• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 9
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Utsläpp och lagring av koldioxid : En jämförelse mellan två byggnadsstommar / Emissions and storage of carbon dioxide

Johansson, Emil January 2019 (has links)
Impacts from climate change are affecting all life on earth and the building sector is a great contributor of greenhouse gases. A transformation of the building sector is one part of the solution to limit impacts from human-driven climate change. In Sweden approximately one fifth of all emissions of carbon dioxide comes from the building sector. In this report a comparison of emissions of greenhouse gases and storage of carbon dioxide has been done for two different building systems of a house with three floors and 12 apartments. In the result it appears that emissions from the wooden building is near 0 carbon dioxide equivalent (9 000 kg CDE) when the storage of carbon dioxide in wooden products are considered. The value for the concrete building is almost 20 times higher, 164 000 kilogram CDE. Comparisons of each construction like exterior walls, interior walls and floors show that emissions of greenhouse gases from the concrete building are bigger for each part. Also when the captured carbon dioxide in wooden products is not considered. Floors in both buildings stand for most of the greenhouse gas emissions. For all wooden products the captured carbon is about ten times higher than the emissions of CDE in productions of the products. These values could be interpreted that wooden buildings have potential to work as efficient carbon storage. / Klimatfrågan är en av vår tids ödesfrågor. Majoriteten av forskarkåren är enig om att mänskligheten måste minimera utsläpp av växthusgaser för att inte riskera kraftiga förändringar i klimat och ekosystem som på sikt utgör ett hot mot hela vår civilisation. En omställning av byggbranschen är nödvändig som en del av lösningen. Sveriges byggsektor står för cirka en femtedel av landets totala koldioxidutsläpp. 85 procent av alla nyproducerade lägenheter i Sverige byggs med betongstomme medan motsvarande siffra för trästomme är 13 procent. I rapporten har två alternativ av stommar analyserats ur ett klimatperspektiv för ett lägenhetshus med 12 lägenheter. Där ena stommen är projekterad i trä och den andra i betong. De klimatperspektiv som beaktas är utsläpp av växthusgaser i produktion av varje enskilt material och det bundna kolet i alla träprodukter. Den enhet som använts för utsläpp är koldioxidekvivalenter (CO2e) som är en sammanvägning av främst växthusgaserna koldioxid, metan och kväveoxid. Det bundna kolet i träprodukter är inräknat som koldioxidupptag (CO2u). Utsläpp av CO2e och upptag av CO2u har beaktats för varje material i respektive stomme. En förenklad livscykelanalys har använts där de utsläpp som genereras från utvinning av råmaterial till färdig produkt är medräknade. Det innefattar steg A1-A3 i en livscykelanalys. Dessa tre produktionssteg i livscykelanalysen bidrar till klart störst utsläpp i en byggprocess lik den som analyerats. Genom projektering av en och samma byggnad med två olika stommar har mängden byggmaterial för respektive stomme räknats fram med hjälp av ritningar, materiallistor och kalkylprogram. Egenskaperna för de olika stommarna har eftersträvas att matcha varandra gällande ljudklasser, brandskydd, hållfasthet och värmeisoleringsförmåga. Fukt och andra byggtekniska egenskaper har lämnats utanför. Resultatet visar att nettoutsläppen för byggnaden med trästommen är nära 0 (9 ton CO2e). För betongstommen är klimatpåverkan nästan 20 gånger högre, 164 ton CO2e. Om inte upptaget kol i träprodukter tas med blir utsläppen från trästommen cirka 171 ton CO2e och för betongstommen hamnar utsläppen på cirka 212 ton CO2e. Jämförelser har utförts på varje byggnadsdel och resultatet visar att betongstommens koldioxidpåverkan är större i alla byggnadsdelar, även då inte koldioxidupptaget beaktas, men skillnaden i bjälklagen är små. Bjälklagen som är den byggnadsdel i respektive stomme som står för störst utsläpp av koldioxidekvivalenter med 34 procent i betongbyggnaden samt 40 procent i träbyggnaden av de totala utsläppen från vardera stomme. Betongen står för klart högst klimatpåverkan av materialen i betongstommen med cirka 129 ton CO2e. I trästommen står isoleringen i form av mineral och stenull samt cellplast för störst klimatpåverkan med utsläpp av 93 ton CO2e. Samtliga resultat presenteras utförligt i diagram och tabeller. Ingen av stommarna är projekterade med mål för en liten klimatpåverkan. Förbättringspotential hos vardera konstruktion är därmed stor. Ytterväggarna i betongstommen skulle med fördel vara byggda av lättbetong för att nämna en koldioxidbesparande åtgärd. Isolering med mineralull och stenull står för cirka 50 % av utsläppen i träbyggnaden, hade träfiberisolering används skulle den posten av CO e minskat samtidigt som koldioxidupptaget ökat. För samtliga träprodukter överstiger det bundna kolet utsläppen av koldioxid som skapas vid produktionen av varan. Upptaget av koldioxid är cirka 1,6 kg per kilo material medan träprodukter i framställning släpper ut mellan 0,1-0,2 kg per kilo material. Detta visar potentialen hos träbyggnader ur ett klimatperspektiv om virket kommer från ett hållbart skogsbruk där återplantering är ett krav och den totala virkesvolymen bibehålls, vilket är fallet i Sverige. Den vetskapen visar att trähus kan fungera som effektiv koldioxidlagring och att sveriges husbyggnadsbransch har möjlighet att vara klimatneutral vid mer byggande i trä.
2

