the different CC technologies were implemented. Moreover, economic calculations regarding the cost for heat and electricity were carried out. Two interviews were also conducted, one with a CCS consultant company and one with internal staff at Högdalenverket. According to the literature review, O2, SO2, and NO2 appeared to be the pollutants causing highest risk of solvent degradation in the flue gases. The high O2 content at Högdalenverket could cause oxidative degradation, especially in amine technology. The SO2 and NO2 content in the flue gases was mainly low and would therefore not significantly affect the technologies. Peeks with high content did however occur and amines, especially within the amine technology, could form toxic and cancerogenic nitrosamines with NO2 which should not be released to the atmosphere. The flue gas composition proved not to be the limiting factor for implementation of CC technology on all incinerators. However, it is costly and complex to handle the variations in flue gas flow which can occur when all boilers are used. The technologies showed high need of heat and electricity which would result in significant reductions in delivery from Högdalenverket. The need of heat and electricity would in turn lead to high operating costs. The Amine technology showed the greatest influence on the heat delivery due to the significant steam requirement to regenerate CO2. HPC showed extreme influence on the delivery of electricity due to the flue gas compression needed in pressure swing processes. Both technologies consist of high columns with significant degree of land use which would be difficult to implement within the limited area at Högdalenverket. As a result of these aspects, HPC and Amine technology are not considered to be suitable technologies to implement at Högdalenverket. However, the master thesis presented measures for energy saving that should be considered before excluding the technologies. One energy saving measure is to find the optimal heat recovery, for example by pinch-analysis. Moreover, composition, concentration, and flowrate of the absorbent can be analyzed. In addition, higher columns are associated with lower need of energy. Finally, modifications of the capture process can be investigated, and one example is to split the flow of the absorbent into two streams into the columns. 3C and Svante are compact technologies that require less land and have potential to fit at more locations at Högdalenverket. The compact design also leads to 50 percent less investments costs compared to the other two technologies. Moreover, these technologies are presented as more resistant against degradation of sorbents, and both requires less energy to regenerate CO2. These technologies are therefore more suitable for implementation at Högdalenverket. A drawback is that they are not yet commercially developed, they are only located at 6-7 at the TRL-scale. TRL stands for Technology Readiness Level and implies how developed the technology is. The scale ranges from one to nine where nine means that the technology is commercially developed. Today, there are no economic incentives for the biogenic part of the CO2 emissions. However, there are investigations ongoing to create a market and economic incentives for the bio-genic part, one of the suggestions is reversed auctions. It is important to investigate methods to reduce the technologies need of heat and electricity, e.g., by finding other ways to extract steam instead of using steam with high exergy. Reducing the need of energy is important in the view of cost reduction, but also to avoid potential transfer of emissions to fossil CO2 generating production. The losses of heat and electricity generation that occur when implementing a CC technology need to be replaced. This replacement could end up being production from fossil fuels if no other options are available. Another aspect that needs to be considered is the suitability of using amines to a greater extent since it could cause serious environmental and health issues.
8

Koldioxidneutral läkemedelsindustri : BECCS som en möjlighet för att uppnå nettonollutsläpp på en produktionssite

Karlsson, Malin January 2021 (has links)
Industries have faced challenges trying to lower carbon emissions and reach climate goals solely with energy efficiency and renewable energy sources but there are still some emissions that will not be mitigated by this. The purpose of this work has been to evaluate bio-energy with carbon capture and storage with co-combustion in a current study as a way to breach the gap and achieve net zero emissions on AstraZenecas production site Snäckviken. A carbon audit based on GHG Protocol has been performed to evaluate the total emissions at the site. Energy calculations were performed based on the possibilities of co-combustion with waste solvent and biofuel to produce process steam. With the flue gas characteristics for the combustion, calculations for a post combustion carbon capture plant using MEA solvent was made. An economic evaluation has been performed based on a reference plant and carbon captured for the current study. The results showed that the carbon capture lowered the emissions for the production site from 1 020 tons CO2 per year to - 2 400 tons CO2 at a cost of 1 360 SEK/tons CO2. The CO2 avoidance cost was high compared to other studies due to lower capacity. However, great savings could be m ade from handling the waste solvent on site instead of paying for the destruction of the waste. Therefore, a carbon capture plant could still be feasible for the current study.
9