Kan Gotland reducera en stor del av sina koldioxidutsläpp genom CCS? / Can Gotland reduce a great deal of its carbon dioxide emissions through CCS?

Dahlström, Erika January 2019 (has links)
De ökande växthusgasutsläppen till atmosfären leder till skadliga effekter för jordens klimat. Växthusgasutsläppen minskar i för långsam takt för att klimatpolitiska mål ska kunna nås, till exempel Parisavtalet från 2015. Koldioxidlagring eller CCS (Carbon Capture and Storage) ses som en viktig teknik för att minska industriers utsläpp, speciellt inom energiproduktion men även inom cementindustri, för att minska utsläpp från tillverkningsprocessen. I den här studien undersöks möjligheterna för koldioxidlagring i ett område i sydöstra Östersjön. Syftet är att undersöka möjligheten att Gotland kan reducera en stor del av sina koldioxidutsläpp genom CCS-teknik. En source to sink-matchning utförs genom att matcha koldioxidutsläppen från utvalda industrier på Gotland med geologiska reservoarer i Östersjön, för att se om reservoarerna kan lagra koldioxiden. Resultaten visar att lagringskapaciteten i området är enorm teoretiskt sett, i praktiken är kapaciteten låg och det krävs en undersökning av ett större område än det som undersöktes i denna studie. Kostnaderna för CCS-teknik är mycket höga och det krävs statliga finansieringar inledningsvis för implementering. Kostnaden för koldioxidutsläpp bör vara högre än kostnaden för koldioxidlagring. Teknikutveckling, samhällsförändring och samarbete mellan länder är viktigt för att öka takten av CCS implementering. / Increasing greenhouse gas emissions will lead to harmful effects on the climate of the Earth. The emissions are decreasing too slowly in order to achieve policy objectives such as the Paris Agreement, 2015. CCS (Carbon Capture and Storage) is considered important to reduce industrial emissions, especially in the energy generation sector, but also in the cement industry, to reduce emissions connected to the production processes. The possibilities for CCS in an area in the southeastern Baltic Sea are investigated. The objective is to investigate the possibility that Gotland can reduce a great deal of its carbon dioxide emissions through CCS-technology. A source-to-sink match is performed by matching emissions from selected industries in Gotland with geological reservoirs in the Baltic Sea, to see if the reservoirs can store carbon dioxide. The results show that the theoretical storage capacity in the area is huge, but in practice it´s low. This shows that a study of larger areas is required. The costs of CCS technology are very high, government funding is initially required. The cost of carbon dioxide emissions should be higher than the cost of carbon dioxide storage. Technology development, social change and cooperation between countries are needed to increase the pace of CCS implementation.
3

Potential att lagra koldioxid genom in situ-karbonatisering i Sundsvall och Örnsköldsvik

Öjebrandt, Anna January 2023 (has links)
Samhället står inför stora utmaningar för att lyckas nå målet i Parisavtalet om att begränsa den antropogena uppvärmningen till 1,5˚C samt det nationella klimatmålet om att uppnå netto-noll-utsläpp av växthusgaser senast år 2045. Geologisk lagring av koldioxid (CCS, Carbon Capture and Storage) lyfts fram som en nyckelåtgärd för att reducera koldioxidutsläppen och därigenom uppnå dessa mål. Totalt beräknas ca. 2700 CCS-projekt behövas år 2050, vilket är en signifikant ökning från dagens 27 anläggningar. Bio-CCS, eller BECCS (Bio-Energy with Carbon Capture and Storage) är en CCS-teknik där koldioxid som bildas som en industriell biprodukt fångas in och lagras. Koldioxiden kan till exempel fångas in vid förbränning av biomassa i massa- och pappersbruk. På senare år har en ny geologisk lagringsmetod utvecklats där man lagrar koldioxid genom att bilda stabila karbonatmineral in situ. In situ-karbonatisering utmanar i allra högsta grad den hittills dominerande lagringsmetoden där lagring av koldioxid sker i sedimentär berggrund. När koldioxid lagras i sedimentär berggrund tar det tusentals år för koldioxiden att bilda karbonatmineral, vilket kan jämföras med in situ-karbonatisering där det visat sig ta <2 år att uppnå samma resultat. Karbonatisering påskyndar en naturlig process som sker när kol lagras i marken och utnyttjar därmed bergartens befintliga egenskaper.  Ultramafisk och mafisk berggrund med högt innehåll av tvåvärt järn (Fe2+), kalcium (Ca2+) och magnesium (Mg2+), har visat sig vara lämpade för in situ-karbonatisering. Fram tills nu har potentialen för in situ-karbonatisering aldrig undersökts i Sverige. Detta arbete syftar därför till att karaktärisera mafiska bergarter baserat på deras teoretiska potential att lagra koldioxid genom in situ-karbonatisering, vilket gjorts genom att studera mineralogin och geokemin av olika bergarter från lokaliteter på Alnön, öster om Sundsvall och runt Nordingrå utanför Örnsköldsvik samt områden i närheten av Örnsköldsvik. Det här arbetet är en del av forskningsprojektet INSURANCE som finansieras av Energimyndigheten och syftar till att utvärdera potentialen för bio-CCS i den svenska berggrunden. Resultatet påvisade mineralogiska och geokemiska likheter mellan de provtagna områdena och basalt som visat sig vara lämplig för koldioxidlagring. En del av proverna uppvisar dock tecken på omvandling vilket är påverkar reaktionen negativt. Därför är det främst de lokaler som uppvisar låg omvandlingsgrad som rekommenderas för vidare undersökning. Proverna innehåller mineral som har potential att fungera för in situ-karbonatisering. Det behövs dock ytterligare undersökningar för hur dessa bergarter reagerar med koldioxiden i praktiken (karbonatiseringsexperiment) samt storleken/volymen på en eventuell lagringsplats. / Society faces major challenges to succeed in achieving the goal of the Paris Agreement to limit anthropogenic warming to 1.5°C and the national climate target of achieving zero net emissions of greenhouse gases by 2045. Geological storage of carbon dioxide (CCS, Carbon Capture and Storage) is highlighted as a key action in reducing carbon dioxide emissions and thereby achieve these goals. In total, approx. 2700 CCS projects are needed by 2050, which is a significant increase from today's 27 facilities. Bio-CCS, or BECCS (Bio-Energy with Carbon Capture and Storage) is a CCS technology where carbon dioxide formed as an industrial by-product is captured and stored. The carbon dioxide can, for example, be captured during the combustion of biomass in pulp and paper industries. In recent years, a new geological storage method has been developed where carbon dioxide is stored by forming stable carbonate minerals in situ. In situ carbonation is very much challenging the until now dominant storage method that stores carbon dioxide in sedimentary basins. When carbon dioxide is stored in sedimentary basins, it takes thousands of years for the carbon dioxide to form carbonate minerals, which can be compared to in situ carbonation where it has been shown to take <2 years to achieve the same result. Carbonation accelerates a natural process that occurs when carbon is stored in the soil, thereby utilizing the rock's existing properties. Ultramafic and mafic bedrock with a high content of divalent iron (Fe2+), calcium (Ca2+) and magnesium (Mg2+), have proven to be suitable for in situ carbonation. Until now, the potential for in situ carbonation has not been investigated in the Swedish bedrock. This work therefore aims to characterize mafic rocks based on their theoretical potential to store carbon dioxide through in situ carbonation, which has been done by studying the mineralogy and geochemistry of different rocks from localities on Alnön, east of Sundsvall and around Nordingrå outside Örnsköldsvik and areas near Örnsköldsvik. This work is part of the research project INSURANCE, which is funded by the Swedish Energy Agency and aims to evaluate the potential for bio-CCS in Sweden. The sampled areas show mineralogical and geochemical similarities to basalt which has been proven to be suitable for carbon dioxide storage. However, some of the samples show signs of alteration, which affects the reaction negatively. Therefore, it is mainly those localities that show a low alteration rate that are recommended for further investigation. The samples contain mineral that has the potential to function for in situ carbonation. However, further studies are needed on how these rocks react with carbon dioxide in practice (carbonation experiment) and to evaluate the size/volume of the possible storage site.
4

Är koldioxidavskiljning och lagring nödvändigt för att uppnå klimatmålen? : En översikt ur ett globalt, europeiskt och svenskt perspektiv. / Is carbon capture and storage necessary to achieve the climate goals? : An overview from a global, European and Swedish perspective