Koldioxidavskiljning på ett biobränsleeldat kraftvärmeverk : Simulering av två avskiljningstekniker vid Karlstad Energis kraftvärmeverk, Heden 3 / Carbon dioxide capture at a biofuel-fired CHP-plant : Simulation of two separation techniques at Karlstad Energy's CHP-plant, Heden 3

Bergström, Sandra January 2020 (has links)
BECCS (Bioenergy Carbon Capture and Storage) is an important part of measures to achieve zero net emissions globally by 2050, as the technology can create carbon sinks. However, the technology is very energy-intensive and expensive, and affects the existing systems at implementation. The purpose of this study is to investigate the possibility of implementing BECCS at Karlstad Energy's biofuel-fired CHP-plant, Heden 3. The goal is, by simulation in CHEMCAD, to generate energy consumption key figures for two different separation technologies (MEA-MonoEthanolAmine and HPC-HotPotassiumCarbonate) with 90 % separation rate in three different operating cases. In addition, the systemic impact on Heden 3 will be determined by analyzing three different scenarios. In the first scenario fuel consumption is kept unchanged and steam to the carbon capture system is extracted before the turbine. In the second scenario fuel supply increases to meet the district heating needs of the existing system and steam to the carbon capture system is extracted before the turbine. In the third scenario fuel supply is kept unchanged and steam is extracted from the turbine. In addition, the study investigates various transport options for storage of carbon dioxide and finally calculate the total carbon sink Karlstad Energy can contribute to. The results show that production of electricity is reduced by 65-87 % after implementation of MEA and 151-238 % for HPC in the first scenario. Without heat utilization in the carbon capture system, heat production is reduced by 66-86 % with MEA and 54-76% for HPC. In the second scenario, a fuel supply increase by 134 % is required to meet the needs, which corresponds to more than twice the boiler capacity and results in a reduced production of electricity by 247 %. In the third scenario, production of electricity is reduced by 104 % at maximum load with HPC. The HPC system has high-quality heat to utilize, probably enough to meet the district heating needs without increasing the boiler power. But heat optimization opportunities need to be further explored in order to be able to express something to a greater extent. The MEA process does not offer the same opportunities for heat utilization. As the CHP-plant have heat as the main product, HPC would be a more suitable alternative despite the high load on the electricity production. The performance of the carbon dioxide plant seems to vary between different operating cases and it can be concluded that the variation is related to the flue gas composition rather than being load dependent. Transport of carbon dioxide by train has the lowest carbon dioxide emissions and requires the least number of cargoes for transport from Karlstad to storage in Norway. However, this is not relevant at present because of the lack of rail connection to the plant. Total carbon sink is approximately 127 000 tonnes per year if the boiler capacity is assumed to be unchanged. / BECCS (Bioenergy Carbon Capture and Storage) är en viktig del av åtgärder i målet om att nå nollnetto utsläpp år 2050 globalt, då tekniken kan skapa kolsänkor. Tekniken är dock mycket energikrävande och dyr, och påverkar de befintliga systemen vid implementering. Syftet med den här studien är att undersöka möjligheten att implementera BECCS på Karlstad Energis biobränsleeldade kraftvärmeverk, Heden 3. Målet är att, genom simulering i CHEMCAD, ta fram förbrukningsnyckeltal för två olika avskiljningstekniker (MEA-MonoEtanolAmin och HPC-HotPotassiumCarbonate) med 90 % avskiljningsgrad vid tre olika driftfall. Dessutom ska systempåverkan på Heden 3 fastställas genom analys av tre olika scenarier. I första scenariot hålls bränsleförbrukningen oförändrad och ånga till koldioxidavskiljningssystemet tappas av innan turbinen. I det andra scenariot ökar bränsletillförseln för att tillgodose fjärrvärmebehovet i det befintliga systemet och ånga till koldioxidavskiljningssystemet tappas av innan turbinen. I det tredje scenariot hålls bränsletillförseln oförändrad och ånga extraheras från turbinen. Därtill undersöks i studien olika transportmöjligheter till lagringsplats av koldioxiden och slutligen beräknas den totala kolsänkan Karlstad Energi kan bidra med. Resultaten visar att elproduktionen i det första scenariot reduceras med 65-87 % för MEA och för HPC 151-238 %. Utan värmeutnyttjande från koldioxidavskiljningssystemen reduceras värmeproduktionen med 66-86 % med MEA och 54-76 % med HPC. I det andra scenariot krävs att bränsletillförseln ökar med 134 % för att tillgodose behoven vilket motsvarar mer än dubbla panneffekten och innebär en reducerad elproduktion på 247 %. I det tredje scenariot reduceras elproduktionen med 104 % vid maximal last med HPC.  I HPC-systemet finns högvärdig värme att utnyttja, sannolikt tillräckligt mycket för att kunna uppfylla fjärrvärmebehovet utan att öka panneffekten. Men värmeoptimeringsmöjligheter behöver undersökas ytterligare för att kunna uttrycka något i större omfattning. I MEA-processen finns inte samma möjligheter till värmeutnyttjande. Eftersom kraftvärmeverket har värme som främsta produkt skulle således HPC vara ett lämpligare alternativ trots den höga belastningen på elproduktionen. Koldioxidanläggningens prestanda förefaller variera mellan olika driftfall och med en enklare undersökning kunde slutsatsen dras att variationen har ett samband med rökgassammansättningen snarare än att det är ett lastberoende. Transport av koldioxid med tåg har lägst koldioxidutsläpp och kräver minst antal laster för transport från Karlstad till lagring i Norge. Detta är dock inte aktuellt i dagsläget på grund av avsaknaden av räls in till verket. Den totala kolsänkan är cirka 127 000 ton per år om pannan antas köras oförändrat.
10