Rosell, Elias January 2015 (has links)
Koldioxidavskiljning och lagring (CCS) har lyfts fram som ett verktyg för att hejda klimatförändringarna. I detta arbete har det undersökts om CCS är nödvändigt för att uppnå klimatmålen på global, europeisk och svensk nivå. I uppsatsen, som är en litteraturstudie, har det även undersökts vilka möjligheter och risker som finns med att använda CCS och vilka förutsättningar som krävs för att CCS ska användas. Resultaten är att CCS är enligt en majoritet av forskningen nödvändigt för att uppnå tvågradersmålet och det anses även behövas för att EU:s klimatmål ska uppnås. Cirka 10 miljoner ton av de årliga svenska utsläppen runt år 2050 kan behöva lagras om Sverige ska vara klimatneutralt år 2050. Det finns tillräckliga geologiska kapacitet för koldioxidlagring i världen i helhet, Europa och Sverige. En intressant möjlighet med CCS är att ta ned koldioxid från atmosfären genom att lagra koldioxid från bioenergi. Avgörande för utvecklingen av CCS är att det finns ett pris på koldioxidutsläpp som gör det dyrare att släppa ut koldioxid än att lagra den. Det är sannolikt att 99 procent av den lagrade koldioxiden är kvar inom 1000 år. Fossilenergi med CCS är ur klimatsynpunkt betydligt bättre än fossilenergi utan CCS. Men CCS gör inte fossilenergi till ett problemfritt energislag. En nackdel är att CCS leder till mer kolbrytning. En slutsats är att mycket ändå talar för att riskerna med att inte använda CCS för att bekämpa den globala uppvärmningen är större än riskerna med CCS. / Carbon capture and storage (CCS) has been discussed as a possible tool to mitigate climate change. This study is investigating whether CCS is necessary to achieve climate goals at the global, European and Swedish levels. This study, which is a literature-review, has also looked into the possibilities, opportunities and risks linked to the use of CCS. The result is that CCS, according to the majority of the research, is necessary to achieve the “two degree target” and is also needed for achieving EU's climate goals.  By year 2050 Sweden may need to store approximately 10 million tons of emissions annually in order to become climate neutral. There is sufficient geological capacity for carbon storage in the world, where Europe and Sweden have the capacity to store their own emissions. An interesting possibility of CCS is to reduce carbon dioxide from the atmosphere by storing carbon from biomass. Crucial to the development of CCS is the need for a price on carbon dioxide that makes it more expensive to emit carbon dioxide than to store it. It is likely that 99 percent of the stored carbon dioxide is retained for at least 1000 years. Fossil fuels with CCS are from a climate point of view, considerably better than fossil energy without CCS. But CCS does not make fossil energy problem-free. It leads to more coal mining. A conclusion is that the risks of not using CCS to combat global warming are greater than the risks of using CCS.
5

Development of Light Transmission Techniques for Quantification of CO2 Trapping in Porous Media / Utveckling av ljusöverföringsmetoder för kvantifiering av CO2-trapping i poröst medium

Udén, Jonathan January 2015 (has links)
Light transmission can be used to measure the amounts of certain constituents within a system by analyzing the amount of light they have absorbed. The aim of this study was to improve methods for light transmission measurements in two phase systems. In this study, the main reason is to be able to use light transmission for measurements of CO2-trapping in natural sandstone. The latter is something that does not exist today. The study investigated the possibility to use selected liquids that both represent an analogue CO2-brine system and have similar refractive index as each other to simplify Beer-Lamberts law. The simplification suggested that a change in light intensity within a system was controlled solely by the length of a liquid that had replaced another liquid. Two methods were implemented to test this. A tank containing high transparency sand and glycerol was injected several times with dyed oil in order to test equations developed to calculate the length of oil that light had passed. The glycerol and oil were chosen due the ratio between them in density and viscosity. These are properties that make them ideal for modelling the trapping of supercritical CO2 in sandstone saturated with brine. The other method for testing was to measure a coefficient of light absorption for the oil, then applying that coefficient to an injection of a known volume of oil. The analysis results showed that a linear relationship exists between difference in light intensity and the volume of oil in a system. The developed equation for oil length, as a function of light absorption specific for that oil, is sufficient for calculating the volume of oil in the system. It could not be used for calculating exact values in each part of the tank. The placement of oil was crucial to the measured light intensity for a single point. Oil occuring further back in the tank gave lower values of light intensity than oil occuring in the front. The study show that with further investigation into the role of oil placement in the light path, a simpler method could be developed for some light transmission measurements. The method could be used in its current form for modelling CO2 in sandstone but should be further developed if exact values are important / Light transmission är en teknik som används för att mäta mängden av en vätska eller gas genom att låta ljus passera genom det och se hur mycket ljuset minskade i styrka. Tekniken används idag bl.a. för att titta hur föroreningar sprider sig i sand. Vid dessa mätningar så har man en tank med glasväggar fylld av sand och vätska. Syftet med denna studie är att ta fram en metod som gör light transmission mer tillgängligt och enklare att använda. Målet är att ta fram en metod som är så pass allmän att den går att applicera på naturlig sand och sandsten. I sandstenen testas CO2-trapping i djup berggrund. Modelleringen av CO2-trapping i sandsten är något som inte existerar idag med hjälp av light transmission teknik. Metoden i denna studie bygger på att förenkla den formel som normalt används för att beräkna ljusförluster när en stråle ljus passerar genom ett material, Beer-Lamberts lag. Förenklingen sker genom att noggrant välja konstituenterna som används så att den refraktion av ljus som normalt sker mellan två medium försvinner. De konstituenter som skall anpassa är vätskor som ska representera flytande CO2 samt saltvatten. Genom att ta en bild som sedan jämförs med bilder under tiden en injektion av olja sker, så skall enligt teorin endast längden olja som ljuset passera förändra ljusets styrka. De vätskor som väljs är en hydraulolja och glycerol. Dessa väljs eftersom att de beter sig liknande hur CO2 beter sig i saltvatten under högt tryck. 2D experiment på skalor av tiotals cm gör det möjligt att studera hur heterogenitet i sandstenen påverkar hur mycket CO2 som kan fastläggas och därmed lagras på ett säkert sätt. Mer avancerade visualiseringstekniker klarar ofta bara små prover med längdskalor på någon cm. Dessa använder t.ex. röntgenstrålning. I studien används flera kyvetter fyllda med olja som placeras efter varandra för att mäta hur ljusmängden förändras beroende på längden olja den passerar. Detta samband testas sedan på en tank fylld med sand, glycerol och en känd mängd olja. Oljans ljusabsorption framtagen med kyvetter visade sig att inte gå att använda på den uppställning den testades på. Ett annat försök att ta fram ljusabsorptionskoefficienten för oljan gjordes genom att injicera en känd mängd olja i flera steg i samma uppställning som tidigare testats på. Inte heller detta försök gick att använda eftersom koefficienten varierade kraftigt beroende på injektionstillfälle samt mängden olja den beräknades för. Det visade sig finnas en stark korrelation mellan mängden olja i tanken och skillnad i ljusmängd. Det gick dock inte att skapa något generellt samband mellan mängden olja i en specifik punkt och skillnaden i ljus. Det visade sig ha stor betydelse i vilken del av tanken som oljan befann sig. Den olja som låg längre bak i tanken gav mindre ljusskillnad än den som låg längst fram mot glaset. På grund av det starka sambandet mellan ljusskillnad och oljemängd så tyder det på att metoden borde gå att bygga vidare på, men vidare studier krävs. Den metod som testas här måste utvecklas ytterligare för att gå att applicera på sand eller sandsten.
6

Undersökning av möjligheten till utveckling av kommersiellt tillgänglig koldioxidlagring i Sverige / Investigation of the possibility of developing commercially available carbon dioxide storage in Sweden