Mapping Carbon Storage and Potential Bioenergy Production in Södertälje Using High-resolution Biotope Database

Åkerström, Lisa January 2022 (has links)
Global warming is caused by the human induced increase of Greenhouse Gases (GHG) in the atmosphere. GHG emissions need to be reduced, and carbon dioxide (CO2) emissions from fossil sources ceased to mitigate global warming. Energy production and use is a main contributor to fossil sourced emissions in Europe. Sweden has a high part renewable power production but not completely, to have a 100% renewable power production by 2040 is a goal set by Swedish government. By 2045 Sweden also plans to have net zero emissions nationwide and afterwards negative emissions of CO2, to reduce global warming and reach the Paris agreement of maximum 1.5°C global warming level it is urgent and vital to create Carbon (C) sinks and to reach neutral and even negative emissions within the energy sector. Negative emissions can be reached in Combined Heat and Power plants (CHP) by Bio Carbon Capture and Storage (Bio-CCS). Demand on wood chips and bio-energy fuel is increasing on the European continent. A local source of biofuel might contribute to shorter transports, a local C-sink, security in supply and a way to meet both the increasing competition of fuel and the environmental political targets. Here we investigate the available land for local production of bioenergy forests in Södertälje and the amount of energy possible to produce from that. Using a detailed biotope database over the municipality, Biotopdatabasen, and a Geographical Information System (GIS) based approach 5 scenarios of potential land areal for planting of energy forests in the municipality have been analysed. Different criteria selections in biotopes, grasslands and historical crop fields, and land use, used or un-used, builds the scenarios; 1. All available grasslands, 1010 ha, 2. All available grasslands on earlier crop fields, 815 ha, 3. Unused available grassland on earlier crop field, 300 ha, 4. Available land on earlier crop fields, including forestry, 1715 ha, 5. Unused available land on earlier crop fields, 366 ha. Gross annual energy yields from energy forest in the scenarios were estimated to; 1. 46,2-65,1 GWh/y, 2. 37,3-52,5 GWh/y, 3. 13,7-19,3 GWh/y, 4. 78,4-110,5 GWh/y, 5. 16,7-23,6 GWh/y. The yield from all these scenarios will, in the expected gross normal yield scenario, match the energy produced today by fossil fuels in the local CHP and heating plant (0.64%, 2020) yields 0.69-3.96% of total energy produced. Scenarios 3 and 5 are considered likely scenarios but the effect on spreading pathways and thereby biodiversity needs to be assessed, using old crop fields lowers the risk of harming important biodiversity and possibly help restore C sink in soils.

Page generated in 0.8251 seconds