Jakobsson, Eric January 2020 (has links)
Jordens befolkning behöver kraftigt reducera koldioxidutsläppen till atmosfären för att förhindra klimatförändringar. Klimatmål har sats upp av unioner och länder där de bland annat vill förhindra en global temperaturökning över 1.5 grader. För att uppnå dessa klimatmål menar forskare och institutioner på att stora mängder koldioxid kommer att behöva avskiljas vid utsläppskällor och lagras geologiskt (eng. carbon capture storage, förkortad CCS). I Sverige har ett fåtal CCS-projekt tagit fart men CCS är fortfarande inte kommersiellt tillgängligt. Frågeställningen för det här arbetet var därför: vilka är de mest relevanta utmaningar som kommersiellt tillgänglig CCS står inför idag i Sverige?Metoderna som användes var en litteraturstudie och tre\newline intervjuer. Personerna som intervjuades var en forskare från Chalmers Tekniska högskola, en chef från företaget Stockholm Exergi och en civilingenjör från projektet Northern lights. Utmaningarna delades in i kategorierna: tekniska-, politiska-, ekonomiska- och övriga utmaningar, för att enklare identifieras och jämföras. Resultaten visade att det fanns utmaningar i samtliga kategorier. Den tekniska utmaningen låg framförallt i att bygga upp och anpassa den tillgängliga CCS-tekniken till olika tillämpningsbara industrier. Politiskt var utmaningen främst att övertyga politiker att satsa på CCS, men också att införskaffa tillräckligt stora ekonomiska styrmedel, incitament och investeringar. Detta eftersom de som existerar idag antingen saknades helt eller ansågs vara för små. De ekonomiska utmaningarna var att stimulera investerare samt att bygga upp en fungerande och hållbar ekonomisk plan för CCS. I kategorin övriga utmaningar var den främsta utmaningen att övertyga befolkningen och att sprida kunskap kring CCS och dess potential. Avgränsningar i det här arbetet var framförallt bristen på resurser och tid. Fler intervjuer och en djupare litteraturstudie hade varit önskvärd för att fördjupa studien men begränsades av tid och möjligheter för kursens omfattning. / The world population need to reduce its carbon dioxide emissions to the atmosphere in order to prevent a climate change. Climate targets have been set by unions and countries to reduce carbon dioxide emissions before the average temperature rise exceeds 1.5 degrees Celsius. To achieve these climate goals, researchers and institutions believe large amounts of carbon dioxide needs to be stored below ground (carbon capture storage, abbreviated CCS). In Sweden have a small number of projects taken off, but CCS is still not commercially available. The question for this work was therefore: what are the most relevant challenges that commercially CCS currently faces in Sweden?The methods used were a literature study and three interviews.The persons interviewed were a researcher from Chalmers Tekniska university, a manager from the company Stockholm Exergi and an engineer from the Northern Lights project. The challenges were divided into four categories: technical-, political-, economic-, and other challenges, to make it easier to identify and compare. Results showed that there were challenges in all four categories. The technical challenge was mainly to build and adapt the available CCS technology to different types of industries. Politically, the challenge was primarily to increase their interest and support towards CCS. This along with the challenge of acquiring financial instruments, incentives and investments that was currently lacking or was too small. The economic challenges were to stimulate investors from both private and political quarters and to organize and operate a functioning and sustainable financial plan. In the category other challenges, the most mentioned challenge was convincing the population and to spread knowledge about CCS and its potential. Delimitations in this work was above all the lack of resources and time. More interviews anda deeper literature study would have been desirable to deepen the study but was limited by time and opportunities for the scope of the course.
7

Kolets återkomst : Koldioxidavskiljning och lagring i vetenskap och politik / The return of Coal : Carbon dioxide capture and storage in science and politics

Hansson, Anders January 2008 (has links)
I denna avhandling studeras en ny teknik för att hantera växthuseffekten. Den nya tekniken heter koldioxidavskiljning och lagring (CCS) och granskades av FN:s klimatpanel 2005 och tillskrevs då möjligheterna att stå för 15-55% av alla CO2-reducering fram till 2100 och detta till en 30% lägre kostnad än vad som annars vore möjligt. EU är en framträdande pådrivare av CCS och för fram att växthuseffekten inte kan hanteras utan att CCS implementeras skyndsamt. CCS beskrivs i dessa sammanhang som en hållbar teknik. CCS är emellertid förbunden med långtidslagring, en betydande teknisk komplexitet och tillämpas främst på kolkraftverk. Storskaliga satsningar på CCS kan medföra att kolanvändningen ökar. Syftet med avhandlingen är att analysera de vetenskapliga och politiska ansträngningarna att visa att CCS är en eftersträvansvärd teknik för att hantera växthuseffekten. Utifrån perspektivet ekologisk modernisering och genom granskning av studier av vetenskapliga rapporter, artiklar i massmedia, politiska dokument och intervjuer genomförs studien. Scenerier och prognoser har en central funktion för att kunna påvisa att CCS är en eftersträvansvärd teknik. I flera av dessa scenarier framställs en närmast linjär teknikutveckling och flera betydelsefulla problem och hinder bortses från. CCS framstår som en teknik med stor teknisk och ekonomisk potential och i massmedia beskrivs CCS ofta som oumbärlig. En mer nyanserad bild framträder vid intervjuer med CCS-experter då fler osäkerheter och hinder lyfts fram. Förståelsen för varför denna teknik för stöd av många starka aktörer blir även tydligare. Den dominerande beskrivningen av CCS egenskaper och inverkan på energisystemen ligger i linje med det som är utmärkande för den ekologiska modernisering och således även för det dominerande sättet att bedriva energi- och klimatpolitik idag. / In this dissertation an emerging technology to manage climate change is studied. The technology is carbon dioxide capture and storage (CCS) and was reviewed by the IPCC in 2005. IPCC claims that CCS could contribute 15–55% to the cumulative mitigation effort worldwide until 2100 and reduce the costs of stabilizing CO2 concentrations by 30%. The EU promotes CCS and believes that climate change cannot be managed unless CCS is promptly implemented. In this context CCS is labelled as a sustainable technology. However CCS deals with long-term waste disposal, a significant technological complexity and is meant to be installed mainly in coal-fired power plants. Large scale implementation of CCS might lead to a rise in coal usage and concerns are raised this will impede the development of renewable energy. The aim of this dissertation is to analyze the scientific and political efforts to show that CCS is a rational and viable solution to the climate change problems. The study is conducted from the perspective of ecological modernization and is undertaken through a review of scientific reports, mass media articles, political documents and interviews. Scenarios and prognoses have a central position in making a future of large-scale CCS implementation plausible: through the scenarios, a linear development trend is visualized in which technological and scientific problems are assumed to be solved as CCS is implemented. CCS is described as a technology with substantial potential and is in the mass media often pictured as indispensable. A more nuanced picture appears when analyzing interviews with CCS-experts. The understanding of why this technology is supported by several influential actors is deepened. The dominating description of CCS and impact on the energy systems is compatible to the characteristics of ecological modernization and thus also to the predominating way of practising energy and climate politics today.
8

Koldioxidlagring - realitet eller utopi? : En komparativ fallstudie med syfte att undersöka potentialen för koldioxidlagring i geologiska formationer och biologiska sänkor och dess förmåga att bidra till hållbar utveckling

Holgerson, Line January 2013 (has links)
To curb greenhouse gases and mitigate climate change is one of the biggest challenges human society face today. Carbon dioxide (CO2) has accumulated rapidly in the atmosphere as a consequence of burning of fossil fuels and deforestation. The aim of this study is to explore two methods to store carbon dioxide in geological formations and biological sinks. The aim is also to discuss the two mitigation options from a sustainable perspective and whether it can lead to a better environment and benefits for local and global societies. The research questions are: Which method to store carbon dioxide, geological or biological, is the most effective? Which method to store carbon dioxide, geological or biological, has the greatest potential to promote sustainable development for local communities? The method used is a comparative case study and presents four case studies that explore the potential for CO2 storage offshore in Norway and Brazil; and in tropical forests in Mexico and Brazil. The mitigation options are discussed from two different theoretical perspectives. The principle of the theory of ecological modernisation is that innovation and environmentally friendly technology can solve the environmental problems human societies face today, whereas the theory of common pool resources promotes local communities to govern limited resources in order to manage them sustainably. The findings suggest that ecological modernisation legitimize environmental destruction as carbon dioxide storage in geological formations (CCS) use the technology as a mean to extract more oil and gas; which results in a rebound-effect. Therefore, carbon dioxide capture in geological formations is not a realistic method unless it can prevent further emissions. Protected forest resources can be seen as biological insurance, which safeguard ecosystem services, biodiversity, and the forest potential to hold carbon. Carbon sequestration in tropical forest has the potential to store carbon dioxide given that the forests are protected and local communities have tenure rights, knowledge, and the means to protect the forest and manage them sustainably.
9

Spatial and Temporal Dynamics of  Carbon Sequestration in Stockholm  County's Green areas : A GIS-based Analysis / Kolbindningsdynamiken i Stockholm Läns Grönområden genom Tid : En GIS-baserad Analys

Kareflod, Victoria January 2023 (has links)
The human influence of global climate is an issue currently assessed in various mitigation strategies. Stockholm County has committed to becoming carbon neutral by 2040 and negative by 2045 according to the Paris agreement. The strategy includes cutting of various sectors emissions as well as compensating for remaining emissions with carbon sequestration methods. Accounting for ecosystems ability to sequester carbon at local level in green urban areas is an important in carbon offset efforts. It has emerged from previous research that the sequestration rate may differ depending on vegetation age and thus time passing, which is not assessed on a regional level, which is important for carbon offset efforts to accurately account for the sequestration potential in long-term mitigation strategies. This study therefore aims to fill the knowledge gap of how the temporal aspect affects the current sequestration potential and future predictions, as well as assessing how it can aid in reaching carbon neutrality by 2040. The study are thus aiming to answer the research questions (1) how the carbon sequestration potential of the existing green areas change over time in Stockholm County, (2) if additional measures need to be taken to preserve or increase carbon sequestration to maintain carbon neutrality until 2040 and (3) how the knowledge of sequestration dynamics aid in reaching a carbon neutral city by 2040. A weighing of which Corine Land Cover categories was performed and concluded in the including; discontinuous structures, green urban areas, forests and wetlands, due to their contribution to sequestration potential, estimated change through time, and relevance for Stockholm County. The spatial analysis was made based on calculations with information obtained from processing of obtained data on land cover and species distribution as well as scientific literature on sequestration rates of each vegetation across all life stages, where Net Ecosystem Production was the main measurement used. The estimated results were computed in a Geographic Information System to simulate and visualize the sequestration rates of current and future predictions of 2040 sequestration potential as well as locating areas of interest. The findings show that by including temporal aspects to the assessment of carbon sequestration potential in Stockholm County, the current and future sequestration potential increased from previous research estimations. The total current sequestration potential was 2,8 MtCO2-eq annually and the predictions were estimated to 3,3 MtCO2-eq per year in 2040. As the current emissions in Stockholm County are currently 6 MtCO2-eq per year, the natural sequestration potential provided by the green areas is compensating for 46% of the current emissions. As the estimated future emissions are 0,95 MtCO2-eq annually, the natural sequestration potential more than compensates for the emissions in the county, if the predicted emission reductions are realized. Although further measurements are not seemingly required to achieve carbon neutrality in 2040, the findings further locate areas and species where management practices or protection is beneficial to further add to the sequestration potential of Stockholm County. / Den mänskliga påverkan på det globala klimatet är ett problem som för närvarande bedöms i olika klimatåtgärder. Stockholms län har förbundit sig till ett mål att bli koldioxidneutralt till 2040 och koldioxidnegativt till 2045 enligt Parisavtalets överenskommelser. Strategin innefattar att minska utsläppen från olika sektorer samt att kompensera de återstående utsläppen med olika metoder för koldioxidlagring. Ekosystemens förmåga att binda kol på lokal nivå i gröna stadsområden är en viktig del av ansträngningarna för att kompensera för utsläppen. Det har varit uppenbart från tidigare forskning att potentialen av koldioxidlagring kan skilja sig åt beroende på vegetationens ålder samt passerande tid, även om aktuell forskning inte omfattar frågan på regional nivå, vilket är viktigt för insatser som omfattar koldioxidkompensation så att lagringspotentialen kan redovisas korrekt i de långsiktiga klimatåtgärderna. Denna studie syftar därför till att fylla kunskapsluckan gällande hur den tidsmässiga aspekten påverkar den befintliga lagringspotentialen och framtida prognoser samt hur det kan bidra till att nå koldioxidneutralitet fram till 2040. Studien avser därmed till att svara på forskningsfrågorna (1) hur kolbindningspotentialen för de befintliga grönområdena förändras över tid i Stockholms län, (2) ifall ytterligare åtgärder behöver vidtas för att bevara eller öka koldioxidbindningen för att uppnå eller bibehålla koldioxidneutralitet fram till 2040 och (3) hur kunskapen om koldioxidlagringsdynamiken underlättar för att nå en koldioxidneutral region år 2040. En avvägning av vilka Corina marktäckeskategorier utfördes och resulterade i inkludering av; diskontinuerliga strukturer, gröna stadsområden, skogar och våtmarker, där koldynamiken och omfattningen av lagringspotentialen var relevant för Stockholmsregionen. Den rumsliga analysen gjordes baserad på beräkningar med information erhållen genom bearbetning av införskaffad data om marktäcke och artfördelning samt vetenskaplig litteratur om kolbindningshastighet för varje vegetation över alla livsstadier, där Net Ecosystem Production var det huvudsakliga måttet. De uppskattade resultaten beräknades i ett Geografiskt Informationssystem för att simulera och visualisera lagringshastigheten för nuvarande och framtida förutsägelser om sekvestreringspotentialen år 2040 samt att lokalisera intressanta. Resultaten visar att genom att inkludera tidsmässiga aspekter i bedömningen av kolbindningspotentialen i Stockholms län ökade den nuvarande och framtida bindningspotentialen från tidigare forsknings uppskattningar. Den totala nuvarande lagringspotentialen var 2,8 MtCO2-ekv årligen och de framtida prognoserna uppskattades till 3,3 MtCO2-ekv årligen år 2040. Eftersom de nuvarande utsläppen i Stockholms län för närvarande är 6 MtCO2-ekv årligen, kunde man se att den naturliga lagringspotentialen som grönområdena avsåg, kompenserar för 46 % av de nuvarande utsläppen. Eftersom de beräknade framtida utsläppen är 0,95 MtCO2-ekv per år, mer än kompenserar de gröna områdena för de utsläpp som sker i länet, om den förutsedda reduceringen av utsläppen sker. Även om ytterligare mätningar inte tycks behövas för att uppnå koldioxidneutralitet till 2040, lokaliseras ytterligare områden samt arter i resultatet där förvaltning eller skydd är fördelaktiga för att ytterligare förbättra lagringspotentialen i Stockholms län.

Page generated in 0.1053 seconds